The Sharpe Ratio, Range and Maximal Drawdown of a Brownian
Motion

Malik Magdon-Ismail Amir F. Atiya
Department of Computer Science, Department of Computer Engineering,
Rensselaer Polytechnic Institute, Cairo University,

Rm. 207 Lally Building, Giza,
110 8th Street, Troy, NY 12180, USA. Egypt.
magdon@rpi.edu aatiya@mindspring.com
Amrit Pratap Yaser S. Abu-Mostafa
Department of Computer Science, Departments of EE and CS,
Caltech, Caltech,
MC 136-93, MC 136-93,

Pasadena, CA 91125, USA. Pasadena, CA 91125, USA.

apratap@caltech.edu yaser@caltech.edu

September 11, 2002

Abstract

We analyze some commonly used statistics of a Brownian motion, many of which are important
in a financial context, especially as measures of risk. Specifically, we consider expected values
of the Sharpe ratio (related to the variance), the range and the maximal drawdown, M DD. We
develop analytic expressions for the expected value (as well as higher moments) of the extremal
points of the Brownian motion, from which the expected value of the range follows. We give
an analytic expression for the expected value of the M DD when the drift is zero. For non-zero
drift, we provide an infinite series representation, and compute the asymptotics. The M DD
exhibits different asymptotic behavior for the three cases of zero, positive and negative drift.

1 Introduction

The random walk is fundamental in computational finance, so we discuss some of its properties
and the estimation of some of its parameters. Specifically we consider the variance of the brownian
motion, the range (the difference between the two extremal values) and the maximal drawdown
MDD (the largest peak to bottom drop), all of which are formally defined later. These statistics are
commonly used measures for the risk of a protfolio whose return rate follows a Brownian motion.
The discussion of the variance is not new and is included here for completeness. We have not found
explicit analytic expressions for the results presented on the extremal values of the motion (the
difference between the two extremal values being the range of the motion), and to the best of our
knowledge this is the first serious attempt to study the properties of the M DD.



For a Brownian motion with a drift ;4 and a variance parameter o, the Sharpe ratio S is defined
by & = u/o. Suppose that the Brownian motion is observed in the interval [0,7]. For n > 1 let
7 =T/n. A sample estimate of S can be obtained by computing the average value and variance of
the changes in S over the n time periods of length 7. Calling these average values 7, and o2, the

following result holds.
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As n — oo, the RHS converges to S. Defining o = §1/T'/2, we find that the expected value of the
range is given by

B[R] = *7Qr(e), 2)

where
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When g = 0, this formula is accurate in the sense of the limit y — 0 (S — 0), giving
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E[R]:2< p=0. (4)

Asymptotically in T, when p # 0, the range grows as uT + o2 /u. For the expected value of the
MDD, we find that

E[MDD)] = %“QMDD(OF), (5)
where
Qp(l') pu >0,
Qupp(z) = { W2z p=0, (6)
—Qn(7) p > 0.

v = 0.6226 is a constant, and, @) and @, are functions whose exact expressions are quite com-
plicated and are developed later in the text, in sections 2.5.4 and 2.5.5. However, they can be
numerically evaluated and their asymptotic behavior can be computed. These results are given in
the appendix, section A. The important thing is that the @ functions are universal, not depending
on u, o or T, and so they only have to be computed once. A graphical illustration of the behavior
of Qp, Qn and yv/2z are shown in Figure 1.
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The asymptotic behavior is logarithmic for g > 0, linear for 4 < 0 and square root for y = 0, quite
a divergence in behavior depending on the sign of u. Infact, this very fact could be used as an
hypothesis test for the sign of u.

In practice, the random walk is only observed at discrete times. Assume the time intervals
between observation are a constant, At, then the observed M DD will be an underestimate of
the true MDD. A correction [Rogers and Satchell, 1991] given by 28rsov/At where 3 ~ 0.90722
can be used to augment the observed MDD to get a less biased estimate. A comparison of this
correction factor with the true bias is shown in Figure 4.
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Figure 1: Behavior of the Q(-) functions for positive, negative and zero u.

The sterling ratio R, a commonly used risk measure, can be defined as R = p/E [M DD], which
we see is then given by
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and thus knowing the Qaspp function and the time period, we have a relationship between the
Sharpe ratio and the Sterling ratio. An important note is this relationship is time dependent,
and thus when the sterling ratio is quoted, it is important to also give the length of time, T over
which it was computed — unlike the sharpe ratio, where it is straightforward to normalize out the
time dependence, the Sterling ratio is much more complicated, and has quite different properties
depending on the sign of . The case that is of most practical interest is when p > 0, in which case
Qv pp has asymptotic logarithmic behavior.

(8)

1.1 Preliminaries

We begin with the definitions. Let X (¢) be the random walk where ¢ is either discrete or continuous
time. We are interested in properties of this random walk in the interval [0,7"]. X (0) = 0 and X (¢)
follows the follows a path given by its stochastic dynamical equation.

Continuous Time. A Standard Brownian motion with drift 4 and a variance parameter o has
the following dynamics,
dX (t) = pdt + odW ().

Here, dW (t) is a white noise random variable and has the property

E[‘Wgt(t)] —0 & d‘Z—t(“d%(s)] — 5t —s),

where §(-) is the dirac delta function. Heuristically dW (t) can be viewed as (any) random variable
(usually chosen to be normally distributed) with mean and variance given by E [dW (t)] = 0 and



E [dW (t)?] = dt. Integrating, one gets

t t o d
X(t) :pt+0/ dW (s) :ut+a/ ds W(S),
0 0 ds
which can be used to compute expectations, for example
t
Ewun=m+a/dd4“g”]=mﬂ
0

and

E[(X(t) - E[X(®))?] = o /Ot ds /Ot dv E [dVZf) dvgév)] — o /Ot ds = o2,

J(Stv)

/

so Var[X(t)] = o%t.

