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1 Introduction

Today we are witnessing a paradigm shift in predicting protein structure from its known amino acid
sequence(a1, a2, · · · , an). The traditional or Ab initio folding method employed first principles to
derive the 3D structure of proteins. However, even though considerable progress has been made in
understanding the chemistry and biology of folding, the success of ab initio folding has been quite
limited.

Instead of simulation studies, an alternative approach is to employ learning from examples
using a database of known protein structures. For example, the Brookhaven Protein Database
(PDB) records the 3D coordinates of the atoms of thousands of protein structures. Most of these
proteins cluster into around 700 fold-families based on their similarity. It is conjectured that there
will be on the order of 1000 fold-families for the natural proteins [17]. The PDB thus offers a
new paradigm to protein structure prediction by employing data mining methods like clustering,
classification, association rules, hidden Markov models, etc.

A fascinating property of protein chains is that they spontaneously and reproducibly fold them-
selves into complex three-dimensional globules when placed in an aqueous solution. The sequence
of amino acids making up the polypeptide chain contains, encoded within it, the complete build-
ing instructions. This self-organization cannot occur by a random conformational search for the
lowest energy state [10], since such a search would take millions of years, while proteins fold in
milliseconds. In recent years, a combination of molecular biological and biophysical techniques
have dissected the folding process into fast and slow components which localize to certain parts of
the amino acid sequence [14].

Some small, fast-folding regions of the molecule may be identified by their sequence alone.
A library of short sequence patterns that fold fast has been compiled by cluster analysis of the
database of known protein structures (the I-sites Library, [3]). In this work, similar short sequences
that mapped to the same local structure in different proteins were deemed to be autonomous folding
units, and the short sequences were compiled into patterns or “profiles” which could then be used
to predict whether or not a segment of the protein would tend to fold independently of the rest

1



of the molecule. Cross-validation showed a strong statistical significance to the predictions made
by the profiles, and later NMR studies showed that some peptides predicted to fold in isolation
actually did so [19]. Peptides with a strong tendency to fold independently constitute about 30%
of the amino acid residues in protein sequences. The formation of independent folding units (I-sites
motifs) is the first level of self-organization in the folding process: the “initiation.”

These short motifs occur in proteins of widely differing topology, and so cannot contain suf-
ficient information to define the overall, global fold of the protein molecule. Moreover, they are
too short to be the fast-folding regions found by experimental dissection. There must be a higher
level of self-organization which dictates how the short pieces come together to form larger, longer
globular domains. The rules defining the propagation of structure along the chain, starting from the
sites of initiation, have been extracted from the database of known protein structures and formal-
ized as a hidden Markov model (HMM), called HMMSTR [4] (or “hamster”), discussed further
below. HMMSTR models the interactions between adjacent short regions of the sequence, and
so attempts to model the second level of self-organization: “propagation” of structure along the
sequence.

The I-sites Library models the initiation sites of folding, and the new HMM models interac-
tions between those sites. But HMMSTR [4] is a network of connections between I-sites motifs,
and thus simultaneously models both folding initiation and propagation. The two levels of com-
plexity, not discretely defined but smoothly intermingled, are represented in the HMM as variable
degrees of branching. Unbranched segments are initiations sites, whose probabilities depend si-
multaneously on short contiguous segments of the sequence, while branching and cycles represent
multiple sequence-dependent ways of extending and linking the initiation sites. Arbitrary levels of
complexity may be modeled by including HMMs recursively within overarching HMMs, the latter
representing the ways of connecting the output of the HMMs it contains. Hidden Markov models
are limited to data that can be expressed as one-dimensional sequences of discrete symbols, but
there are techniques for overcoming both the discreteness and the one-dimensionality [13].

The next level of complexity in protein folding is called “condensation”. In the first few mi-
croseconds after introducing the polypeptide chain into an aqueous solution, initiation sites form
transient, rapidly-interchanging structures, favoring one or more conformations to varying degrees.
These structures propagate along the chain by promoting compatible upstream and downstream
conformations, and the resulting transiently-formed substructures encounter each other by through-
space diffusion, condensing into larger, ordered globules, as energy dictates. The ordering of these
three processes is not discrete but overlapping, and they should therefore be integrated into a single
computational model. Modeling of the condensation step given predictions based on the modeling
of initiation/propagation is the subject of the present work. A single Markov state prediction im-
plies a local substructure and a single amino acid position within it. Thus, a contact between two
Markov states implies a specific mode of condensation between two local substructures to form
tertiary structure.

