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Abstract. This paper presents an approach to registration centered on
the notion of a view — a combination of an image resolution, a transfor-
mation model, an image region over which the model currently applies,
and a set of image primitives from this region. The registration process
is divided into three stages: initialization, automatic view generation,
and estimation. For a given initial estimate, the latter two alternate
until convergence; several initial estimates may be explored. The esti-
mation process uses a novel generalization of the Iterative Closest Point
(ICP) technique that simultaneously considers multiple correspondences
for each point. View-based registration is applied successfully to align-
ment of vascular and neuronal images in 2-d and 3-d using similarity,
affine, and quadratic transformations.

1 Introduction

The view-based approach to registration is motivated by two common problems
in medical image analysis, illustrated in the applications of aligning 2-d images
of the retina and in aligning 3-d vascular and neuronal images [2] (Figs 1-6):

Problem 1: A single landmark correspondence, specified manually or detected
automatically, is established between two images. Aligning the images based
on this correspondence is reasonably accurate locally in the small region
surrounding the landmarks, but quite poor image-wide (Fig 3a). Without
requiring more landmark correspondences, is it possible to automatically
“grow” an accurate registration from the initial, local alignment?

Problem 2: During an image-guided intervention procedure, a substantial jump
occurs between two successive images. Possible causes include patient move-
ment (respiration), instrument movement, and time-delays between acquisi-
tion of good-quality images. As a result, incremental registration (or track-
ing) could converge to an incorrect local minimum, especially for images con-
taining repeated structures such as blood vessels or bronchial tubes (Fig. 4).

This paper presents a unified set of techniques to solve these two registration
problems. Two primary innovations are described. The first is the introduction
of a view-based framework for registration. The second is a generalization of the
widely-used ICP algorithm [5, 9] to accommodate feature descriptions and mul-
tiple correspondences per point (feature). The main body of the paper describes
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Fig. 1. Retinal images taken 3.5 years apart of a patient having a branch vein occlusion.
Substantial differences in the non-vascular regions are apparent due to hemorrhaging
and pathologies.

Fig. 2. The vascular features used in registering retinal images [7]. The left shows
landmarks detected at the branching and cross-over points of the blood vessels. The
right shows the extracted vessel centerline points.

these two innovations in detail and then combines them to form the algorithms
solving Problems 1 and 2.

The presentation assumes vascular or neuronal features have already been
segmented from the images. Although many different techniques could be used,
the algorithms we employ extract elongated structures using two-sided (or multi-
sided in 3-d) boundary following [1, 7]. The features are point locations along the
vessel centerlines, akin to medial axis points. Each centerline point is described
by a location, tangent direction, and width. Branching and cross-over points
(“landmarks”), used in initialization, are extracted as well. The centerline points
between a pair of landmarks are gathered into a “segment”.
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2 Views and View Generation

Abstractly, a view is a definition of the registration problem together with a
current transformation estimate. A view poses a problem for an iterative mini-
mization technique, such as Iterative Closest Point (ICP) [5, 9] or Mutual Infor-
mation [13, 20], to solve and provides the starting estimate for this minimization.
A view specification includes an image resolution, a transformation model, a set
of image primitives, and a minimization technique. By starting with a simpli-
fied view, such as a coarse image resolution or simplified transformation model,
aligning the images based on this view, and then proceeding to a more complete
and more detailed view, many local minima in the alignment can be avoided.
In the view-based approach, registration is addressed as a three-stage process:
initialization, view generation, and minimization. The latter two are alternated
until convergence. Several different initial estimates may be evaluated.

Thus far, our notion of a view is simply a gathering and synthesis of current
techniques that use multiple resolutions [4, 17], hierarchies of transformations
models [8, 15], and hierarchies of image primitives [16]. In addition to this syn-
thesis, however, we introduce two novel ideas. First, the view includes the image
region over which the transformation estimate is considered accurate (Fig. 3).
Second, instead of pre-specifying the transition between views (e.g. when to
switch to higher resolutions or to new transformation models), some parts of the
view are automatically generated.

