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Abstract

In this paper we propose the concept of minimal association rules, the most general rules that
satisfy a given support and confidence threshold. We present MIRAGE, an new framework for
mining and visually exploring the minimal rules. MIRAGE uses lattice-based interactive rule
visualization approach, displaying the rules in a very compact form; all association rules can also
be generated if desired. MIRAGE uses a database back-end to store the state of exploration
for easy retrieval at a later point in time.

1 Introduction

An association rule is an implication of the form X −→ Y , where X is a set of antecedent items
and Y is the consequent items. Each rule is presented along with its support and confidence, which
are the joint and conditional probabilities of the antecedent and consequent items, respectively.

Association rules are traditionally presented as sets of the above implications, which are often
difficult and unintuitive to analyze. There are two main problems. First, there are typically too
many rules that are mined making human exploration almost impossible. Second, visualization
support for multiple item association rules has proved to be hard. These limitations present serious
challenges for analysts who need to understand the mined patterns.

This paper presents a novel framework for the mining and exploration of association rules, based
on the concept of minimal association rules. Minimal association rules are the most general rules
(i.e., having most general antecedent and consequent) that satisfy a given support and confidence
threshold. Minimal rules are typically a lot less than the the full set of association rules, and this
helps address the combinatorial rule explosion problem.

In this paper we propose MIRAGE 1, a system for mining and visually exploring minimal
association rules. MIRAGE uses lattice-based interactive rule visualization approach, displaying
the rules in a very compact form; all association rules can also be generated if desired. Hence,
there is no information loss. MIRAGE uses a database back-end for effective and persistent rule
management for easy retrieval at a later point in time.

∗This work was supported in part by NSF CAREER Award IIS-0092978, DOE Career Award DE-FG02-02ER25538

and NSF NGSP grant EIA-0103708.
1
MIRAGE is an anagram of the letters IGEMAR, taken from: Interactive Graphical Exploration of Minimal

Association Rules
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2 Related Work

In general, most of the association mining work has concentrated on the task of mining frequent
itemsets. Rule generation has received very little attention. There are two bodies of relevant work.
One deals with the theoretical frameworks for rule reduction, including mining only interesting
rules. The other deals with rule visualization. We review the work in both these areas.

This paper builds upon our previous work on non-redundant association rule mining [16]. The
key differences are as follows. Minimal rules are a refinement of non-redundant association rules
proposed earlier. While the previous work laid the theoretical foundation, this paper presents
concrete algorithms for rule generation and exploration. We also formally prove that the set of all
minimal rules is a representative set, that is, for any (redundant) association rule, there exists an
equivalent minimal rule. Finally, we propose MIRAGE, an integrated tool based on the minimal
rule framework, for interactive visual rule exploration.

Most of the foundational work on reducing the association rules is based on the concept of
closed itemsets, which utilizes the elegant mathematical framework of formal concept analysis [4]
(FCA). This includes the early work of Luxenburger [11]. He proposed an approach for obtaining
a generating set of rules, but he did not consider frequent rules, and no algorithms were proposed.
Like our earlier work in [18], Stumme et al [14] proposed a basis for association rules based on the
work of Guigues and Duquenne [5] and Luxenburger [11]. Rule visualization was not addressed in
any of these works.

The work by Taouil et al [2] has also addressed the problem of extracting “minimal” association
rules. However, their definition of minimal rules is different from ours; they consider a rule to be
minimal if it has the most general antecedent and the most specific consequent. This different defi-
nition of minimality leads to different, mutually complementary, formulations of the representative
sets for association rules. Also they do not discuss any system for visual exploration of rules, as is
done in our approach. Another novel aspect of our work is the persistent rule management support,
using a database backend.

There has been some work on mining interesting association rules [9, 3, 12]. The approach
taken is to incorporate user-specified constraints on the kinds of rules generated or to define ob-
jective metrics of interestingness. As such these works are complimentary to our approach here.
Furthermore, they do not address the issue of rule redundancy and/or that of visualization.

There have been very few papers in the past that have presented visualization techniques for
association rules [15, 6, 7, 10]. Wong et al [15] present an association-rule visualization system
that can deal with large databases of text. Their system presents to the user all association rules
that can be generated at once in the form of a matrix between rules and individual items; they
use bar graphs to present the support and confidence of each rule. The work of Hofmann et al [7]
focuses mainly on visual representation of association rules and presenting the relationships between
related rules using interactive Mosaic plots (histograms) and Double Decker plots. In both these
approaches, there is no focus on rule reduction and user interaction is limited.

Liu et al [10] present an integrated system for finding interesting associations and visualizing
them. We believe that our lattice based system MIRAGE is more intuitive. Further, the two
approaches are complementary, since we present minimal rules. It would be an interesting future
direction to combine interestingness with minimal rules.

Han and Cercone [6] propose an interactive model for visualizing the entire process of knowledge
discovery and data mining. They mainly focus on the “parallel coordinates” technique to visualize
rule induction algorithms. Other methods for general purpose visual exploration and mining are
presented by Keim [8]. Our approach is specifically designed for visualizing association rules.
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3 Preliminaries

The association rule mining framework can be described as follows: Let I = {1, 2, . . . ,m} be a set
of items, and T = {1, 2, . . . , n} be a set of transaction identifiers. The input dataset is a binary
relation δ ⊆ I × T . For example, consider the input database as shown in Table 1, which will be
used as a running example throughout this paper. Here I = {A,C,D, T,W}, T = {1, 2, 3, 4, 5, 6}
and the first transaction can be written as {Aδ1, Cδ1, T δ1,Wδ1}. A set X ⊆ I is called an itemset
and a set Y ⊆ T is called a tidset. For convenience we write an itemset {A,C,W} as ACW , and a
tidset {2, 4, 5} as 245.