Discrete Time. Once again, the interval of interest is [0 T], however this interval is broken into
n intervals of length At = T'/n. The random walk is thus defined on a finite number of points,
X; = X(iAt) for 1 = 0,1,...,n. We could imagine each step to be Gaussian, however in the limit
of small At it does not matter, so we assume a finite dynamics for the random walk given by

Xt — Xi+0 with prob p,
SRR I ) with probqg =1 —p.

Continuous Time Limit of Discrete Time. Notice that if we want the discrete random walk
to simulate the continuous case, then p and § need to satisfy certain constraints, namely that

E[Xn —Xo] = n(p—q)d=uT, (9)

Var[X, — Xo] = 6% =no’At. (10)

Solving these two equations for p and ¢§ in terms of the known parameters y and o we find that

1/2
) ; (11)
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w2 At
o2

1 VAL AN

p = 5(1+“a <1+“0_2> : (12)
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Notice that 4 — —u is equivalent to interchanging p with ¢ in the random walk. Notice also that as
At approaches zero, p — % and the stepsize § — 0 both at a rate v/At. This is important because
in any statistic of the random walk, to get the corresponding statistic for the continuous case, we
simply take the limit, letting At¢ approach zero, with p and § having the prescribed dependences.
Asymptotically we see that

5 o oVAL (14)
, 1@+““E>, (15)
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and the higher order terms can be computed if needed. Exactly such a limiting process to price the
European option from first principles [Magdon-Ismail, 2001] and to obtain the joint density of the
high and close given the open. Usually the solution of such problems involves the solution of the
Fokker-Plank equation and are complex. However, with this limiting process, many problems can
be reduced to combinatorics, and taking of the limit, we get the continuous version of the result. It
can be shown that the discrete distribution approaches the continuous distribution in the At — 0
limit. However a statistic that precisely exploits this difference might converge to a different value
than its corresponding continuous statistic.

Probability Tools and Notation We will specify the notation that we use throughout. fx(z)
will denote the probability density function for the random variable X evaluated at the point x.
We let F'x (z) denote the probability distribution function for the random variable X evaluated at
the point z. Note that fx(z) = %w(w) and that Fx(z) = P[X < z]. We usually assume that
fx(z) is a continuous function of z.

Suppose that X is a non-negative random variable. It is extremely useful to introduce the

complementary distribution function Gx(z) =1 — Fx(z) for the following reason.

Lemma 1.1 Let X > 0 be a non-negative random variable and let q(x) be any differentiable non-
decreasing function on [0,00) for which E [¢(X)] < co. Let Gx(xz) = P[X > z], be the complemen-
tary distribution function. Then,

Elg(X / dz o(2) fx (@ /

Since this is non-standard in probability books, the simple proof is as follows:

[ dwa@tx@) = - [ dogla)(Gx ), (19)

~ ~4@Gx@)F+ [ do ¢ (0)Gx(a), (a7
— 4(0)~ Jim ¢(@)Gx(@) + [ do g(x)Gx (o). (18)

It thus remains to show that lim q(z)Gx (xz) = 0. This follows from the fact that the expectation

E[q(X)] exists, which means that ¢(z)fx(z) must decay sufficiently fast to make it integrable.
This in turn means that ¢(z)G x(z) must also decay to zero. More formally, since E [¢(X)] exists,

0 = Jim [~ drq(a)fx(o), (19)
—oo /A

> Jim g(4) [ do fx(a), (20)

= lim ¢(4)Gx(4). (21)

The second line follows because ¢(-) is non-decreasing. Since ¢(-) is non-decreasing, it cannot go to
—o0 so the RHS cannot be less than 0 (as Gx(A) — 0), and hence must equal 0, and the lemma
is proved. [ |

Using g(z) = z* we get the moments. Another particularily useful case is g(z) = e since in
finance, one is often interested in log-transformations. Using the lemma we get that

E[X™] = m /0 Y de G (), B[] =1+a /0 " dr Gy (x). (22)



It turns out that this lemma will be very useful for us because the statistics that we are interested
in, for example the maximum of the random walk, the range and the maximum drawdown, are all
non-negative. Further, as we shall see, it is possible for us to compute the distribution of these
random variables, hence computing whatever expectations we want does not have to go through
the added exercise of computing the density.

2 Statistics of the Random Walk

We now consider the statistics of the random walk that we are interested in. Of interest are their
expected behaviors as functions of u, ¢ and T. Of additional interest are the relationships and
correlations among these statistics as it is often the case that one or more of these statistics is
available and one might like to infer some information about the others.

2.1 Return

This is simply the value of X (7). A more interesting statistic is r,, the 7 averaged return defined
as follows. Select a time interval 7. We can define the returns over time intervals of length 7 by
ro(7) = X(a1) — X((a — 1)7). Then r; is given by the average of these quantities

i ro(r) = X(n7) — X(0) _ X(T)’ (23)

n n

=

where we assume that nT = T'. As already discussed, r,(7) is distributed according to a Gaussian
with mean p7 and variance o7, and since the 7,(7) are independent, r, will have a distribution
with the same mean and a variance decreased by a factor of 1/n. Thus,

r, ~ N(ut,0%1/n), (24)

where we use N (i, 0?) to denote a Gaussian distribution with mean y and variance 0. Remember
that X (T') ~ N(uT,o>T).

2.2 Variance

2

T?

This is simply the variance of X (T'). Since this is not observable, a more interesting statistic is o
the 7-variance. defined by the variance of the r,(7)’s.

n

= L lalr) —r = ) = 1 k) -

a=1 a=1 a=1

The following theorem is useful

Theorem 2.1 (see for example [DeGroot, 1989]) Suppose that Xi,...,X, form a random,

i.i.d sample from a normal distribution with mean p and variance o?. Then the sample mean,

X, = (1/n) X", X; and the sample variance 6% = (1/n) 3" (X; — X,)? are independent random

variables; X, has a normal distribution with mean pu and variance o?/n and né?/o? has a x*
distribution with n — 1 degrees of freedom (x2_,).