The contact map of a protein (see Figure 1) is a particularly useful representation of protein
tertiary structure. Two amino acids in a protein that come into contact with each other form a
non-covalent interaction (hydrogen-bonds, hydrophobic effect, etc.). More formally, we say that
two residues (or amino acids)ai andaj in a protein are incontactif the 3D distanceδ(ai, aj) is
less than some threshold valuet (in this paper we uset = 7Å as the threshold distance), where
δ(ai, aj) = |ri − rj|, andri andrj are the coordinates of theα-Carbon atoms of amino acidsai and
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Figure 1: Contact Map (PDB file 2igd,N = 61)

aj. We definesequence separationas the distance between two amino acidsai andaj in the amino
acid sequence, given as|i − j|. A contact map for a protein withN residues is anN × N binary
matrixC whose elementC(i, j) = 1 if residuesi andj are in contact, andC(i, j) = 0 otherwise.
The contact map provides a host of useful information. For example, secondary structure can easily
be discerned from it.α-Helices appear as thick bands along the main diagonal since they involve
contacts between one amino acid and its four successors, whileβ-Sheets are thin bands parallel
or anti-parallel to the main diagonal, etc. However, tertiary structure is not easily found from the
contact map. For predicting the elusive global fold of a protein we are usually interested in only
those contacts that are far from the main diagonal. In this paper we thus ignore any pair of residues
whose sequence separation|i− j| < 4.

Previous work on contact prediction has employed Neural Networks [6], and statistical tech-
niques based on correlated mutations [12, 15]. Recent work by Vendruscolo et al [16] has also
shown that it is possible to recover the 3D structure from even corrupted contact maps. In this
paper we present a new hybrid technique for contact map prediction. We first predict local struc-
tural elements using an HMM. The HMM simultaneously represents the initiation and propagation
steps of protein folding. We then apply association mining technique on top of the HMM states
to predict the states that frequently co-occur with contacts. These sets are then used for predicting
contacts in unseen proteins. Our model obtains 19% accuracy and coverage over the set of all
proteins; the model is also 5.2 times better than a random predictor. We can significantly enhance
coverage to over 40% if we sacrifice accuracy (13%). For short proteins (length< 100) we get
30% accuracy and coverage (4.5 times better than random); if we lower accuracy to 26% we can
get coverage upto 63%. We believe that these results are better than (or equal to) those reported
previously.
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2 Hybrid Mining Approach

Here we describe the hybrid technique used in conjunction, to predict residue contacts. We first
use an HMM to predict local substructures within the protein. We then use meta-level mining
on the output of the HMM using association rule mining. The following sections provide a brief
introduction to these two methods (readers familiar with them can safely skip ahead).

2.1 Hidden Markov Models

The description of HMM below is based on the excellent tutorial by Rabiner [13]. An HMM is a
doubly stochastic process with an underlying stochastic process that is not observable (it is hidden),
but can only be observed through another set of observed symbols.

An HMM is made up of a finite numberN of states. At each time stept a new state is entered
based on a transition probability distribution which depends on the previous state (the Markovian
property). After each transition is made, an observation output is produced according to a fixed
probability distribution which depends on the the current state. Thus there aN such observation
probability distributions.

As an example of modeling proteins via HMMs, let consider an “urn and residue” model.
There areN urns (or states) each filled with a large number of the 20 possible amino acids. The
observation sequence (a protein?) is generated by initially choosing one of theN urns (according to
an initial probability distribution), selecting a residue from the initial urn, recording which amino
acid it is, replacing it, and then choosing a new urn (state) according to a transition probability
distribution associated with the current urn. A step corresponds to a residue position. Thus a
typical observation sequence might be:

step or position 1 2 3 4· · · T
urn (hidden) state q3q1q1q2 · · · qN−2

amino acid (observation)G L A K · · · S

An HMM is made up of the following components:T is the length of the observation sequence;
N the number of states in the model;M the number of observation symbols (for simplicity we
assume here that the output is a discrete symbol, e.g. an amino acid. However we actually use
a continuous vector output as we shall see later);Q = {q1, q2, · · · qN} is set of HMM states;
V = {v1, v2, · · · , vM} is the set of output symbols;A = {aij} gives the set of state transition
probabilities, i.e.,aij = P (qj at t + 1|qi at t); B = {bj(k)} is the output symbol probability
distribution in stateqj, i.e.,bj(k) = P (vk at t|qj at t); and finallyπ = {πj} gives the initial state
distribution, i.e.,πj = P (qj at t = 1).

Using the model, an observation sequenceO = O1O2 · · ·OT is generated as follows: 1) choose
an initial statei1 based onπ, 2) set positiont = 1, 3) chooseOt according tobit(k), 4) chooseit+1

according to{aitit+1}, it+1 = 1, 2, · · ·N , and 5) sett = t + 1; return to step 3 ift < T ; otherwise
terminate the procedure.

An HMM can be compactly represented using the notationλ = (A,B, π). There are three key
problems that have to be solved to build a useful model: 1)Evaluation Problem:Given the obser-
vation sequenceO = O1O2 · · ·OT , and the modelλ = (A,B, π), how to compute the probability
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of the observed sequenceP (O|λ). This can be solved using the Forward-Backward algorithm [13].
2) Estimation Problem:Given the observation sequenceO = O1O2 · · ·OT , how to choose a state
sequenceI = i1i2 · · · iT , which is optimal in some meaningful sense. This can be solved us-
ing the Viterbi algorithm [13]. 3)Maximization Problem:How to adjust the model parameters
λ = (A,B, π) to maximizeP (O|λ). This can be solved using the Baum-Welch reestimation
method [13]. We will discuss in the next section the exact details of how the HMM is built to
model proteins.