For an itemset X, we denote its corresponding tidset as t(X), i.e., the set of all tids that contain
X as a subset. For a tidset Y , we denote its corresponding itemset as i(Y ), i.e., the set of items
common to all the tids in Y . The composition of the two functions, namely, t that maps from
itemsets to tidsets, and i that maps from tidsets to itemsets, is called a closure operator [4], and is
given as cit(X) = i(t(X)). It can be shown that an itemset X is closed if and only if cit(X) = X [16].
For instance, AW is not closed since cit(AW ) = i(t(AW )) = i(1345) = ACW . On the other hand
ACW is closed since cit(ACW ) = i(t(ACW )) = i(1345) = ACW .

Sample Dataset

Tid Items

1 ACTW

2 CDW

3 ACTW

4 ACDW

5 ACDTW

6 CDT

Closed Sets

Itemset Tidset Sup

C 123456 6

CD 2456 4

CT 1356 4

CW 12345 5

CWA 1345 4

CDW 245 3

CTWA 135 3

Figure 1: Sample Dataset and Closed Sets

The support [1] of an itemset X, denoted π(X), is the number of transactions in which it occurs
as a subset, i.e., π(X) =| t(X) |. An itemset is frequent if its support is more than or equal to
a user-specified minimum support (πmin) value, i.e., if π(X) ≥ πmin. A frequent itemset is called
maximal if it is not a subset of any other frequent itemset. A frequent itemset X is called closed if
there exists no proper superset Y ⊃ X with π(X) = π(Y ). Figure 1 shows all the closed itemsets
along with their tidsets and supports on the example dataset, using πmin = 3. These closed sets can
be arranged in a lattice, as shown in Figure 2 (which, incidentally, is a screenshot of MIRAGE).
The right side shows all the 7 closed sets arranged according to the subset relation. There is an
edge connecting two closed sets X and Y , if and only if X ⊂ Y and

�
Z, such that, X ⊂ Z ⊂ Y .

The levels of the lattice correspond to the length of the itemsets. Thus the smaller sets (with higher
support) appear on top and the larger itemsets (with lower support) appear below. The support of
a set X is the same as the support of the smallest closed set that contains it [2, 16]. For example,
the smallest closed set containing A is ACW , thus π(A) = π(ACW ) = 3.

Association Rules Let A and B be any itemsets. An association rule is an implication A
q,p
−→ B,

where A ∩ B = ∅.
The support of the rule is q = π(A∪B) =| t(A∪B) |, and the confidence p = π(A∪B)

π(A) = |t(A∪B)|
|t(A)|

(i.e., the conditional probability that a transaction contains B, given that it contains A). A rule is
frequent if the itemset A∪B is frequent (i.e., q ≥ πmin). A rule is confident if p ≥ minconf , where
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Figure 2: MIRAGE: Lattice-based Itemset and Rules Visualization

where minconf is a user-specified minimum threshold. When support is understood, we omit q and
write a rule as A

p
−→ B. Please note that the confidence p is the rational number p = q

π(A) , and we

explicitly write it as such when required for emphasis. A rule with p = q/q = 1.0 is called an exact
association rule, and a rule with q < π(A), and thus p < 1.0 is called an inexact association rule.

Once the frequent sets have been mined, association rule generation works as follows [1]: rules

of the form X ′ q,p
−→ X −X ′, are generated for all frequent itemsets X (where X ′ ⊂ X, and X ′ 6= ∅),

provided p ≥ minconf. For example, from the frequent itemset ACW we can generate 6 possible

rules (all of them have support of q = 4): A
4/4
−→ CW,C

4/6
−→ AW,W

4/5
−→ AC,AC

4/4
−→ W,AW

4/4
−→

C, and CW
4/5
−→ A. To obtain all possible rules we need to examine each frequent itemset and

repeat the rule generation process as shown for ACW .

Minimal Association Rules Let Ri denote the association rule X i
1

qi,pi−→ X i
2, and let R =

{R1, · · · , Rn} be a set of rules. We say that rule Ri ∈ R is more general than a rule Rj ∈ R,

denoted Ri � Rj, if and only if the following conditions are met: 1) X i
1 ⊆ Xj

1 , 2) X i
2 ⊆ Xj

2 , 3)
qi = qj, and 4) pi = pj. In other words Rj has the same support and confidence as Ri, and it can
be generated by adding items to either the antecedent or consequent of Ri. It is clear that Rj is
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not conveying any new information then Ri. Thus we say that a rule Rj is redundant if there exists
some rule Ri, such that Ri � Rj. We denote by Rmin = {Ri ∈ R |

�
Rj ∈ R, Rj ≺ Ri} the set of

minimal association rules in R.

As an example consider the rule set R = {R1 : W
4,4/5
−→ A,R2 : W

4,4/5
−→ AC,R3 : CW

4,4/5
−→

A,R4 : C
5,5/6
−→ W,R5 : A

4,4/4
−→ W,R6 : A

4,4/4
−→ CW,R7 : AC

4,4/4
−→ W}. Then the set of minimal rules

is given as Rmin = {R1 : W
4,4/5
−→ A,R4 : C

5,5/6
−→, R5 : A

4,4/4
−→ W}, since R2 and R3 are redundant

with respect to (w.r.t) R1, and R6 and R7 are redundant w.r.t R5.