Including the image region in our definition of a view allows the registration
algorithm to start in a small region of each image (a “key-hole view” — Prob-
lem 1), align the images only in this small region (Fig. 3), and gradually increase
the region size (a change in view). If these steps are done correctly, this can avoid
errors due to initial image-wide misalignment of complicated structures such as
networks of blood vessels or neuronal fibers. It does require, however, that initial-
ization in the small region be reasonably accurate. Ensuring this requires manual
specification of the initial region, or matching of small-scale features such as land-
marks and their immediate surroundings (Fig. 2). Automatic matching can not
be flawless, so several different initial matches and resulting initial views must
be tested and evaluated based on their final alignment accuracies.

The second novel technique in our view-based approach to registration is
automatic generation of views. For now, we only develop methods to generate
the region (“region growth”) and the transformation model (“model selection”).
The need for automatic region growth and model selection are most easily seen
in Problem 1 (Fig. 3). The initial region and perhaps subsequent regions con-
tain too few constraints to reliably estimate the 12 parameters of a quadratic
model (Table 1) needed for accurate image-wide alignment [8]. Thus, a lower-
order model must be used. The model should be chosen automatically based on
the available constraints. A similar model selection problem arises in registering
coarse resolution images. Region growth should also be data driven, with unsta-
ble estimates causing slow region growth, and stable estimates leading to rapid
region growth.
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Fig. 3. View-based solution to Problem 1. Panel (a) shows an initial alignment of two
images (Fig. 1) based on a similarity transformation computed by matching a single
landmark and its immediate surroundings from each image (small white rectangular
region in the center). Vascular centerline points the two images are shown in black
and in white. The global, image-wide alignment is quite poor. Panel (b) shows the
alignment after three iterations of view generation (region growth and model selection)
and estimation. No change has yet been made in the model, but in the next iteration
(c) a reduced quadratic transformation is selected (Table 1). Panel (d) shows the final
alignment using a quadratic transformation.

The remainder of this section describes in detail the model selection and re-
gion growth techniques of automatic region generation. Both are driven by the
uncertainty in transformation estimates. We assume the transformation estima-
tion process produces a covariance matrix and a discrete set of alignment errors.
The covariance matrix may be approximated by the inverse Hessian of the ob-
jective function used in estimation, evaluated at the estimate. In the description
of these steps, t denotes the iteration of the view selection and estimation loop,
Rt denotes the transformation region, and Mt denotes the transformation model
selected for the current view (Table 1). θ̂t is the vector of estimated parameters
of the transformation model, and Σt is the associated covariance matrix.
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Fig. 4. Problem 2 — incremental registration. The left panel shows an initial alignment
of two images of a healthy retina. As in Fig. 3, centerline points from the two different
images are shown in black and in white. Some of the ICP correspondences are shown
with white line segments between black and white points. The obvious mismatches lead
to the poor alignment results shown on the right, even when using robust estimation.

Model Equation DoF Accuracy

Similarity q =

(
θ11 θ12 θ13 0 0 0
θ21 −θ13 θ12 0 0 0

)
X(p− p0) 4 5.05 pixels

Affine q =

(
θ11 θ12 θ13 0 0 0
θ21 θ22 θ23 0 0 0

)
X(p− p0) 6 4.58 pixels

Reduced
quadratic

q =

(
θ11 θ12 θ13 θ14 0 θ14

θ21 −θ13 θ12 θ24 0 θ24

)
X(p− p0) 6 2.41 pixels

Quadratic q =

(
θ11 θ12 θ13 θ14 θ15 θ16

θ21 θ22 θ23 θ24 θ25 θ26

)
X(p− p0) 12 0.64 pixels

Table 1. The set of transformation models used in retinal image registration [8]. To
clarify notation in the equations, p = (x, y)T is an image location in I1, q = (u, v)T is
the transformed image location in I2, and p0 is the center of the registration region.
In addition to the formulations, the table also shows the degrees of freedom (DoF) in
each model and the average alignment error on 1024× 1024 images.

2.1 Region Expansion

For simplicity, Rt is rectilinear (Fig 3 shows transformed Rt in white). At each
view generation step, each side of Rt is shifted outward. Let pc be the point in
the center of a given side. The covariance matrix of the transformation can be
converted to the covariance matrix of the mapping of this point p′c = Mt(θ̂t; pc)
using standard covariance propagation techniques. This yields the transfer error
covariance of pc [11, Ch. 4]. Let the component of this 2 × 2 covariance in
the outward direction from Rt be σ2

c . Point pc is expanded outward in direct
proportion to β/max (σc, 1), with the upper bound of 1 preventing growth that
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is too fast and β controlling the overall rate of growth. The rectangle bounding
the expanded center points from each side is the new region, Rt+1.