2.2 Association Rules

Since its introduction, Association Rule Mining (ARM) [1], has become one of the core data min-
ing tasks, and has attracted tremendous interest among data mining researchers and practitioners.
ARM is an undirected or unsupervised data mining technique, which works on variable length data,
and it produces clear and understandable results. It has an elegantly simple problem statement, that
is, to find the set of all subsets of items or attributes that frequently occur in many database records
or examples, and additionally, to extract the rules telling us how a subset of items influences the
presence of another subset.

The association mining task can be stated as follows: LetI be a set of items, andD a database
of examples, where each example has a unique identifier (tid) and contains a set of items. A set
of items is also called anitemset. An itemset withk items is called ak-itemset. Thesupportof
an itemsetX, denotedσ(X,D), is the number of examples inD where it occurs as a subset. An
itemset isfrequentor large if its support is more than a user-specifiedminimum support (minsup)
value.

An association ruleis an expressionA ⇒ B, whereA andB are itemsets. The support of
the rule is the joint probability of a example containing bothA andB, and is given asσ(A ∪ B).
Theconfidenceof the rule is the conditional probability that an example containsB, given that it
containsA, and is given asσ(A∪B)/σ(A). A rule isfrequentif its support is greater thanmin sup,
and it isstrongif its confidence is more than a user-specifiedminimum confidence (minconf).

The data mining task is to generate all association rules in the database, which have a support
greater thanmin sup, i.e., the rules are frequent, and which also have confidence greater than
min conf, i.e., the rules are strong. In this paper we are interested in rules with a specific item,
called theclass, as a consequent, i.e., we mine rules of the formA ⇒ ci whereci is a class
attribute (1 ≤ i ≤ k).

This task can be broken into two steps:

1. Find all frequent itemsets having minimum support for at least one classci. The search
space for enumeration of all frequent itemsets is2m, which is exponential inm, the number
of items. However, if we assume that there is a bound on the example length, we can show
that ARM is essentially linear in the database size [21].

2. Generate strong rules having minimum confidence, from the frequent itemsets. We generate
and test the confidence of all rules of the formX ⇒ ci, whereX is frequent.
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2.2.1 Mining Frequent Closed Itemsets

We mine the frequent sets based on the Formal Concept Analysis approach [7], which is a very
elegant mathematical framework for extracting “concepts” from databases.

Consider an itemsetX. LetY = {E ∈ D|X ⊆ E} be the set of all examplesE in the database
D whereX occurs. Further letX ′ = {i ∈ I|i ∈ ∩E∈YE} be the set of all items that are common
to all examples in the setY . Then we say thatX is closedif X = X ′. In other wordsX is
the maximal set of items that is common to all examples inY . A closed itemset is also called a
concept.

The set of all closed frequent itemsets can be orders of magnitude smaller than the set of all
frequent itemsets, especially for real (dense) datasets [20]. At the same time, we don’t loose any
information; the closed itemsets uniquely determine the set of all frequent itemsets and theirex-
act frequency. Thus instead of mining all the frequent itemsets we only mine the frequent closed
itemsets using theCHARM algorithm [22] we recently developed. A detailed description of the
algorithm is beyond the scope of this paper. Suffice it to say thatCHARM can handle very large
disk-resident or external memory databases; it has been tested on databases with millions of ex-
amples, and it scales linearly in the database size. We refer the reader to [22] for the algorithm
description and its efficiency.

3 HMMSTR: An HMM for local structure in proteins

We describe here the hidden Markov model, HMMSTR [4], for general protein sequences based
on the I-sites library of sequence-structure motifs [3]. In the next section we will show how we
apply association mining on the output of HMMSTR to predict residue contacts.

Unlike the linear HMMs used to model individual protein families [5], HMMSTR has a highly
branched topology and captures recurrent local features of protein sequences and structures that
transcend protein family boundaries. The model extends the I-sites library by describing the adja-
cencies of different sequence-structure motifs as observed in the protein database, and achieves a
great reduction in parameters by representing overlapping motifs in a much more compact form.

The I-sites (Invariant or Initiation sites) library consists of an extensive set of short sequence
motifs, length 3 to 19, obtained by exhaustive clustering of sequence segments from a non-redundant
database of known structures [3, 8]. Each sequence pattern correlates strongly with a recurrent lo-
cal structural motif in proteins. Approximately one third of all residues in the database are found
in an I-sites motif that can be predicted with a high degree of confidence (> 70%). The library
is non-redundant in that no motif is completely contained within another, longer motif. However,
many of the motifs overlap. Furthermore, the isolated motif model does not capture higher order
relationships such as the distinctly non-random transition frequencies between the different motifs.
The redundancy inherent in the I-sites model suggests a better representation that would model the
diversity of the motifs and their higher order relationships while condensing features they have in
common. A hidden Markov model is well suited to this purpose.
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3.1 Description of HMMSTR

Each of the 262 I-sites motif was represented as a chain of Markov states, each of which contains
information about the sequence and structure attributes of a single position in the motif. Adjacent
positions were represented by transitions from one state to the next. Hierarchical merging of these
linear chains of states, based on sequence and structure similarity, resulted in a graph containing
almost all the motifs. The merged graph of I-sites motifs comprises a network of states connected
by probabilistic transitions, or more specifically, an HMM as shown in Figure 2.