4 MIRAGE: Interactive Graphical Exploration of Minimal Asso-

ciation Rules

MIRAGE allows interactive graphical visualization and exploration of minimal association rules.
Figure 3 presents a conceptual view of MIRAGE. We assume that the database of interest has
already been mined, using any of the efficient closed itemset mining algorithms, such as Charm [17]
or Closet [13]. MIRAGE takes either all frequent itemsets or the closed frequent itemsets along with
their supports and optional extensions (i.e., tidset) as input. As an example, Figure 1 illustrates
the set of closed itemsets that would be input to MIRAGE. If all frequent itemsets are input
MIRAGE first infers the closed sets among them, and uses only closed sets for further processing.
We shall see later that MIRAGE also accepts a previously stored itemset lattice as input, as well
as an entire previous state of exploration (itemsets, lattice and rules) using its database support.

MIRAGE

USER

CONSTRUCT LATTICE

RULE GENERATION

MINIMAL GENERATORS

CLOSED ITEMSETS ITEMSETS

RULE DATABASE

Figure 3: Conceptual Architecture of MIRAGE

From the closed itemsets, MIRAGE creates a lattice, as shown in the screenshot in Figure 2.
Each closed itemset is represented as a node, with a unique identifier, in the lattice. There is an
edge connecting two nodes if they are related by the subset relation and there is no intermediate
set between them. The size of a node is the length of the itemset, which also governs the levels
of the lattice. The smallest nodes are represented as roots, which are the only nodes displayed
initially. The use can then selectively expand nodes of interest to display the relationships. The
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Action# Mouse Actions Functions Performed

A1 Left double click Collapse or expand a node
A2 Right single click and drag on a node Move the node to another location
A3 Right single click on a canvas Center the canvas view at the location clicked
A4 Left single click on the gray portion of an edge Display uplink rules between nodes on this edge
A5 Left single click on the blue portion of an edge Display downlink rules between nodes on this edge
A6 Ctrl-left click on a node Node Selection, for displaying rules between any two nodes

Table 1: Some Mouse Commands in MIRAGE

figure shows the full lattice where the user has expanded all nodes. Also shown with each node is
its support, e.g., CWA–4.

Once the lattice has been created, MIRAGE computes the minimal generators (defined later
in Section 5.2) of all closed sets. It then waits for user interactions to generate and display minimal
rules. Minimal rule generation consists of two steps: 1) finding minimal generators of each closed
itemset, and 2) generating minimal rules among pairs of minimal generators. Details will be
presented later.

MIRAGE maintains a rule database, using a DBMS, to store all mined patterns and rules in
an interactive manner. Thus, it provides persistency by allowing the user to store the current state
of exploration (the lattice, rules, etc.) and to return to it at a later point in time.

4.1 Interactive Itemset and Rule Exploration

MIRAGE has two main display areas: the left text area for displaying details of minimal association
rules generated, and the right canvas for displaying the interactive itemset lattice, as shown in the
screenshot in Figure 2. On the top there are some menu buttons and icons for some common rule
modes.

4.1.1 Interactive Itemset Exploration

For itemset display there are four choices (the view menu button): i) itemset, ii) itemset–support,
iii) itemset–tidset, and iv) itemset–support–tidset. The itemsets shown in Figure 2 are in the
itemset–support view. The last two modes are typically not useful for market basket datasets,
where the individual transaction id is not of interest. However, the tidset mode is very useful
in applications like gene expression mining [19], where the tidset represents the experiments that
exhibit a similar expression for a given set of genes (the itemset).

MIRAGE supports interactive exploration of association rules between itemsets by providing a
variety of mouse commands as shown in Table 1. Left double clicking (A1) either expands a node,
or collapses it if already expanded. This allows the user to selectively explore parts of the lattice of
interest starting from some root node. A1 collapses the entire lattice under an already expanded
node. For example, Figure 4 (left) shows a sequence of node expansions from node C to CW , and
then CWA. When we apply A1 on CWTA it becomes black indicating no further expansion is
possible. Figure 4 (right) shows what happens when we collapse node CW ; the entire lattice under
it is removed. Command A2 allows the user to move the node positions to avoid clutter, and A3
allows the user to focus/center the entire lattice on the clicked location.

Another feature for interactive itemset exploration in MIRAGE is the No-Fade/Fade mode, as
illustrated in Figure 5 (one can toggle between the two modes by clicking on the Fade icon button
on top). In no-fade mode, multiple nodes can be expanded per level of the lattice as space permits.
If there is limited space for an expansion, a red star appears on top of the node, and the node is
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Figure 4: Expanding and Collapsing

Figure 5: No Fade (left) and Fade (right) Modes

not expanded. Once the user widens the canvas or removes extraneous itemsets, the node can be
expanded. In fade mode, we display only the children of the current node, and all other edges from
the current node’s siblings are faded away. This helps avoid the clutter, and allows the focus to
remain on the most recent node and its children. For example, in Figure 5, after expanding C,
when we expand CD and CT , both their children are visible in the no-fade node. On the other
hand, when we click on CT , in the fade mode, the children of CD are faded out.

4.1.2 Interactive Rule Exploration

It has been shown previously [2, 16] that it suffices to consider association rules among the frequent
closed itemsets, since a rule between any two itemsets is exactly the same as the rule between their
respective closures. We shall prove later that it is in fact sufficient to consider rules among only
the adjacent closed itemsets. MIRAGE allows the user to generate minimal rules among any two
nodes, whether adjacent or non-adjacent.
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In rule exploration we need to consider two kinds of minimal rules: the exact rules with confi-
dence p = 1.0, and inexact rules with confidence p < 1.0. There are two cases that lead to exact
rules:

• Self rule: Directed from a frequent closed itemset to itself.

• Uplink rule: Directed from a frequent closed itemset to an adjacent closed subset, i.e., to one
of its parents in the lattice.