Thus, in a Gaussian random sample, the variance and the mean are statistically independent — this
is intuitive because knowing the mean places no restrictions whatsoever on the variance, however
that it should only hold for Gaussian random numbers is not intuitive, but true. Thus, r, and o2
are independent statistics of the random walk. Further, no2/o?7 has a x2_; distribution - a type
of gamma, distribution. Thus we can immediately write down the density for o2 using the formula
that if X ~ fx(z) and if Z = aX with density fz(z) then fz(z) = ﬁfx (z/a). We get that

(n—1)/2 1
n 2
. Y (n—1)/2—1 _—ns/20°T
fo (s) (027) 20D ((n—1)/2)" ‘ ' (26)
A useful formula is the expected value of .
K/2 _ K
2021 M(%=+ %)
E [aK] - ( - ) F?E)Q K>—(n—1). (27)
2
Thus, for example, one could compute the mean and variance of 03.
-1
E [02] L - o’r, (28)

and is thus not quite an unbiased estimate of o27. The variance is given by

2(n — 1) 1
= (29)

Var [03] = -

n
Note also that since we know the distributions of r, and 03, and that they are independent, we can
write down the full joint distribution, f,. ;2 (r, s) by simply taking the product of the two respective
distributions.

2.3 Sharpe Ratio

The ratio of the return to the standard deviation is important in financial circles. Notice that
E[r;] = pr and E [02] = 0?7 so we do not expect the ratio /o, to yield a quantity that is
independent of 7, which would be desirable as 7 has up to now been somewhat arbitrary. In order
to obtain a 7-independent statistic, we thus define the sample Sharpe ratio S by
rr

Or/T

Since r; and o, are independent, we can get the expected value of S by taking the product of the
expectations. Using (27) with K = —1, this yields

S = (30)

-1

R n\ 2 T2 -1
E[S] = g (§> EE— (31)

NS [ho]3

Note that as n — oo, E [5’] — &. In fact, it is possible to get the full distribution of the sample
Sharpe ratio by taking the product of the distribution of r; and the distribution of 1/0,. The result

1S
2 (.2 9 -3
B (1 )
o )T 00 -

fs(s) = w1l /n—1 dzr =" e %(x_%) (32)
272 7T (—) 2no?(n — 1)1 0




When p = 0 this becomes a ¢ distribution with n — 1 degrees of freedom. Since v/n(r; — ut)/o\/T
is standard normal, and no?/o?7 is x2_;, the ratio,

Va(r; — pr)
C = U\/; — \/m(TT B /“-)

nag 2 or
(n—1)o?7

has by definition a ¢ distribution with n—1 degrees of freedom, which is independent of ¢! Further,
note that C itself is independent of ¢ and is related to the sample Sharpe ratio S.

; (33)

2.4 High, Low and Range
The high H, low L and the range R are defined as expected.

H= sup X(t), L= inf X(t)) R=H-L. (34)
te[0,T] t€[0,T]

We will derive the exact value of the expectations of these quantities as well as the distribution of the
H and L. It is also possible to get the joint distribution of H and L [Magdon-Ismail and Atiya, 2000]
and hence the distribution of R, but we postpone this tedious computation. Additionally, the dis-
tribution of the cover time for a brownian motion can be found in [Chong et al., 1999, Imhof, 1985],
from which after a differentiation, one can obtain the distribution for the range. It suffices to con-
sider the distribution of H since the distribution of |L| can be obtained from the distribution of H
by setting 4 — —u. We will compute the expected value of the range, the high and the low using
the distribution of the high. We have not been able to find this explicit result in the literature for
the general asymetric brownian motion, though for the symmetric case, [Feller, 1951] gives a result.

Consider a random walk with an absorbing barrier at A and let A be the time at which the
random walk gets absorbed. The distribution f)(¢) is known (see for example [Dominé, 1996]) and
is given by the inverse Gaussian distribution

h _(hpt)?
@) = WE 207 . (35)

Thus, the probability that H > h is exactly the probability that the random walk gets absorbed in
the interval [0, T]. Hence, using the fact that Gy (h) = fOT dt fx(t), we have

Guy—n [ L UEEE 36
= _— ot .
w0 =h [ T G (36)
Using Lemma 2.1, we can now compute the moments of H as as follows.
E[H" = m / dh K™ Gy (h), (37)
0
T dt 1 00 _(hop)?
= — dh h™e 207t .
m/o  @roth) /0 e 20 (38)

We illustrate how to use this formula to obtain the moments explicitly for small m. The general
case can be evaluated as a finite series if so desired.



E[H]: For the case m = 1 we have the expected value of the high. Making a change of variables
in the h-integral to u = (h — ut)/(202t)"/? we find that

1 T o0 202 1/2 2 o0 2
EH:—/dt/ du | = *“+/ due ™ |, 39
L] VT o [—a(t)u<t> e " e ™ (39)

ﬁ/<) dt<2t) 04 iy /dt/ (40)

where a(t) = put'/?/(202)'/2. Defining the error function,

erf(z / du e ™, (41)

the first integral (after a change of variables) can be reduced to %267‘ f(a(T)). In order to do the

second integral, we use a change of variable from ¢ to z = «(t). The last integral then becomes
40% [o

pv Jo

Integrating by parts on z [ du e ¥ we find that
o(T) @ 1 T
/ dz :I:/ du e~ = \/TEerf(Oé(T)) (QQ(T) - —) + Me_"‘Z(T)a
0 0

and thus we finally get for the expectation

T) z 5
dz :(;/ due ™.
0

T o2 1 o
E[H] = “— +Z lerf(a) (5 + a2> + afﬁ ] : (42)
where by o we mean «o(T'). Expectations for the low and the range can now also be derived.
pT o2 (1 2) ae @
E[L] = —-E[H|- B — 4
& 1= ==L+ E fers() (5 +a?) + 25— ). (43
202 1 9 e
_ —ul = - . 44
BIR] = BH +BH| - =~ [erﬂa) (3+0°)+ == ] (449)
Defining Qr(«) by _
Qnle) = erfto) (5 +2) 4 227 (45)
r(a) =erfla) (5 +a g