Each state in HMMSTR can produce, or ”emit”, amino acids and structure symbols according
to a probability distribution specific to that state. There are four probability distributions defined
for the states in HMMSTR,b, d, r, andc, which describe the probability of observing a particular
amino acid, secondary structure, backbone angle region, or structural context descriptor, respec-
tively. A context descriptor represents the classification of a secondary structure type according to
its context. For example, a hairpin turn is distinguished from a diverging turn, and a beta-strand in
the middle of a sheet is distinguished from one at the end of a sheet. More formally, for a given
stateqi, there are a set of emission probabilities, collectively calledBi. Here, we use four in this
collection, denotedb, d, r, andc. The valuesbi(m) (1 ≤ m ≤ 20) are associated with probabilities
for the emission of amino acids. The valuesdi(m) (1 ≤ m ≤ 3), are the probabilities of emitting
helix(H), strand(S) or loop(T), respectively. The valuesri(m) (1 ≤ m ≤ 11) are the probabilities
of emitting one of the 11 dihedral angle symbols. Finally,ci(m) (1 ≤ m ≤ 10) are probabilities of
emitting one of ten structural context symbols.

The database is encoded as a linear sequence of amino acids and structural observables. The
amino acid sequence data consists of a “parent” amino acid sequence of known three-dimensional
structure, and an amino acid profile obtained by alignments to the parent sequence [3]. The amino
acid of the parent sequence is denoted byOt, and the profile by{Om

t }(1 ≤ m ≤ 20). For the
structural identifiers at each positiont, the following nomenclature is used: 3-state secondary
structureDt, discrete backbone angle regionRt, and the context symbolCt. A sequences of length
T is given by the values of the attributes at all positionsst = {Ot, {Om

t }, Dt, Rt, Ct} (1 ≤ t ≤ T ).
The utility of the HMM to model database sequences is based on the notion of a path. A path is a
sequence of states through the HMM, denotedQ = q1q2 · · · qT . Thus, the probability of a sequence
s given the modelλ, P (s|λ), is obtained by summing the relevant contributions from all possible
pathsQ:

P (s|λ) =
∑

all I

πi1Bi1(s1)ai1i2bi2(s2) · · · aiT−1iT biT (sT )

whereI = i1i2 · · · iT is a fixed sequence of states andBi(st) is the probability of observingst at
stateqi, which for observation of a single sequence is given by

Bi(st) =







di(Dt)
ri(Rt)
ci(Ct)





 bi(Ot)

Usually, only one of the structural emission symbolsd, r, or c is included inBi in any given
training run. However, in principle, any combination could be used. Our HMMs showed significant
improvements in performance when we used amino acid profiles instead of single amino acid
sequences for training and for subsequent predictions. For the probability of observing a given

7



11

12

13

14

15

16

17

18

19

20

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

73

74

75

80

81

82

83

84

85

87

88

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

115

116

117

118

119

120

121

141

142

146

147

148

149

154

155

156

157

158

159

160

165

166

169

170

179

184

185

186

187

188

192

193

194

195

196

200

201

204

205

206

208

209

215

216

217

218

219

220

221

222

223

224

225

226

227

228

231

232

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

254

255

256257

258

259

260

261

262

1

2

3

4

21

22

42

122

123

124

125

126

127

131

132

133

134

135

136

138

139

140

143

144

145

151

152

153

161

171

172

173

174

175

176

177

178

180

181

182

183

189

190

191

197

198199

207

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

89

90

114

frayed helix

Proline α-C-cap

Amphipathic helix

Helix N-cap

Gly α-C-cap, Type 1

DG β-hairpin

Amphipathic β-strand

Diverging β-turn

Type-I β-hairpin

Serine β-hairpin

86

162

163

164

Glycine α-C-cap, Type 3

Figure 2: HMMSTR model built from I-sites Library. For a detailed description, see [4]
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profile{Om
t } positiont in a sequence, we use the multinomial distribution, and the expression for

B becomes

Bi(st) =







di(Dt)
ri(Rt)
ci(Ct)







20
∑

m=1
bi(m)Ncount×O

m
t

To give equal weight to the information in sequence families of different depths,Ncountwas taken
to be a global parameter.