On the other hand, there is only one case that produces an inexact rule:

• Downlink rules: Directed from a frequent closed itemset to an adjacent closed superset, i.e.,
to one of its children in the lattice.

Commands A4, A5 and A6 in Table 1 allow the user to explore exact and inexact minimal rules
between adjacent or non-adjacent nodes. Consider the lattice shown in Figure 2. Each edge in the
lattice is broken into two parts. Clicking on the top gray half (A4) generates an uplink exact rule
between the nodes, while clicking on the bottom blue half (A5) generates a downlink inexact rule,
if such a rule exists. The rule is displayed in the left text area. Each minimal rule is presented
in a manner that conveys as much information as possible. A rule is displayed in the text area as
follows:

Uplink/Downlink Rule: L −→ R [I>, I⊥]
support = q, confidence = p
Top Node(X>): NodeID - π(X)
Bottom Node (X⊥): NodeID - π(Y )

The display indicates whether the rule is uplink or downlink between the Top Node (>) and
Bottom Node (⊥); their NodeIDs, itemsets (X> for top node and X⊥ for bottom node), and
supports are also displayed under the node. Note that the top node by definition is a subset of
the bottom node, i.e. X> ⊂ X⊥. The rule support and confidence are shown separately. The
actual minimal rule is given as L −→ R [I>, I⊥], where L is the itemset on the left hand side
(i.e.,antecedent) and R is the itemset on right hand side (i.e., consequent). I> is the set of items
that can be added to both L and R to yield an equivalent rule (i.e., having the same support and
confidence). I⊥ is the set of items that can be added only to L in case of an uplink rule, and only to
R in case of a downlink rule. Items in I⊥ can be added to either the antecedent or the consequent,
provided it is derived from the bottom node, while items in I> can be added to both antecedent
and consequent. We ensure that I> ∩ I⊥ = ∅.

Some example of rules generated by MIRAGE on clicking different edges/nodes are given in

Figure 2. For instance the first two rules on the left show the uplink rule WT
3,3/3=1.0
−→ A produced

by clicking on the grey half of the edge (command A4), and the downlink rule A
3,3/4=0.75

−→ T ,
produced by clicking the blue half of the edge (command A5), between TopNode : CWA and

BottomNode : CWTA. The downlink rule A
3,0.75
−→ T has I> = {C,W} and I⊥ = ∅, which means that

any subset of CW can be added to both the antecedent or the consequent to obtain an equivalent
redundant association rule. In other word, the notation conveys that all of the following 8 rules
AW −→ T,AC −→ T,ACW −→ T,A −→ CT,A −→ TW,A −→ CTW,AW −→ CT,AC −→

TW , are equivalent to the minimal rule A
3,0.75
−→ T , Since I⊥ = ∅, no additional items can be added

to L to yield an equivalent rule. For the uplink rule WT
3,3/3=1.0
−→ A, I> = C, which means that

the following two rule are redundant: WT −→ AC, and CWT −→ A.
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It is also possible to generate rules between non-adjacent nodes. We first select C and then
CWTA using command A6; Figure 2 displays the two selected nodes in the left text area (C
selected, and CWTA selected). The first node clicked is top node and the second the bottom
node, which corresponds to a request to generate a downlink rule from C to CWTA. There are two

minimal downlink rules generated. The first one is C
3,3/6=0.5
−→ WT [∅, A], meaning that C

3,0.5
−→ WT

is the minimal rule, and since I⊥ = {A}, it means that A can be added to the consequent to

produce the redundant rule C
3,0.5
−→ AWT . The other minimal rule is C

3,0.5
−→ TA with I⊥ = {W}.

As a final example, Figure 2 shows how to generate self-rules. This is done by selecting the same
node twice using A6. The node selected is CWTA; in this case there are no self-rules possible.
It can be seen from the examples above that MIRAGE displays minimal rules, yet it conveys
maximum amount of information which allows the user to infer other redundant rules from I> and
I⊥.

Figure 6: Constraints

4.1.3 Rule and Item Constraints

The system also allows the user to set restrictions on the confidence and support levels of the rules.
For example, a user may only be interested in rules where confidence is > 0.8 and support is ≥
10. Additionally, the system allows constraints on itemsets to be made. For example, a user may
be interested in rules that involve strictly some items. For example Figure 6 shows the effect of
specifying the constraint to display only those itemsets containing D or T ; nodes not meeting the
constraint are faded slightly (nodes C, CW and CWA). The system allows any number of items
to be specified in the constraint. As part of future work we will allow greater power to specify
different kinds of constraints.

4.1.4 Rule Management

There are several rule management options provided in MIRAGE, as shown in Figure 7 (which is
a screen-shot of the drop-down menu obtained by clicking on the Modes menu button in Figure 2).
There are two main rule exploration modes: normal and cached. In the normal (non-cached) mode,
minimal rules between itemsets are generated dynamically as the user commands. The system has
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Figure 7: Modes

no knowledge of rules that were generated earlier, i.e., no exploration history is kept; each time the
user click on an edge the rules are generated afresh.

In cache mode, all rules that have been generated are stored in a backend database using
the open source MySQL DBMS (www.mysql.com). In cache mode, prior to any rule generation,
MIRAGE queries the rule database whether it already has rules between the given nodes. If the
rules are already in the cache (generated during the current exploration or during some previous
exploration, in cache mode), they are retrieved from the database and displayed directly. This
greatly speeds up rule exploration. If the rules are not found in the cache, MIRAGE generates the
rules, displays them, and also stores them in the cache for possible future references.