these formulae can be written more compactly as

BHI=7 (o Qui@),  BIHI=% (o7~ Qu@),  FIRI=""Qua) (0

We now consider several interesting limits of these formulae. We use the following asymptotic
relationships for erf(z), [Gradshteyn and Ryzhik, 1980]

k+1 2k—1
Z 2k k=1 z— 0,
e'rf(-’L‘) — 67562 n—1 (_ )kl—\(k + %) (47)
1-— I + R, T — 00.
T $k+§

k=0



When p = 0, we find that

1/2
E[R] =2 (2"jT> / p=0 (48)
The behavior as T'— 0 and T — oo are given (for p > 0) by*
E(E_FE_{_) a_)()’
BIR=< 7, */j lﬁe_o‘2 (49)
7(04 +§_ o3 +> a — 00.

Thus two different kinds of behavior emerge at the different limits. This is in contrast to the Sharpe
ratio which is roughly constant, independent of T, as can be seen from the expected value of the
sample Sharpe ratio (31) which only depends on n (which is a function of 7 = T/n). Further,
(n/2)'/2T'(n/2 — 1)/T'(n/2 — 1/2) approaches 1 for large n, and is fairly robust with respect to the
choice of 7.

We can use similar methods to obtain E [H?]. From (38), we get that

T dt 1 0o _(h—ut)2
2] _ 2,7 507
E 1] _2/0 : (%0%)1/2/0 dh h?e” 207 . (50)

Once again, making a change of variables to u = (h — ut)/V20?t in the h integral, we arrive at

4 (T [ %t
E [H2] = —/ dt/ du | o*ue ™ + (20275)1/2/11167“2 p Bl , (51)
T Jo —a(t) 2
which means we need to do three integrals. Making a change of variables to x = «(t) in the
t integral, and then integrating by parts where necessary, each of these three integrals can be
converted into an intagral of the form

a(t) b —x
I () =/ dz z%e™, (52)
0
where a = «(T'). The following relationships allow us to complete all these integrals.
D) = Yerf(a) (53)
1 a2
i) = 3 (1-e), (54)
kE—1 k—1,—a2
(@) = “5—Iis() - % k> 1. (55)
The final result is
22 ot ae ™ erf(a) 90 4 o1 203e 56
[Homo] =5 | = — =g+ e A rerf(a) + = (56)

We obtain E [L?] by changing u to —p, i.e., E [L?|u,0] = E [H?| — p,0]. We can get the variance
by using the identity Var[H] = E [H?] — E [H]*.
'Note that F [R|u] = E [R| — ]

10



2.5 Maximum Draw Down (M DD)

Loosely speaking, this is the largest drop from a peak to a low. Unlike the range which is simply
the max minus the min, for the M DD, the order in which the max and min occur matters. If the
min occurs after the max, then MDD = R. In general, there appears to be no straightforward
relationship between R and MDD (except that R > M DD). We will investigate the behavior of
MDD here. A simple linear time algorithm for computing M DD on a discrete realization of the
Brownian motion is as follows. Assume that X (¢) is observed at the N + 1 times tg,1,...,tN.

CURMAX=t(;D=0;MDD=0; // D=Current Drawdown
for i=1 to N{
if (X(#;)>CURMAX) then CURMAX=X(%;);
D=CURMAX-X (%;) ;
if (D>MDD) then MDD=D;

}

Formally we can define MDD as

MDD = sup [ sup X(s) — X(t)] . (57)
t€[0,T7] | s€[0,t]

2.5.1 Discrete Random Walk

Let D; be the draw down from the previous max at time ¢, Dy = 0. Dy is a random walk that has
dynamics very similar to X;. If X; goes down (with probability ¢ = 1 — p) then Dy goes up. If
X, goes up (with probability p) then D; goes down, with the exception that D; cannot drop below
0. In otherwords, if X; follows a random walk with probability p, then D; follows a random walk
with probability 1 — p and a reflecting barrier at 0, which is where the random walk starts. MDD
is then given by

MDD = max D;. (58)

If we add an absorbing barrier at h, the random walk gets absorbed if Dy > h for any time in the
interval of interest. Thus we can get the probability that M DD > h by considering the absorption
probability for this random walk. Let f(i|h) be the probability that the random walk gets absorbed
at exactly time step 7. Then

T/At
P[MDD > h] = P[absorbtion € [0,T]] = > f(ilh). (59)
=0

f(i|h) was initially computed in [Weesakul, 1961] for p/q < (1+1/N)?, the more general case being
given in [Blasi, 1976], which after the correction of some typographic errors is given by

( p 1 2
f f<(+x)
. ~ 3 2ip%(i*N)q%(i+N) P _ 12
filh) =L f2) +5 (NTD(N D) 6‘(1+N) » (60)
. i, 1(G—N) 1(i+N) L i—1 g 12 2
2) + 2'p2 ) q2 g2 cosh 6ls1nh B g> (1+ %) ’
{ (N +1)qg2 cosh(N +1)8 — Np2 cosh Nj

11



where N = h/§, and

N 1 j—1 )
k) = ~2iptt= g3 3 L0 ool (61)
ok (N +1)g2 cos(N +1)a, — Np2 cos Nay,

and where, o, € ( v (U_H)”) satisfies

q% sin(N + 1), — p% sin N, = 0, (62)

and [ satisfies
1 1
g2 sinh(N + 1) — p2 sinh NG = 0. (63)
Note that ¢ and p are given in (13). Taking the limit At — 0, should give the continuous case.