3.2 Training HMMSTR

For training, evaluation and testing of the HMMSTR we used a non-redundant database of protein-
s of known structure, PDBselect:December 1998 [9] containing 691 proteins and their sequence
families. The proteins in the set have< 25% sequence similarity. Entries in the database were
selectively removed if the structure was solved by NMR, had a large number of disulfide bridges
or cis-peptide bonds, or if it was a membrane-associated protein according to the header records.
Disordered or missing coordinates in the middle of a sequence were addressed by dividing the
sequence at that point. Contiguous segments of length less than 20 were ignored. Multiple se-
quence alignments were generated from each sequence using PSI-BLAST [2] after filtering the
query sequences for low-complexity regions [18]. Data for training the HMM included the se-
quence profile, computed from the multiple sequence alignment as described before [3], the DSSP
secondary structure assignments [11], the backbone angles, and a structural “context” symbol.

Backbone angles were measured from the coordinates and assigned, using a Voronoi method,
to 11 regions of phi/psi space. The centroids of 10 regions were chosen by K-means clustering of
a large subset of trans phi/psi pairs from the database. The 11th region is all cis peptides.

A randomly selected set of 73 of the 691 proteins (19,000 positions) was then set aside and
not used for training, but only for the final cross-validation. Before cross-validation, a test for true
independence was applied to each member of the test set, and 12 members were removed. The
final test set thus contained 61 proteins and 16,000 positions.

The remaining set of 618 parent sequences (145,000 positions) was used for training, and divid-
ed into a large set of 564 sequences (133,000 positions), used for optimization via the Expectation-
Maximization algorithm, and a small set of 54 sequences (12,000 positions) used to evaluate the
predictive ability of the model during training. Note that the small set of 54 sequences is used
only for evaluation of the performance of a model and may thus appear to be a test set. However,
decisions regarding the modification of the model are based on results of those evaluations. The
set of 54 sequences is therefore not a test set, but a training set. For the final round of training we
re-combined the large and small training sets, to a total of 618 sequence families. After the final
round of training, the models were frozen.

4 Data Format and Preparation

After HMMSTR is built we again took the 691 proteins from PDBSelect and computed for each
protein the optimal HMMSTR states that agree with the observed amino acids in the protein. In
other words for each protein sequence-structure we solve the estimation problem, i.e., given the
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observation sequenceO = O1O2 · · ·OT , how to choose a state sequenceI = i1i2 · · · iT , which is
optimal. The output probability distributions of all the states thus chosen for a protein sequence is
used as input for the association mining algorithm. In fact, rather than a single state associated with
a given residue, we have available the probability that the residue at the given position is associated
with all the states of HMMSTR, i.e., we have availableP (qi|aj) for all the 282 HMMSTR states
(1 ≤ i ≤ 282) for all the residues in a given protein (1 ≤ j ≤ n, wheren is the length of
the protein). For each residue we also know the amino acid at that position; theb, d, r, andc
outputs, which describe the probability of observing a particular amino acid, secondary structure,
backbone angle region, or structural context descriptor, respectively; the spatial coordinates of the
α-Carbon atom〈x, y, z〉; a distance vector of lengthn giving the distance of this residue from all
other residues in the protein; and the 20 amino acid profiles for that position. A protein data file
may look like this:

PDB Name: 153l_
Sequence Length: 185

Position: 1
Residue: R
Coordinates: 0.0 -73.2 177.6
Profile: 0.0 ... 1.0 ... 0.0 #20 Values
HMMSTR State Probabilities:

0.0 ... 0.7 .... 0.3 ... 0.0 #282 Values
Distance Vector: 0 3 5 ... 18 15 13 #185 Values, i.e., Seq Length

Position: 2
Residue: T
Coordinates: -124.4 0.2 -177.1
Profile: 0.0 ... 1.0 ... 0.0 #20 Values
HMMSTR State Probabilities:

0.0 ... 0.9 ... 0.1 ... 0.0 #282 Values
Distance Vector: 3 0 3 ... 15 13 10 #185 Values

...

Position: 185
Residue: Y
Coordinates: -88.7 0.0 0.0
Profile: 0.0 ... 0.4 ... 0.6 ... 0.0 #20 Values
HMMSTR State Probabilities:

0.0 ... 0.2 ... 0.5 ... 0.3 ... 0.0 #282 Values
Distance Vector: 15 13 10 ... 5 3 0 #185 Values

We have a file like the one shown above for all of the 691 non-redundant set of proteins from
PDBSelect. Disordered or missing coordinates in the middle of a protein sequence were addressed
by dividing the sequence at that point. This produces a set of 794 files, most of them containing an
entire protein sequence, but some of these correspond to proteins that were split.
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Given a protein file, we now have to transform the data into a format that can be easily mined
for frequent closed itemsets, i.e., we need to prepare the data in the relational or tabular format
where we have multiple attributes (columns) for each example (rows) or record. Since we are
interested in predicting the contact between a pair of amino acids, we use each pair as an example
in the training set, associated with a specialclassattribute indicating whether it is a contact (C) or
non-contact (NC); amino acidsai andaj are in contact ifδ(ai, aj) < 7Å, i.e., the distance between
α-carbons of amino acidsai andaj is less then7Å. Our new database has an entry showing the
two amino acids and their class for each pair of amino acids for each protein. In order to avoid
predicting purely local contacts we ignore all pairs whose sequence separation|i − j| < 4. Note
also that the number of contactsNC is a lot smaller than the number of non-contactsNNC for any
protein.