There are several other rule management options available in MIRAGE, as shown in Figure 7.
The Delete Cache button clears the entire state of exploration; all cached rules are deleted from
the database. The File Cache button allows the user to export all current rules in the database to
a flat file. The Generate All Rules button generates all the possible association rules, minimal as
well as redundant, and stores them in the database (i.e., it can only be invoked in the cache mode).
In conjunction with the file cache option this gives the user the ability to export all association
rules to a file.

Finally, the user has an option of displaying and deleting virtual links, as illustrated in Figure 8.
In the cached mode, when a user generates rules between any two nodes, and the Display Virtual

Links mode is on, a virtual link (i.e., a directed edge) is displayed between those itemsets. The
direction of the virtual edge is either up or down depending on whether the generated rules are
uplink or downlink rules. Such links are called virtual since they may not correspond to a lattice
edge, which exists only between adjacent closed itemsets. The virtual link mode allows the user to
see on the lattice which rules have already been generated and cached in the database, as well as
the direction. As shown in Figure 8 the user has generated both uplink and downlink rules between
C and CT , and downlink rules between C and CD, but rules between C and CW have not been
explored.

MIRAGE allows the user to store not only the rules generated via the cached mode, but it
also allows the lattice to be persistently stored in the database. A user can later reload it directly
from the database instead of having to regenerate the same lattice. If there are any cached rules,
they will also be saved along with the lattice in the same database. Lattice and rule saving allows
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Figure 8: Virtual Links

a user to save tremendous time when working with a large database, since the time required for
lattice reloading is a lot faster than the time required for regenerating it.

4.1.5 Database Design

The MySQL database consists of two tables: Nodes, and Rules. Nodes saves the lattice struc-
ture, while Rules caches the explored rules. The table definitions, and instantiation are shown in
Figure 9.

The Nodes table stores for each node, its ID, itemset, tidset, support, confidence, and a list
of its children and parents node ids in string form. For example, node ID 2 corresponds to CW ,
with support 5 and level 1. The tidset is empty for this dataset, but it may be useful for other
applications. CW has two children, whose ids are 7 and 6, which we store as the string “7 6”. It
only has one parent: node “1”. We adopted the string format for the list of children and parents
because i) it is simple, ii) it allows us to store the lattice as a relational table, and iii) it has small
space requirements. Converting from a string to a list of node ids is easy via a string tokenizer.

The Rules table stores for each rule generated, its direction (Dir: Up or Down), the top and
bottom node ids, the confidence and support, and the rule LHS and RHS. The figure shows some
of the example rules shown in Figure 2. For instance, the first row corresponds to the uplink rule

WT
3,1.0
−→ A [C, none], between nodes 6 and 8.

These two tables are sufficient to support all of the interactive itemset and rule exploration
functionality of MIRAGE.

5 Minimal Association Rules: Theory and Algorithms

Having outlined the interactive rule and itemset visualization and exploration features of MIRAGE,
we now present the theory behind minimal association rules as well as algorithms for rule generation.
We begin with a formal characterization of the set of minimal exact and inexact association rules.
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Table: Nodes

ID Itemset Parents Children Sup Tidset Level

1 “C” ’ ’ “4 2 5” 6 ’ ’ 1

2 “CW” “1” “7 6” 5 ’ ’ 2

4 “CD” “1” “7” 4 ’ ’ 2

5 “CT” “1” “8” 4 ’ ’ 2

6 “CWA” “2” ’ ’ 3 ’ ’ 3

7 “CDW” “4 2” ’ ’ 3 ’ ’ 3

8 “CWTA” “6 5” ’ ’ 3 ’ ’ 4

Table: Rules

Dir Top Bot LHS RHS Conf Sup

Up 6 8 “WT” “A [C, none]” 1.0 3
Down 6 8 “A” “T [CW, none]” 0.75 3
Down 1 8 “C” “WT [none, A]” 0.5 3
Down 1 8 “C” “TA [none, W]” 0.5 3

Figure 9: Database Tables in MIRAGE

5.1 Characterizing Minimal Rules

Let X1 and X2 be any itemsets. We know that an association rule is an implication X1
q,p
−→ X2,

where X1 ∩ X2 = ∅. We define an extended association rule as an implication X1
q,p
−→ X2, where

X1 and X2 are not necessarily disjoint. The following lemmas will prove useful.

Lemma 5.1 ([2, 16]) The support of an itemset X is equal to the support of its closure, i.e.,
π(X) = π(cit(X)).

Lemma 5.2 ([4]) If X1 ⊆ X2, then t(X2) ⊆ t(X1), and i(t(X1)) ⊆ i(t(X2)), i.e., cit(X1) ⊆
cit(X2).

Lemma 5.3 The association rule X1
q,p
−→ X2 is equivalent to the extended rule X1

q1,p1

−→ X1 ∪ X2,
i.e., q = q1 and p = p1.

Proof: Obvious, since the rule antecedent X1 is unchanged, and the rule support q = π(X1 ∪
X2) = π(X1 ∪ (X1 ∪ X2)) = q1.

Lemma 5.4 ([2, 16]) The association rule X1
q,p
−→ X2 is equivalent to the extended rule cit(X1)

q1,p1

−→
cit(X2), i.e., q = q1 and p = p1.

Lemma 5.4 says that a rule between any two itemsets is exactly the same as the extended rule
between their respective closures.

Corollary 5.5 The association rule X1
q,p
−→ X2 is equivalent to the extended rule cit(X1)

q1,p1

−→
cit(X1 ∪ X2), i.e., q = q1 and p = p1.

Proof: Follows by Lemma 5.4 and Lemma 5.3.