Suppose that we let f;(t/h) be the corresponding density for absorbtion in the time interval [¢, 1+ At]
defined by f,(t|h)At = f(t/At|h). Hence

T/At
PIMDD > hl= Y Atf.(iAt|h), (64)
=0

which is the Rieman sum approximation to an integral. Since as At — 0, f,(t|h) — f,(t|h), the
continuous time absorbtion density, we have that in the At — 0 limit,

P{MDD > h] = /O Lt (). (65)

It thus remains to take the limit At — 0 of f,(¢/h) = f(i|h)/At. In this limit, p = (1 + ) and

g = 1(1 — )) there A — %Kt and § — ov/At. Since p/q — 1+ 2uv/At/o and (1 + 1/N)?
1+428/h — 1+ 20+/At/h, the three cases in (60) are given by p < 02/h, p = 0%/h, and p > o2 /h.
We also find that

N
2ips (- Mgs(th) = (1 \%)5 G A) C (66)
¢
2 24t VA U’\/i
- e 20 e 02. (68)

We now look at the eigenvalue condition on «,.
1, 1, 1. 1.
g2 sin(N +1)ay, —p2sinNa, =0 = (1 —A)2sin(N +1)ay, — (1 4+ A)2sin New, = 0.

Since A — 0, we take the first order expansion in A to get

A
sin(N + 1)a, —sinNa, = E(sin(N + 1)a, +sin Nay,). (69)

12



The following identities are useful

A+B . A-B

sinA—sinB = 2cos 5 sin 5 (70)
sinA+sinB = 2sinA—;BcosA;B, (71)

finally giving the condition
tan (N + %) Qi COS (ty = %sin %. (72)

Letting 6, = (N + 1/2)a,, and noting that for every fixed v, «, € (A}’fl, (T,;l)lﬂ) — 0, we can take

the limit of this eigenvalue equation (remembering that NA — ph/c?) to get

2

o
= — 73
tan 6, uhev’ (73)

N+3
N-1

1
with 0, € (mr];\]:f ,(v+ D

) — (vm, (v + 1)7]. In an identical manner, we can analyse the

eigenvalue condition for 8 to get

1 2 .. p
tanh (N + 5) Bcoshf = 3 sinh 3 (74)

Defining n = (N + %)ﬂ, and taking the limit, we find

2

g
tanhn = —n. 75
anhr = -1 (75)

We now take the limit of the summand in f, which we first rewrite using the fact that sina, —
0y/(N + 3) as

62 cos' ! a,

(N + 52N +1) [cos(HU + 50) — Acos(6, — %au)] ’

(76)

where

@+ N2
BRSO

Using the fact that lim,_,q cosl/® g = e 1/2 we can analyse cos’! . Since i = t/At, cos' ! o, =

cost/A=1q, = cost/Atay,,. Since N — oo, we see that a, = 0,/(N + %) — 00,V At/h hence
t/At — o%6%t/h%a2. Thus, we get that

. _ 02921 t
cos' La, = e 207, (77)

We can neglect constants with respect to N, and 1/N? = ¢2At/h%. Thus, using the double angle
formulae, we get for the summand,

_ o202t
Ato? 02¢ 2n*

h? N(1— A)cosbycos g, — N(1+ A)sinfysin o,

(78)

13



In the limit,

1
N(1+ A)sin 0w = 0, (since A — 1), (79)
1
N -A)cosgay — 1-NA—>1- ph)o?. (80)
Thus we finally get for f
) ) o262t
At NPT
- (81)

h? (1 — ) cos, — O, sinf,

The following manipulations are useful.

6?2 —o*6?
v = — v from (73),
(1- g—';) cos 0, — 0, sin b, sin 0,[0%62 + p2h? — pho?| (3)

—o%03 sin 6,
sin? ,[0402 + u2h? — pho?]’

_ —0*03sin6,[1 + tan? 6, since sin g — tan? x
~ tan? 0,[0%02 + p2h? — pho?] - 1+tan?z’
0 402 4,212
_ = sin@,[c*0; + u°h*] from (73). (82)

[04602 + p2h? — pho?)
Plugging all these results back into (60) and dividing by At, we finally arrive at the continuous
limit of f,

202
pt _ph g2 X0 sinf,[0*02 + p2h?le” ot
[04602 + p2h? — pho?)

(83)

where 6, are the positive solutions to the eigenvalue condition tan, = 026, /uh. For the second
case, the additional term can be computed using (68), the fact that puh/o? = 1 and that 1/N? —
o?At/h?. On dividing by At we get for the additional term,

207 = —. 84
e 20 12 A ()

For the third case, we use techniques similar to those used in getting the summand of f . We have

. 2.2
that 8 = n/(N + %) — 0, and lim,_, cosh'/%” z = €!/2, so we see that coshi™! 3 — exp(UQ;Zzt)-
Thus, as with (78), we get for the additional term in the third case,

a2n?t
Ato? n’e 2h?

h? N(1— A)coshncosh 38 — N(1 + A)sinhnsinh 3’
which upon using manipulations similar to those that led to (81) and (82), we finally arrive at

nsinhn(u?h? — o*n?)

(85)

86

(ol — 1212 + o2ph)’ (86)
Using (68) and dividing by At, the additional term in the third case becomes
2p2 _ h B2t uh, a’n’t 2

o ( 7 ) sin 1207 " o7 ¢ oK > 7, (87)

h2 (o4n? — u2h2 + o2ph) h
Using (83), (84) and (87) in (60), we arrive at the continuous limit of the discrete time density.