We found that the percentage of contacts (or number of database entries with class 1) over all
pairs is less than 1.7%. Across the 794 files, the longest sequence had length 907, while the smallest
had length 35. There were 17,618,115 pairs over all proteins, while only 292,126 pairs were in
contact. This database thus corresponds to a highly biased binary classification problem. That is,
we have to build a mining model that can discriminate between contacts and non-contacts between
amino acids pairs, where the examples are overwhelmingly biased towards the non-contacts.

Our database so far doesn’t have enough information for good discrimination. All we have is
the amino acids making up the pair and whether they are in contact or not. We need to add more
“context” information to facilitate the classification. It is easy to incorporate, for each amino acid
in the pair, the 3 secondary structure symbols (di, dj), the 11 backbone angle regions (ri, rj), and
the 10 structural context descriptors (ci, cj). For each pair we would also like to add the HMMSTR
state probabilities. Since association rules only work for categorical attributes, we need to convert
the continuous state probabilities into discrete values. To do this we take the ratio of each of the
282 HMMSTR state probabilities forai against the background or prior probability of an amino
acid being in that state; if the ratio is more than some threshold we include the state in the context
of ai, else we ignore it. We repeat the same process foraj. Using a similar thresholding method
one can incorporate the amino acid profiles for positionsi andj. With all this context information
for bothai andaj we obtain a new database to be used to find the frequent itemsets characterizing
the contacts and non-contacts. In summary the database might have the following columns for
pairs of amino acids over all proteins:

Protein and Position Information: ProteinID PairID i j |i-j|
Amino Acids and Context: ai aj di dj ri rj ci cj
Profile: pi1 pi2 ... pj1 pj2 ...
HMMSTR: qi1 qi2 ... qj1 qj2 ...
Class: C or NC

Note that the number of columns can be variable for different pairs depending on the profile and
HMMSTR state probabilities.pi1, pi2, etc. show the other amino acids that can appear in position
i (provided the probability is more than some threshold), and finallyqi1, qi2, etc. show HMMSTR
states with probabilities more than some factor of the prior probability of those states.
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5 Association Mining on the Pairs Database

We are now in a position to cast the above database in the association framework. Each attribute-
value pair is an item, and is represented with a fixed, unique integer. For exampleai = G is
one item andai = L is another item. By the same token each value ofci, di, ri, Li, andRi is a
different item. Each of the HMMSTR states becomes a distinct item, as do the profile values. The
items for the context attributes ofai andaj are also kept distinct. Finally we separate the examples
that are contacts from those that are non-contacts to get two databases, denoted asDC andDNC ,
respectively.

Given these databases our goal is to find high support and high confidence rules of the form
A ⇒ C andA ⇒ NC, that discriminate between the contact pairs and the non-contact pairs,
respectively. Below we describe the mining/training and testing phases, where we learn from
examples using the frequent closed itemsets, and then classify unseen examples as being contacts
or non-contacts, respectively.

5.1 Mining on Known Examples

The goal of the mining phase is to learn from known contact and non-contact examples and build
a model or rule set that discriminates between the two classes. We selected a random 90% of the
files for training, out of a total of 794 files. The remaining 10% of the files were kept aside for
testing the mined rule set.

Since we are primarily interested in predicting the contacts rather than the non-contacts, we
mine only on the contacts databaseDC . However, we do use the non-contacts databaseDNC to
prune out those itemsets that are frequent in both sets. Building a discriminative rule set consists
of the following steps, in order:

1. Mining: We useCHARM [22] to mine all the frequent closed itemsets inDC based on a
suitably chosenmin supvalue. Let’s denote the set of frequent closed itemsets asF .

2. Counting: We compute the support of all itemsets inF in the non-contacts databaseDNC .

3. Pruning: We compute the probability of occurrence of each itemset inF in both the contact
and non-contact databases. The probability of occurrence is simply the support of the itemset
divided by the number of examples in the given dataset. For example, if itemsetX ∈ F ,
then the probability of its occurrence inDC is given asP (X,DC) = σ(X,DC)/|DC |.
As a first step in pruning we can remove all itemsetsX ∈ F which have a greater probability
of occurrence in the non-contact database than in the contact database, i.e., ifP (X,DNC) >
P (X,DC). Actually, we compute the ratio of the contact probability versus the non-contact
probability forX, and prune it if this ratio is less than some suitably chosen thresholdρ, i.e.,
we pruneX if P (X,DC)/P (X,DNC) < ρ. In other words we want to retain only those
itemset that have a much greater chance of predicting a contact rather than a non-contact.