2.2 Model Selection

Region growth makes new constraints on the transformation estimate available
for the next view. Determining if this warrants switching to a higher-order model
requires the application of model selection techniques [6, 19]. These techniques
trade-off the increased fitting accuracy of higher-order models against the in-
creased stability of lower-order models. The stability is usually measured as a
function of the covariance matrix Σt. The criteria we use is [6]:

dt
2

log 2π −
∑
i

wir
2
i + log det(Σt), (1)

where d is the degrees of freedom in the model Mt,
∑
i wir

2
i is the sum of the

robustly-weighted alignment errors (based on the estimate θ̂t), and det(Σt) is
the determinant of the parameter estimate covariance matrix. This equation is
evaluated for the current model Mt and for other candidate models. For each
other model M , the estimate θ̂t for the current model Mt serves as the starting
point to estimate a new set of parameters (for model M). For simplicity, at
each iteration t we usually just evaluate the model M which is the next more
complicated model than Mt. Overall, the model that results in the greatest value
of (1) is chosen as Mt+1.

3 Estimation Engine: ICP / IMCF

Although MI or ICP could be used as the estimation engine in view-based regis-
tration, here we introduce a generalization of ICP that allows multiple matches
per point, and uses a novel, robust weighting technique to combine the match
contributions. We’ll start with a summary discussion of robust ICP.

Let P = {pi} be the extracted set of blood (neuron) vessel centerline points
in image I1. Robust ICP (1) takes the point locations from P that are in reg-
istration region Rt of the current view, (2) applies the current transformation
estimate to each, and (3) finds the closest centerline point location qi in I2. This
generates correspondence set Ct = {(pi,qi)}. The new transformation estimate
is computed by minimizing the robust objective function

E(θt) =
∑

(pi,qi)∈Ct

ρ(d(Mt(θt; pi),qi)/σ̂). (2)

Here, Mt(·; ·) maps pi into I2, and d(·, ·) is the distance of the mapped point
to qi, measured as the perpendicular distance from Mt(θt; pi) to the vessel
contour tangent line through qi. σ̂ is an estimate of the standard deviation of
the alignment errors which is robust to outliers; and ρ(·) is a robust loss function.
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Fig. 5. IMCF. The left panel illustrates the generation of multiple correspondences
in IMCF. For transformed point p′, the closest centerline point (q1) is found and
additional matches are sought from each centerline segment intersecting a circular
region surrounding p′. Using correspondences such as these, IMCF is able to correct
the incorrect alignment shown in Fig. 4 and produce the alignment shown on the right
(white centerline points aren’t seen where they exactly overlap the black ones).

Equation 2 is minimized using iterative-reweighted least squares [12], with weight
function w(u) = ρ′(u)/u. We use the Beaton-Tukey biweight function [3] which
goes to 0 for errors above about 4σ̂, eliminating the effects of mismatches due
to missing vessel structures. The ICP steps of matching and transformation
estimation are repeated until the estimate converges for the current view.

3.1 IMCF

Even with a robust error norm, ICP fails when a significant fraction of the
closest points are not correct correspondences (Fig. 4). To overcome this, we
allow multiple matches per centerline point and then adjust the minimization
to exploit the extra information provided by these matches. We also introduce a
similarity measure between matches, based on comparison of feature properties.
The resulting algorithm is called Iterative Multiple Close Features (IMCF).

In each matching iteration, IMCF looks for multiple matches for each p ∈
P ∩Rt (Fig. 5). Let p′ = M(θ̂; p) be the transformation of p into I2. Just as in
ICP, the closest I2 centerline point to p′ is found (q1 in Fig. 5). In addition, all
other vessel segments intersecting a circular region surrounding p′ are identified.
The closest point on each segment is used to form an additional match with p,
added to Ct. The search radius is a small multiple of the alignment error σ̂.