14



2.5.2 Continuous Time Directly

We reformulate the problem in continuous time in an identical way. Namely, suppose that X (¢) is
the Brownian motion and that D(¢) is the corresponding Brownian motion for the draw down. As
with the discrete case, if X (¢) has drift and variance parameters up and o?, then D(t) follows a
Brownian motion with drift up = —pp and variance parameter 0. D(0) = 0 and the process has
a reflective barrier at 0. Let there be an absorbing barrier at h and let f-(¢|h) be the probability
density for being absorbed at t. Let G(h|T) be the probability that MDD > h in the interval
[0,T. Then,

GGy = [ dt Se(olh). (88)

Given the complementary distribution function, we can get the expected value of MDD from Lemma,
1.1 as E[MDD|T] = [;° dh G(h|T). The absorbtion time density for D(¢) when the Brownian has
mean up = 4 has been computed in [Dominé, 1996] and is given by

2 492 + u2h2)6, smﬁn _bh o262t
fo(t]h) = ¢ 27 [hZZ (016 + 212 — o2l © e 2+ K|, (89)
where 6,, are the positive solutions to the eigenvalue condition
o2
tan 6, = ,u_han’ O, € (nm, (n+ 1)), (90)
and K has the form
( 2
o
0 < —,
RS
302 o?
K= %2eh2 n= Fa (91)
212 p,h, o2 on°t 2¢ 2
o? (u2h )nsmhne e T #>a_’
\ h2 (on? — u2h2 + o?uh) h
where 7 is the positive solution to the eigenvalue condition
2
tanhnp = — (92)

uh'"

We can see that this solution agrees with the continuous limit of the discrete process, from (83),
(84) and (87). Since Gupp(h|T) = [i dt f,(t|h), we find that

0, sin b, IL _?RT _p’T
4
Gupp(h|T) =20 Z (0902 & j2h2 02uh) (1 —e 27 e 207 | + L, (93)
where L is given by
( 2
0 ©< %,
3 _#2T o2
2 —
L:<g l1—e 20 /’II_W’ (94)
_bh )
20y sinhn e o2 1. I;_Te_sz_ S 0_2
[ (0*n® — p?h? + o?ph) P

15



We will remove the M DD subscript on G(:|-) from now on when it is clear from the context. It is
instructive to consider the limit 7 — oo. In this limit we should have that G(h|T) = 1 for all h.
Using the eigenvalue equations (73), (92), we thus deduce the following interesting sums.

( ph 0 sin3 6, o?
_2_ _
29 — cos b, sinf, < h
2 s1n0 3 o?
1= 1 2 p="2 (95)
Z sin3 0, _ sinh® 7 S 0_2
L = 0, — cosf,sinf, n— coshnsinhp H h’

These sums have been verified numerically. We first consider the simplest case, that of 4 = 0. It
turns out that this case can be handled exactly.

253 p=0

In this case both the the discrete and continuous formulations give the same result. We see that
when y = 0, the eigenvalue condition (73) is solved by 6,, = (n — 3)x. Thus, we have that

o0 s o2(n—1/2)2x%T
GhT) = 223”1 )2 (1—6‘7%2 ) (96)
n=1
) _0%(n+1/2)%x%T
Z ( 202 _>. (97)

It is tempting to compute dG/dh to get the density and then compute whatever expectations we
wish to obtain. Unfortunately, this is tricky since we cannot take the derivative into the summation
as the summation is not absolutely convergent. Infact, doing this will lead to an error. Instead,
however, we can use Lemma 1.1 to obtain whatever expectations we wish. It turns out that getting
the expected value of the M DD can be done in closed form.

_1)n _o%(n+1/2)%x2T
N} (1—6 2h° ) (98)

= 2a\f/ dh Z % < %> (99)

Defining the constant v by

2
T

E[MDD] — /Ooodh G(h|T) = %/Ooo

/ i < (HZ}/?Z)Z) , (100)

E[MDD] = 20yV/T. (101)

In particular we have answered one part of the initial question of how does M DD depend on T.
In otherwords, how should one scale MDD so that we can obtain a converging quantity. The
exact computation of v seems to be challenging. A numerical integration gave v =~ 0.6276 and a
simulation of the M DD gave v = 0.6226, well within statistical fluctuations of the numerically
computed value. To summarize the statistics we have so far, in the u = 0 case,

l
+3)

we see that

16



Statistic Behavior
Standard Deviation

Range 2\/7 o\/_
MDD 2yo/T

We see that all these statistics are basically proportional to each other in this limit. Note that
V2/m = 0.8 so the range is considerably larger in expectation that the M DD. A more challenging
computation would be E [1/M DD)]. However, we will push on to the case of more general y.

2.54 p<0

After applying the eigenvalue conditions and taking the integral of G(h|T") to get the expectation,
we arrive at

— cos B, sinf,

sin3 6, T
E[MDD] = / dh G(h|T) _2/ dh ¢ o Zo |— ¢ w0 |, (102)

Making a change of variables to u = —uh/o?, we find that

E[MDD A PR S i
- _97 u n 1—e 20%cos?0n 1
[ ) U /0 ve ;Hn—cosensint% ¢ ’ (103)
where tan 6, = —6,,/u. It is clear that
202 9
E[MDD] ==~ ~Qn (), (104)

for some function Q,(-), where a = u+/T/202. The numerical computation of Q,(z) is not a
straightforward task. The summation in the integrand is a function of u that decreases faster than
e~“. Since the magnitude of the n'® term in the summation is approximately 1/, we need to take
Q(e*) terms in the summation to make sure that the next term left out has magnitude less than the
size of the sum. Thus the efficient computation of this integral is computationally non trivial. The
table in Appendix A gives approximate values of @,,(z) for various values of z, computed using an
extensive numerical integration. Intermediate values could be obtained using interpolation or the
asymptotic behavior discussed below.