5.2 Testing on Unknown Examples

The goal of the testing phase is to find how accurately the mined set of rules predict the contacts
versus the non-contacts in new examples not used for training. We used a random 10% of the files
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in the database for testing. The test set had a total of 2,336,548 pairs, out of which 35,987 or 1.54%
were contacts. Since we do know the true class of each example it is easy for us to find out how
well our rules are for prediction.

For testing we generate a combined databaseDt containing all pairs of amino acids in contact
or otherwise. For each example we know the true class. We assign each example a predicted class
using the following steps:

1. Evidence CalculationFor each exampleE in the test datasetDt, we compute which itemsets
in the set of mined and pruned closed frequent itemsetsF are subsets ofE. Let’s denote
the set of these itemsets asS. We next calculate the cumulative contact and non-contact
support for exampleE, i.e., the sum of the supports of all itemsets inS in the contact and
non-contact database. Finally, we compute the evidence forE being a contact, i.e., we take
the ratio of the cumulative contact support over cumulative non-contact support, denoted as
ρE. Any exampleE with zero contact support is taken to be a non-contact and discarded,
and only the examples or test pairs with positive contact support are retained for the next
step.

2. Prediction To make the final prediction if a test pair of residues is in contact or not, we
sort all test examplesE (with positive cumulative contact support) in decreasing order of
contact evidenceρE. Finally, the topγ fraction of examples in terms ofρE are predicted to
be contacts and the remaining1− γ fraction of examples as non-contacts. Howγ is chosen
will be explained below.

5.3 Model Accuracy and Coverage

In predicting contacts versus non-contacts for the test examples, we have to evaluate the mined
model based on two metrics:AccuracyandCoverage. Furthermore, we are only interested in the
prediction of contacts; thus accuracy and coverage is only considered for contacts. Accuracy is the
ratio of correct contacts to the predicted contacts, while coverage is the percentage of all contacts
correctly predicted. Thus, accuracy tells us how good the model is, while coverage tells us the
number of contacts predicted.

More formally, letNtc denote the number of true contacts in the test examples,Npc the number
of predicted contacts,Ntpc the number of true predicted contacts, and letNa denote the number of
all possible contacts, i.e.,Na = (N − 3) × (N − 2)/2 (whereN is the protein length), since the
contact map is symmetric and pairs with sequence separation less than 4 are ignored. The accuracy
of the model is given as:

A = Ntpc/Npc

The coverage of the model is given as:

C = Ntpc/Ntc

The number of contacts predictedNpc of course depends on how we choseγ, since the topγ
fraction of test examples based on evidence is predicted as contacts. Since a protein is characterized
by Ntc true contacts, we setγ = N∗tc/N

∗
a and then predict the topγ fraction of examples as

contacts. Note thatN∗tc andN∗a denote the actual contacts and all pairs, respectively, that have
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positive contact support, since we discard examples with zero contact support. By adopting the
above method, the number of predicted contacts is limited to those actually present in the protein.
Further, this method has been used by previous approaches to contact map prediction [6, 12], and
we retain it to facilitate comparison with previous results.

We also compare our model against a random predictor. The accuracy of random prediction of
contacts is defined as:

Ar = Ntc/Na

6 Experimental Results

We mined the pairs database using various combinations of context information and then tested
the model on the unseen proteins. The pairs databases for training and testing had the following
approximate sizes:DC = 32MB for the training contacts database,DNC = 2GB for the training
non-contacts database, andDt = 340MB for the testing database (includes both contacts and non-
contacts). For all experiments below, we used a minimum support of 0.5% in the contact database,
and we pruned a pattern if the ratio of contact to non-contact frequency was less than 4 (except for
the amino acids only case where we used a ratio of 1.5).

Amino Acids Only Our first goal was to test how much information is contained in the amino
acids only, i.e., for both training and testing, each example consisted of only the two amino acids
ai andaj, and nothing else. Figure 3 shows the accuracy, coverage, and improvement of the mined
model over the random predictor for the test set. The accuracy and coverage is the mean value
over all proteins. The figure shows that the amino acids have some information that can be used
to predict contacts versus non-contacts, but this information is not too good. The figure plots the
accuracy and coverage as percentages. It also plots the improvement of the model over the random
predictor. The x-axis shows theprediction factor, which is related to theγ value (used to predict
the top fraction of pairs as contacts). The prediction factor is in multiples ofN∗tc, the number of
true contacts in the protein with positive contact evidence. For example, a value of 10 means that
the top(10×N∗tc)/N∗a fraction of the examples are predicted as contacts.

The left-most graph in Figure 3 shows the accuracy and coverage of the predictor over test
proteins of all lengths. The other two figures on the right show how accuracy and coverage change
with protein length. We have divided the test proteins into four bins:1 ≤ N < 100, 100 ≤ N <
170, 170 ≤ N < 300, and300 ≤ N .