Lemma 5.6 ([11, 2, 16]) An extended association rule X1
p=1.0
−→ X2 has confidence p = 1.0 if and

only if X2 ⊆ X1, or equivalently if and only if t(X2) ⊆ t(X1).
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5.1.1 Minimal Exact Rules

Theorem 5.7 Let Rj : Xj
1

qj ,pj
−→ Xj

2 be an association rule (with X j
1 ∩ Xj

2 = ∅), and let R =
{R1, · · · , Rn} be a set of association rules that satisfy the following conditions for all 1 ≤ j ≤ n:

1. qj = q (i.e., all rules have the same support).

2. pj = p = 1.0 (i.e., all rules have 100% confidence).

3. I1 = cit(X
j
1) = cit(X

j
1 ∪ Xj

2), and I2 = cit(X
j
2).

Then all association rules Rj ∈ R are equivalent to the extended rule I1
q,1.0
−→ I2.

Proof: Consider any rule Rj = Xj
1

q,1.0
−→ Xj

2 . Then the support of the rule is given as q =

|t(Xj
1 ∪ Xj

2)| and its confidence p =
|t(Xj

1
∪Xj

2
)|

|t(Xj
1
)|

. By Lemma 5.6 we have t(X j
1) ⊆ t(Xj

2), giving

|t(Xj
1 ∪ Xj

2)| = |t(Xj
1) ∩ t(Xj

2)| = |t(Xj
1)|. Thus q = |t(Xj

1)|, and p =
|t(Xj

1
)|

|t(Xj
1
)|

= 1.

Since t(Xj
1) ⊆ t(Xj

2), by Lemma 5.2, we have i(t(X j
1)) ⊇ i(t(Xj

2)), i.e, cit(X
j
1) ⊇ cit(X

j
2). Since

X1 ⊆ (X1 ∪ X2), by Lemma 5.2 we have cit(X
j
1) ⊆ cit(X

j
1 ∪ Xj

2). By Lemma 5.1 we also have

π(cit(X
j
1 ∪ Xj

2)) = π(Xj
1 ∪ Xj

2), i.e., |t(cit(X
j
1 ∪ Xj

2))| = |t(Xj
1 ∪ Xj

2)|.

The support of the rule I1 −→ I2 is given as |t(I1 ∪ I2)| = |t(cit(X
j
1 ∪ Xj

2) ∪ cit(X
j
2))| =

|t(cit(X
j
1 ∪ Xj

2))| = |t(Xj
1 ∪ Xj

2)| = |t(Xj
1) ∩ t(Xj

2)| = |t(Xj
1)| = q. The confidence of the rule

I1 −→ I2 is given as |t(I1∪I2)|
|t(I1)|

=
|t(Xj

1
)|

|t(Xj
1
)|

= 1.

The theorem above says that all exact confidence rules are equivalent to those that are directed
from a closed itemset I1 to its closed subset I2 (since I2 ⊆ I1). There are two cases to consider:

1. I2 = I1: This leads to generation of self rules directed form I1 to itself.

2. I2 ⊂ I1: This leads to generation of uplink rules directed from I1 to its closed proper subset
I2.

5.1.2 Minimal Inexact Rules

Theorem 5.8 Let Rj : Xj
1

qj ,pj
−→ Xj

2 be an association rule (with X j
1 ∩ Xj

2 = ∅), and let R =
{R1, · · · , Rn} be a set of association rules that satisfy the following conditions for all 1 ≤ j ≤ n:

1. qj = q (i.e., all rules have the same support).

2. pj = p < 1.0 (i.e., all rules have same confidence).

3. I1 = cit(X
j
1), and I2 = cit(X

j
1 ∪ Xj

2).

Then all association rules Rj ∈ R are equivalent to the extended rule I1
q,p
−→ I2.

Proof: Consider any rule Rj = Xj
1

q,p
−→ Xj

2 . Then the support of the rule is given as q =

|t(Xj
1 ∪ Xj

2)| and its confidence as p = q/d, where d = |t(X j
1)|. We shall show that the rule

I1 −→ I2 also has support |t(I1 ∪ I2)| = q and confidence |t(I1∪I2)|
|t(I1)|

= q/d.

We have |t(I1)| = |t(cit(X
j
1))| = |t(Xj

1)| = d. Now consider the rule support. We have |t(I1 ∪

I2)| = |t(cit(X
j
1) ∪ cit(X

j
1 ∪ Xj

2))|. Since Xj
1 ⊆ (Xj

1 ∪ Xj
2), by Lemma 5.2 cit(X

j
1) ⊆ cit(X

j
1 ∪ Xj

2).

Thus, |t(I1 ∪ I2)| = |t(cit(X
j
1 ∪ Xj

2))| = |t(Xj
1 ∪ Xj

2)| = q.
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The theorem above says that the inexact rules are the equivalent to downlink rules from a closed
itemset I1 to its proper closed superset I2, since I1 ⊂ I2.

If a rule set R satisfies the conditions in theorem 5.7 or in theorem 5.8, then by definition every
association rule Ri ∈ R −Rmin is redundant, where Rmin = {Ri ∈ R |

�
Rj ∈ R, Rj ≺ Ri} is the

set of minimal association rules in R.

5.2 Generating Minimal Rules

In this section we give the algorithms that underly MIRAGE for generating minimal exact and
inexact association rules. Algorithms for minimal rule generation rely on the concept of minimal
generators [2] of a closed itemset. We begin by defining this concept and then present the rule
generation algorithms.