We know that Q,(z) — yv2z when 2z — 0%, since in this limit, we must recover the p — 0
behavior. We get the behavior in the @« — —oc limit by noting that R > MDD > —L where L is
the low. Taking expectations, and using (46), we see that for all

o? -«
o + % < Qn(Q’Q) < Qr(—a). (105)
Asymptotically, as o — —o0, this yields
2, 1 2 2, 1
@47 < Qulo) <o’ (106)

from which we deduce that Qn(z) — z + €(z) where ; < €(z) < 3. Since Qn(z) is a mono-

tonically increasing function of z (as the expected MDD has to increase when T increases), we

17



Asymptotic Behavior of QMDD(x) for u<0
3 ‘ ‘ :
= numerical
— asymptotic
2.5¢
2 |
=
=15
¢}
x+0.5
1 L
0.5
0 L
0 0.5 1 1.5 2 25

X

Figure 2: Asymptotic behavior of @, (z).

conclude that e(z) — Dy, for some constant D, with % < Dy < % We can write E[MDD] >
E[R|H — L|P[H — L], where A — B is used to denote that B occurs after A. Since u < 0,
P[H - L] - 1 as T — oo. Conditioning on H — L will selectively pick higher ranges (when
L — H, the low cannot be very negative as y < 0) and so E'[R|H — L] > E[R]. Thus we see
that asymptotically, E[M DD] > E[R]. This implies that asymptotically, E [M DD] = E [R] and
therefore that Dy = % This fact is also verified by numerical computation of Qn(z). Thus, we
have

7\/2_30 z — 0T,

The asymptotic behavior is illustrated in Figure 2.

255 >0

In this case, for h > ¢2/p in the integral, the third case for L adds another term. Thus we find
that

E[MDD] = / dh G(h|T), (108)
sin® 6, v
— o2 _ 202 20, _
2/ dh e Z 0, — cos 0, sinf, (1 € COS
h 3 __ T
2 / P P | - ¢ TP co™n | (109)
2_2 n — coshnsinhy

The second integral can be reduced by a change of variables u = n(h) as follows. Since tanhu =

o?u/ph we find that

2 . _
dh _ a_coshu.sm2hu u, (110)
du sinh” u

18



hence, the second integral reduces to
g2 oo __u __ T
——/ du e tanhu sinhwu | 1 —e 20%cosh®u | . (111)
r Jo

Changing variable in the first integral to u = uh/o?, we arrive at

2 roo ) in3 0 _pEr
FE [MDD] — 20_ / du e U Z S Un 1 —e 20%2cos?0, +

— cos B, sin b,
U _:“27:’1
e tanhu sinhu (1 —e 202 cosh2u>] , (112)
where tan 6, = 0, /u. It is clear that
E[MDD] = EQ (o?) (113)
pw P ’

for some function @,(-), where once again, @ = pu+/T'/202. The bound (105) is still valid, but not
very useful. The numerical computation of @Q,(xz) is relatively straightforward, as the e™ term
in the integrand makes it well behaved for the purposes of numerical integration. We know that
Qp(z) — vv2z when £ — 01. We now consider the other asymptotic limit, namely o — oo. We
will evaluate the two contributions to Q,(z) separately. First consider I (z) given by

o0

0o 3 oz
) = [Tavery Sl (1w, (114)
n=0

n — cos @, sin @,

Since 0 < cos?6, < 1 and £ — oo, the term in brackets is rapidly approaching 1. Since e™* is
rapidly decreasing, we interchange the summation with the integration and after changing variables
in the integral to v = 0, (u) and using the identity

cosvsinv — v

du = —————dv, (115)
sin“ v
we arrive at
o n+%7r v __z
Li(z) = 2/ dv e~ Tanv sinv (1 —e COS29n) . (116)
n=0 nm

After translating each integral by nm and bringing the summation back into the integral, the
summation is a geometric progression which can be done in closed form to give

v __ T
e fanv sinwv (1 — e cos? 0y

s
Iw) = [ " dv . , (117)
0 14 ¢ fanw
and so (1 —e )5y < I1(z) < B1 where /31 is given by
s ,tL .
2 e tanv sinwv
/81 :/ d’U I (118)
0 1+ e Tanw
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and thus we see that I (z) rapidly converges to the constant ;. (1 can be evaluated numerically
to give 81 = 0.4575. A numerical calculation of I (z) for large z directly from (114) yielded 0.4578.
Now consider the second term given by I»(x),

o __u _—z_
L(z) = /0 du e tanhu sinhu (1 —e cosh2u> . (119)

The term in brackets is the only place where z appears. When z is large, this term is very close
to 1 until u gets large enough so that coshu ~ z, from which point the term in brackets rapidly
decreases to 0. The term multiplying the term in brackets is always less than % and rapidly increases
from 0 to % Thus we write

> N 1 1 - -
IL(z) = /0 du (e tanhu smhu—§—|—§> (1—6 cosh u), (120)
1 [ .z e 1 __u
= —/ du (1—6 cosh2u) —/ du (——e tanhu sinhu) + (121)
2 Jo 0 2
o __z_ /1 __u
/ du e cosh®u (5 — e tanhu sinhu). (122)
0

It is not hard to show that the third integral approaches zero as £ — 0o since the first term is small
when wu is small and the second term is small when u is large. The second integral is a constant
B2, independent of z and can be evaluated numerically to give S = 0.4575, which is (numerically)
equal to 81. We suspect that 8o = 1 but the proof has been elusive. Nevertheless, (5 is a constant
which numerically appears equal to ;.

We will get bounds for the first integral. Since coshu > %e“ and for u > A, coshu < %e)‘(A)“
where A\(A) = 1 + e 24/A, denoting the first integral by F(z), we immediately get the following
bounds.

__T_
A (1 —e costh)

which hold for any A. A change of variables to v = ze™
the upper bound then leads to the following bounds,

oo o0
+ / du (1-e 2 2) <2p(z) < / du (1-e™=7™),  (123)
A 0

2X\(A) 2u

% in the lower bound and v = ze™“% in

—2)\A
Cvat)p L e Lprdug
A(l e ™A ) 4o | u(l e )§2F(x)§20 u(l e ). (124)
We can get an asymptotic form as follows. Suppose z > 1, then the following identity holds,
T ld T
/ & (1 - 6_4") = / o (1 - 6_4“) +logx — He—tu, (125)
0 u 0 u 1 U

When z — oo, the last converges term to —FEi(—4) which can be computed numerically (see for
example [Gradshteyn and Ryzhik, 1980]). The first term can be evaluated numerically and so as
T — 00, We arrive at

T du
Z1—e ) = 1 C, 126
/0 " < e ) ogzx + (126)
where numerically we compute C =~ 1.9635. Applying this identity to the upper bound and, for
fixed A, to the lower bound, we eventually arrive at

1 S - c
—— (logz + C) — Ae cosh®’A < 2F(z) < —logz + 7 (127)

27(A)

N =
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MDD

Asymptotic Behavior of Q,, _(x) for u>0

o5l = numerica_l
— asymptotic
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0.25 log x +0.49088

log x

Figure 3: Asymptotic behavior of Q,(z).