Like other multiple-match techniques ([10]), the influence of these correspon-
dences is controlled through the weight function, but our weight function is novel.
As background, in robust ICP the weight values are wi = w(ui) = ρ′(ui)/ui,
where ui = d(M(θ,pi),qi)/σ̂. Thus, the ICP weighted least-squares objective
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function is ∑
(pi,qi)∈C

wi ·
(
d(M(θ,pi),qi) / σ̂

)2
. (3)

The steps of weight calculation and updates to θ are alternated.
For each match in IMCF, we define three separate weights and then combine

them into the cumulative weight, wi in (3). The “geometric-error” weight is
wi,r = ρ′(ui)/ui, as above. The “signature-error” weight, based on comparison
of other properties of the correspondence besides distance, is wi,s. In aligning
vascular images, these properties are vessel orientations and widths. The third
weight is called the competitive weight. To define it for match (pi,qi) we need
all other matches for feature pi. This is the match subset Ct,i = {(pj ,qj) ∈ Ct |
pi = pj}. Using this subset the competitive weight is

wi,c =
wi,rwi,s∑

(pj ,qj)∈Ct,i wi,rwi,s
.

Intuitively, wi,c is the fraction of the total matching weight for feature pi that
accrues to this match. The final weight is wi = wi,rwi,swi,c.

The main advantage of this technique is simplicity. No separate “outlier pro-
cess” and associated tuning parameters are needed [10]. The use of competitive
weights can not increase the final weight (over the combined geometric and sim-
ilarity weights), so outliers remain outliers. In addition, weights of unambiguous
matches remain unchanged. Hence, the competitive weight is mostly intended
to downgrade the influence of ambiguously matched features, allowing less am-
biguous matches to have greater influence on the alignment.

As a final comment, the robust, competitive weighting scheme just described
requires accurate scale estimation. As IMCF iterates, this is the robustly-weighted
rms σ̂2 =

∑
i wi · d(M(θ̂; pi),qi)2 /

∑
i wi. Initially, however, it is a robust esti-

mate called MUSE [14] based on the matches that are most similar (orientation
and width) rather than closest.

4 Two Algorithms

Given the foregoing descriptions of the view-based approach, automatic view
generation, and the ICP and IMCF algorithms, the descriptions of the solutions
to Problems 1 and 2 are straightforward. In fact, at a software-level there is very
little difference between the implementations (one of the goals of the work).
For each algorithm, we briefly describe the initialization, view generation, and
estimation stages. Results are presented in the next section.

For Problem 1, initial estimates and initial views are generated by placing
one automatically detected landmark from each image in correspondence and
computing an initial transformation by aligning the immediately surrounding
vessels (Fig. 3). The correspondences may be generated manually, or they may
be generated automatically by matching signatures computed from the widths
and orientations of vessels meeting at the landmark. Multiple initial estimates
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are generated in the latter case. The view includes the region and the transfor-
mation model. These are grown (bootstrapped) from the small starting regions.
For estimation, we’ve used both ICP and IMCF. The more sophisticated IMCF
algorithm does not substantially improve the results because the region growth
and model selection reduce matching ambiguities; in practice we use ICP. A
transformation is accepted as correct when the algorithm converges to an esti-
mate having an image-wide, median error in the alignment of centerline pixels
less than an empirical threshold (1.5 pixels in retina images [8]); when no initial
estimate leads to such an alignment, the algorithm indicates that the images
can’t be registered. The overall algorithm is called the “Dual-Bootstrap ICP”
(see [18] for more details).

For Problem 2 (Fig. 4) the initial estimate is just the estimate for the previous
image in the sequence. Alignment is against an image giving a map of the surgical
region. The view includes the image resolution and the transformation model.
Resolution changes follow a standard coarse-to-fine progression, switching image
resolutions when estimation converges at a given each resolution. Transforma-
tion models are determined automatically for each resolution. IMCF is used to
estimate the transformation once the view (resolution and model) is fixed. The
overall algorithm is called M-IMCF (Multiresolution IMCF).

5 Results

The algorithms have been applied in four contexts: (1) registering pairs of 2-d
retinal images, (2) incremental registration of sequences of retinal images with
each registration starting from the previous estimate, (3) registering confocal
stacks of neuronal images, and (4) registering confocal stacks of vascular (rat
brain) images. Dual-Bootstrap ICP is used for (1), (3) and (4), which corre-
spond to Problem 1 from the introduction, while M-ICF is used for (2). In the
retinal registration problems, the final transformation model is a 12-parameter
quadratic (Table 1), and the experimental results are extensive. For the confocal
images, the final transformation is affine, and the results are preliminary.