//X is a closed itemset,
//S = {Xi} is the set of immediate closed subsets of X
MinimalGenerators(X,S):

Gmin(X) = ∅;
I = X −

⋃
Xi∈S

Xi; //new items in X
for all i ∈ I //each item is minimal generator

Gmin(X) = Gmin(X) ∪ {i};
G1 = {i | i ∈ X − I}; //remaining items
k = 1;
while Gk 6= ∅

for all G ∈ Gk

if G 6⊆ Xj for all Xj ∈ S
Gmin(X) = Gmin(X) ∪ {G};
Gk = Gk − G;

//Candidate Minimal Generators for Next Pass
Gk+1 = {G′ = i1 · · · ikik+1 | ∀1 ≤ j ≤ k + 1,

∃Gj ∈ Gk, Gj = i1 · · · ij−1ij+1 · · · ik+1}
k = k + 1;

Figure 10: Find Minimal Generators

5.2.1 Minimal Generators

Let X be a closed itemset. We say that an itemset X ′ is a generator of X if and only if 1)
X ′ ⊆ X, and 2) π(X ′) = π(X). X ′ is called a proper generator if X ′ ⊂ X (i.e., X ′ 6= X).
A proper generator cannot be closed, since by definition, no closed subset of X can have the
same support as X. Let G(X) denote the set of generators of X. We say that X ′ ∈ G(X) is a
minimal generator if it has no proper subset in G(X). Let Gmin(X) denote the set of all minimal
generators of X. By definition Gmin(X) 6= ∅, since if there is no proper generator, X is its own
minimal generator. For example, consider the closed set ACTW shown in Figure 1; it has support
π(ACTW ) = 3. The generators of ACTW are G(ACTW ) = {AT, TW,ACT,ATW,CTW}, since
they are all subsets of ACTW having the same support. The minimal generators in this set are
then given as Gmin(ACTW ) = {AT, TW}.
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An algorithm to find minimal generators is shown in Figure 10. It is based on the fact that the
minimal generators of a closed itemset X are the minimal itemsets that are subsets of X but not
a subset of any of X’s (immediate) closed subsets, i.e., not a subset of any of X’s parents in the
lattice. Let S = {Xi | (cit(Xi) = Xi) ∧ (Xi ⊂ X) ∧ (

�
Xj : (cit(Xj) = Xj) ∧ (Xi ⊂ Xj ⊂ X))}, be

the set of immediate closed subsets or parents of X.
First, any item appearing for the first time in X, and in none of X’s parents, given as I =

X −
⋃

Xi∈S
Xi, is a minimal generator by definition. From the remaining items, i.e., those that

appear in subsets of X, we find all minimal generators using an Apriori-style [1] level-wise procedure.
Note that we do not need access to the database, but rather only to X and S, the set of its parents
in the lattice.

We initialize the candidate generators to be all single items of size one appearing in X’s subsets,
i.e., G1 = {i | i ∈ X − I}. For any current candidate generator G ∈ Gk we test if G is a subset
of any itemset in S. If true, G is not a generator for X. If false, then G is a minimal generator,
and it is added to Gmin(X), and removed from Gk. After we have seen all G ∈ Gk, we have found
all minimal generators of length k. The next step is to generate candidate generators for the next
iteration. For each possible generator G′ ∈ Gk+1, all its immediate subsets must be present in Gk.
Let G′ = i1i2 · · · ikik+1 be a possible candidate in Gk+1. The subset check is done by checking
whether the subset Gj of length k obtained by removing item ij from G′ is present in Gk. Since
we remove from Gk any minimal generator G, none of G’s supersets can ever become candidate
generators (this fact guarantees correctness of the algorithm). We next repeat the whole process
with Gk+1 as the current set of candidates. The process stops when no more candidates can be
generated.

Closed Itemsets Minimal Generators

C C

CW W

CT T

CD D

CWA A

CDW DW

CTWA TA, TW

Table 2: Minimal Generators

As an example consider X = ACTW again. We have S = {CT,CWA}. There are no new
items in X, i.e., I = ∅, and thus G1 = {A,C, T,W}. We find that all these items are subsets
of some set in S, so there can be no single item generators. For the next pass we get G2 =
{AC,AT,AW,CT,CW, TW}. From these, we find that AT, TW are not subsets of any itemset in
S, so we add them to Gmin(X) and remove them from G2, giving G2 = {AC,AW,CT,CW}. Now for
the next pass we get G3 = {ACW}. Since this is a subset of an itemset in S, it cannot be a generator.
Finally, we get G4 = ∅, and the computation stops. The final answer is Gmin(ACTW ) = {AT, TW}.
The minimal generators for all closed itemsets in our example (from Figure 1) are given in the
Table 2.
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5.2.2 Rule Generation Algorithms

Given any two closed itemsets X> and X⊥, with X> ⊆ X⊥, Figures 11 and 12 show algorithms
to generate all possible minimal rules between them, based on the notion of minimal generators.

Minimal Exact Rules (Uplink and Self Rules) Exact rules are directed from the bottom
node X⊥ to the top node X>. Note that X> ⊆ X⊥. There are two case that lead to an exact rule
as we saw earlier: i) when X> ⊂ X⊥, we get an uplink rule, and ii) when X> = X⊥, we get a self
rule. Exact (uplink and self) rules always have confidence 1.0 since an itemset always implies its
own subset.

Figure 11 shows the algorithm for generating minimal exact rules. Since Gmin(X⊥) consists
of the minimal sets that are equivalent to X⊥, every minimal generator X⊥

g ∈ Gmin(X⊥) forms
a potential LHS (left hand side) for a minimal rule. Furthermore, as required by Theorem 5.7,
cit(LHS) = cit(X

⊥
g ) = X⊥. Likewise every minimal set X>

g ∈ Gmin(X>) can serve as a potential

RHS (right hand side). Since we require RHS to be disjoint from LHS, we set RHS = X>
g −X⊥

g

(thus LHS ∩RHS = ∅). If the remaining two conditions in Theorem 5.7 are met (i.e., cit(RHS) =
X> and cit(LHS ∪ RHS) = X⊥), we can generate a 100% confidence rule LHS −→ RHS.