We find that over all proteins the amino acids by themselves can be used to give an 8.5%
accuracy, 1.5% coverage, and an improvement over a random predictor by a factor of 2.4. Note
also the interesting trend in the graph. As the prediction factor increases we get better and better
coverage, but the accuracy trails off. This represents the classic accuracy versus coverage trade-off
common to many prediction problems. Which value to choose for the prediction factor depends
on what is more important. It has been reported in [16] that the 3D structure of proteins can be
recovered quite robustly, even from corrupted contacts maps. This implies that coverage should
have an higher weight than accuracy. In any case, if we had to choose a value representing the best
trade-off, we can pick the point where the accuracy and coverage curves intersect. This happens
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Figure 3: Amino Acids Only
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Figure 4: HMMSTR States and Amino Acids
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Figure 5: HMMSTR States, Amino acids, andRt, Dt, Ct Symbols
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Figure 6: HMMSTR States, Amino Acids, and Amino Acid Profiles

15



for a prediction factor of 7, where we have roughly 7% accuracy and coverage, and which is 2
times better than random. For 6.3% accuracy we can increase coverage to 14%.

When we consider the results for proteins of different lengths, we find the same trade-off be-
tween accuracy and coverage. Looking at the crossover point, we get around 13% accuracy and
coverage for short proteins withN < 100, 6% for100 ≤ N < 170, 4.5% for170 ≤ N < 300, and
around 2% of longer proteins.

HMMSTR States and Amino Acids We next added the HMMSTR states corresponding toai
andaj, i.e., we added the columnsqi1 , qi2 , · · · andqj1 , qj2 , · · · to the training and testing sets. Fig-
ure 4 shows the results. If we look at the cross-over point we get almost 19% accuracy and cover-
age, while the model remains 5.2 times better than random. For 18% accuracy we can get coverage
of 25% (still 5.1 times better than random). Figure 7 shows the results in a slightly different format.
It plots the improvement in coverage/accuracy over a random prediction. These results are compa-
rable to or better than the results recently reported in [23], where they examined pairwise amino
acid interactions in the context of secondary structural environment (helix, strand, and coil), and
used the environment dependent contact energies for contact prediction experiments. For about
25% coverage our model does more than 5 times the random predictor, as compared to the 4 times
improvement reported in [23]. Figure 8 shows the predicted contact map for the protein2igd that
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Figure 7: Improvement over Random Prediction

we used in the introduction. We got 35% accuracy and 37% coverage for this protein. The figure
shows the true contacts, the contacts correctly predicted, and all the contacts predicted (correctly
or incorrectly).

If we look at proteins of various lengths in Figure 4, we find that forN < 100, we get 26%
accuracy and 63% coverage at the extreme point (4 times over random). For100 ≤ N < 170 we
get 21.5% accuracy and 10% coverage towards the end (6 times over random), for170 ≤ N < 300
we get 13% accuracy and around 7.5% coverage (6.5 times over random), and for longer protein-
s we get 9.7% accuracy and 7.5% coverage (7.8 times over random). We believe these results
are the best, or at least comparable to those reported so far in the literature on contact map pre-
diction [6, 12]. For example, Fariselli and Casadio [6], used a Neural Network based approach
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Figure 8: Predicted Contact Map (PDB file 2igd,N = 61)

over pairs database, with other contextual information like sequence context windows, amino acid
profiles, and hydrophobicity values. They reported an 14.4% accuracy over all proteins, with an
5.4 times improvement over random. They also got 18% accuracy for short proteins with an 3.1
times improvement over random. Olmea and Valencia [12] on the other hand used correlated mu-
tations in multiple sequence alignments for contact map prediction. They added other information
like sequence conservation, alignment stability, contact occupancy, etc. to improve the accuracy.
They reported 26% accuracy for short proteins, but they did not report the result for all proteins.
While we believe that our hybrid approach does better, we should say that direct comparison is not
possible, since previous works used a different (and smaller) PDBselect database for training and
testing. One draw back of these previous approaches is that they do not report any coverage values,
so it is not clear what percentage of contacts are correctly predicted. Another approach to contact
map prediction was presented in [15], which was based on correlated mutations. They obtained
an accuracy of 13% or 5 times better than random.

Adding Additional Information We next tried to add more columns to the training database.
For example we separately added the amino acid profiles, and the structural context symbols for
the 3-state secondary structureDt, discrete backbone angle regionRt, and the context symbolCt.
The results for these cases are shown in Figure 5 and Figure 6. As we can see adding the profiles
did not add any additional prediction power to our model, while adding the structural symbols had
a positive (somewhat mixed) effect on accuracy and coverage. It appears that while the accuracy
of the prediction drops a little there is tremendous boost in the coverage of the model. For example
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at around 18% accuracy we get about 25% coverage using the HMM states and amino acids (see
Figure 4), but when we add the structural symbols, we get about 44% converage for an accuracy
of 12.5%. What this tells us is that the structural symbols can be helpful in providing the right
context for the predictions and thus help in identifying a larger portion of the contacts.

In conclusion we have presented a new hybrid HMM and association rule mining method for
contact predictions. Our results are the best or comparable to those previously reported. We are
currently working to further improve both accuracy and coverage by carefully selecting many of
the threshold parameters used in the experiments, as well as by adding additional attributes that
might help prediction.
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