Example alignments using Dual-Bootstrap ICP are shown in Fig. 3 for 2-d
retinal images and in Fig. 6 for 3-d vascular images. In retinal image registration,
tests were applied to over 4000 images pairs taken from healthy eyes and taken
from diseased eyes (with some inter-image time intervals of several years). For
image pairs that (a) overlapped by at least 35% of the image area and (b) had
at least one common landmark detected by feature extraction, the algorithm
always aligned the images to within a 1.5 pixel error threshold (1024 × 1024
images). Performance gradually degraded with less overlap. Moreover, no incor-
rect alignments were accepted as correct (i.e. none aligned to within the error
threshold). The median number of initial estimates tried was 2, and the average
registration time was about 2 seconds. Registration in 3-d takes about a minute,
with most time occupied by feature extraction prior to registration. The pixel
dimensions were 0.7 µm within each plane and 5 µm between planes. Median
alignment errors were less than a pixel in each dimension.
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Fig. 6. The Dual-Bootstrap ICP registration algorithm for 3-d vascular images of a rat
brain taken using confocal microscopy. Panel (a) shows an max-intensity projection,
with super-imposed 3-d vessel centerlines. Panels (b)-(d) show alignment of center-
lines (solid lines for one image, dashed lines for the other) taken at two different times.
Panel (b) gives the initial alignment in a small region. Panels (c) and (d) show interme-
diate and final alignments. Even though the figures are 2-d projections, the registration
occurs in 3-d.

For M-IMCF, our primary experimental goal is evaluating the domain of con-
vergence of initialized registration. We explore this with synthetic shifts of real
image pairs, using a subset of the image pairs used to study Dual-Bootstrap ICP.
For each pair, we have the “correct” (validated) quadratic transformation. We
perturb this transformation by different translations and rotations to provide
initial offsets, run the algorithm for each, and determine if it converges to within
1.5 pixels of the validated transformation. We count the initial transformation as
a success if it does. Fig. 7 summarizes the success rates for four algorithms: ICP,
Multiresolution ICP (M-ICP), IMCF, and M-ICMF. Clearly, both multiresolu-
tion and IMCF are important in increasing the domain of convergence.

To summarize the experimental results, the Dual-Bootstrap ICP algorithm
overall is extremely successful at registering retinal image pairs, including pairs
with relatively low overlap. M-IMCF works well for initialized registration, sub-
stantially outperforming ICP and multiresolution ICP. The difference between
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Fig. 7. Comparing the domains of convergence of ICP, Multiresolution ICP, IMCF,
and Multiresolution IMCF on a selection of image pairs of both healthy and unhealthy
eyes. The horizontal axis is the radial initial offset from the correct transformation in
pixels (all shift directions are combined) from the true alignment. All tested images
are 1024× 1024. The left plot shows results for no rotation, while the right plot shows
results for 10◦ rotation.

Dual-Bootstrap ICP and M-IMCF in an application context is that the much
faster M-IMCF algorithm will be used primarily for on-line registration during
surgical procedures. Finally, the preliminary 3-d results demonstrate the appli-
cability of the view-based approach to other, related problems.

6 Summary and Conclusions

This paper has introduced a view-based approach to registration. Each view in-
cludes an image resolution, a set of image primitives, a transformation model, an
image region, a current transformation estimate, and an estimation technique.
While the estimation technique could be a standard technique such as ICP or
Mutual Information, this paper has introduced a new core estimation technique
called IMCF, a generalization of ICP that allows multiple matches to be simulta-
neously considered. These techniques were used to solve two problems in retinal
image registration, and the algorithms have been extended to 3-d registration of
vascular and neuronal images as well. A C++ registration library is being built
around the view-based approach.

Ongoing work is extending this research in a number of directions. Clearly,
the fundamental theoretical extension to the view-based approach is incorporat-
ing deformable registration. In doing this the algorithm must start with small
scale deformations for simple views and allow increasingly large-scale deforma-
tions as the view expands (especially in the image region). In addition to the
theory, a variety of applications of view-based registration are being investigated.
Currently, the most important of these is the use of Dual-Bootstrap ICP and
M-IMCF in the diagnosis and treatment of retinal diseases.
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