Since A was arbitrary, it can be chosen to grow with z, for example %(1 + ¢)log z, in which case
A(A) — 1 and the second term goes to 0, and so the upper and lower bounds approach each other.

Thus we conclude that asymptotically as = — 0,
1
F(z) — 1 logz + D, (128)

where D = € ~ 0.49088. Putting all this together, noting that Q,(z) = I(z) + Ix(z), we find for
the behavior of Q,(-),

YV 2z T — 07,
@plz) = { ilogaf: +D T — 00. (129)

where D = 0.49088, and we have used the fact that 81 = 2. The asymptotic behavior is illustrated
in Figure 3.

2.6 Correction for the Discrete Sampling

Practically, we can only sample the Brownian motion at a discrete set of points. Suppose that the
sampling is at intervals A¢. The result will be a MDD that will have a negative bias, since the
true MDD could have occured between two points that were not on the sampling grid. Rogers
and Satchell consider exactly such a problem with respect to estimating the range of the Brownian
motion from a discrete sampling.

The MDD will be given by S — I where § is a local maximum of the sampled random
walk at time ¢; and I is a local minimim at to > #;. Let I = infic(y, A s,+a0 X (1), and
S1 = SUDie(; — At +A1) X (t), be the true local extrema near these points, and further suppose
that S1 — I would still yield a maximal drawdown. Under these assumptions, the analysis of
[Rogers and Satchell, 1991] applies, and writing S; = S + A and I} = I + A, they derive asymp-
totic approximations to the expected values of A and A as At — 0,

(130)

1 (V2-1)
4 6 '

E[A]=E [A] — BrsoVAt  where  frs = V2w <_ _
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Correction for the Finite Grid Bias
0.05 :

-
-

_.-770.90722 At

12

£9.01 8
= experiments
- - - correction
00 0.5 1 1.5 2
At x10°

Figure 4: Comparison of the finite grid bias normalized by ¢ to the correction 28rgv At.

Thus the sampled expected M DD will be negatively biased by an amount 28rsov/At. Notice that
the lowest order term has no u dependence. By simulation, we can compute F [M D D] for various
parameters u, o, T and At. Comparing to the theoretical calculation, we thus obtain the bias
experimentally as a function B(u,o,T,At). Then the function B(u,o,T, At)/o should approach
2BrsVAt, independent of y, o, T. Figure 4 plots B(u, 0, T, At) /o averaged over o chosen in a range
from 0.3-10 (solid red curve). The spread is illustrated by the yellow shading, and the suggested
correction term 2(rgV/At is also plotted (dashed black curve). As can be noted, the correction is
quite accurate, especially as At — 0.
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A Table of Numerical Values for Q(-)

x Qp(x)a M >0
z—0 'ym
0.0005 0.019690
0.0010 0.027694
0.0015 0.033789
0.0020 0.038896
0.0025 0.043372
0.0050 0.060721
0.0075 0.073808
0.0100 0.084693
0.0125 0.094171
0.0150 0.102651
0.0175 0.110375
0.0200 0.117503
0.0225 0.124142
0.0250 0.130374
0.0275 0.136259
0.0300 0.141842
0.0325 0.147162
0.0350 0.152249
0.0375 0.157127
0.0400 0.161817
0.0425 0.166337
0.0450 0.170702
0.0500 0.179015
0.0600 0.194248
0.0700 0.207999
0.0800 0.220581
0.0900 0.232212
0.1000 0.243050
0.2000 0.325071
0.3000 0.382016
0.4000 0.426452
0.5000 0.463159
1.5000 0.668992
2.5000 0.775976
3.5000 0.849298
4.5000 0.905305
10.0000 1.088998
20.0000 1.253794
30.0000 1.351794
40.0000 1.421860
50.0000 1.476457

150.0000 1.747485
250.0000 1.874323
350.0000 1.958037
450.0000 2.020630
1000.0000 2.219765
2000.0000 2.392826
3000.0000 2.494109
4000.0000 2.565985
5000.0000 2.621743
z— oo | tlogz+ 0.49088

T @n(z), p<0
x—0 'y\/%
0.0005 0.019965
0.0010 0.028394
0.0015 0.034874
0.0020 0.040369
0.0025 0.045256
0.0050 0.064633
0.0075 0.079746
0.0100 0.092708
0.0125 0.104259
0.0150 0.114814
0.0175 0.124608
0.0200 0.133772
0.0225 0.142429
0.0250 0.150739
0.0275 0.158565
0.0300 0.166229
0.0325 0.173756
0.0350 0.180793
0.0375 0.187739
0.0400 0.194489
0.0425 0.201094
0.0450 0.207572
0.0475 0.213877
0.0500 0.220056
0.0550 0.231797
0.0600 0.243374
0.0650 0.254585
0.0700 0.265472
0.0750 0.276070
0.0800 0.286406
0.0850 0.296507
0.0900 0.306393
0.0950 0.316066
0.1000 0.325586
0.1500 0.413136
0.2000 0.491599
0.2500 0.564333
0.3000 0.633007
0.3500 0.698849
0.4000 0.762455
0.5000 0.884593
1.0000 1.445520
1.5000 1.970740
2.0000 2.483960
2.5000 2.990940
3.0000 3.492520
3.5000 3.995190
4.0000 4.492380
4.5000 4.990430
5.0000 5.498820
T = 00 r+1
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