//X>, X⊥ are closed itemsets, with X> ⊆ X⊥

GenerateExactRules (X>, X⊥):
G1 = Gmin(X>);
G2 = Gmin(X⊥);
R = ∅; // minimal rule set
//All exact rules between minimal generators
for all X⊥

g ∈ G2

for all X>
g ∈ G1

LHS = X⊥
g ;RHS = (X>

g − X⊥
g );

if cit(RHS) = X> ∧ cit(LHS ∪ RHS) = X⊥

q = π(X>);
(I>, I⊥) = compute-extension (X>, X>

g , X⊥, X⊥
g );

R = R∪ (LHS
q,1.0
−→ RHS[I>, I⊥])

return Rmin; //remove redundant rules

Figure 11: Minimal Exact Rule Generation

Minimal Inexact Rules (Downlink Rules) Figure 12 shows the algorithm for generating
minimal inexact rules. Downlink inexact rules are directed from the top node X> to the bottom
node X⊥. As before, every X>

g ∈ Gmin(X>) forms a potential LHS, and every X⊥
g ∈ Gmin(X⊥)

forms a potential RHS for a rule. To ensure disjointness, we set RHS = X⊥
g − X>

g . As required

by Theorem 5.8, cit(LHS) = cit(X
′) = X>, and if cit(LHS ∪ RHS) = X⊥ then we can generate

an inexact rule LHS −→ RHS.
As an example of generating exact and inexact rules, let X> = ACW and X⊥ = ACTW , be

two closed sets from Figure 1. We have Gmin(ACW ) = {A} and Gmin(ACTW ) = {AT, TW}, as
given in Table 2. The possible exact uplink rules are AT −→ (A−AT ), but since A−AT = ∅ this

rule is not possible. The other possibility is TW −→ (A−TW ), which gives us the rule TW
3,1.0
−→ A

(which is the first rule shown in the screenshot of MIRAGE in Figure 2).
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//X>, X⊥ are closed itemsets, with X> ⊆ X⊥

GenerateInexactRules (X>, X⊥):
G1 = Gmin(X>);
G2 = Gmin(X⊥);
R = ∅; // non-redundant rule set
//All inexact rules between minimal generators
for all X>

g ∈ G1

for all X⊥
g ∈ G2

LHS = X>
g ;RHS = (X⊥

g − X>
g );

if cit(LHS ∪ RHS) = X⊥

q = π(X⊥); p = π(X⊥)
π(X>)

(I>, I⊥) = compute-extension (X>, X>
g , X⊥, X⊥

g );

R = R∪ (LHS
q,p
−→ RHS[I>, I⊥])

return Rmin; //remove redundant rules

Figure 12: Minimal Inexact Rule Generation

A possible downlink inexact rule is A −→ (AT −A), giving us A
3,3/4
−→ T . The second possibility

is A −→ (TW − A), resulting in the rule A
3,3/4
−→ TW . Thus the possible rules between ACW and

ACTW are R = {TW
3,1.0
−→ A,A

3,3/4
−→ T,A

3,3/4
−→ TW}. However, since A

3,3/4
−→ T is more general than

A
3,3/4
−→ TW , we get Rmin = {A

3,3/4
−→ T} as the set of minimal rules (which is shown as the second

rule in the screenshot of MIRAGE in Figure 2).

Computing I> and I⊥: A minimal rule between top node X> and bottom node X⊥, with
X> ⊆ X⊥ , is of the form L

q,p
−→ R[I>, I⊥], where L is the antecedent, and R the consequent. We

now give an algorithm to compute I> and I⊥.
Recall that I> is the set of items that can be added to both top and bottom nodes’ represen-

tatives, i.e., to both L and R. I⊥ is the set of items that can be added only to the bottom node’s
representative, i.e., only to L in case of an uplink rule, and only to R in case of a downlink rule.
Also I> ∩ I⊥ = ∅.

//X>, X⊥ are closed itemsets, with X> ⊆ X⊥

//X>
g , X⊥

g are minimal generators of X>, X⊥, respv.

compute-extension (X>, X>
g , X⊥, X⊥

g ):

I> = X> − (X>
g ∪ X⊥

g );

I⊥ = X⊥ − (X⊥
g ∪ X>);

return I>, I⊥;

Figure 13: Compute I> and I⊥

Figure 13 gives the algorithm to compute I> and I⊥. The algorithm is straight forward; we
give an intuitive explanation before formally proving it correct. We know that every item in X>

also appears in X⊥, since X> ⊆ X⊥. Thus all items in X> could potentially be added to L and R,
except items that already appear in the minimal generators of X> and X⊥. Also, all items in X⊥
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can potentially be added exclusively to L or R derived from X⊥, except items that already appear
in X> (since they are common to both), and items in X⊥

g (since this is the minimal generator from
which L or R has been derived).

Theorem 5.9 Let X> and X⊥ be closed sets with X> ⊆ X⊥, and let X>
g ∈ Gmin(X>) and

X⊥
g ∈ Gmin(X⊥). Then I> = X> − (X>

g ∪ X⊥
g ), and I⊥ = X⊥ − (X⊥

g ∪ X>).

Proof: Let L
q,p
−→ R be an uplink rule, where L = X⊥

g and R = X>
g − X⊥

g . Then I> =

(X> −R)−L, i.e., every item in X> is potentially common, except those that appear in R and L.
After expanding we get I> = (X>−(X>

g −X⊥
g ))−X⊥

g ). Simplifying, we get I> = X>−X>
g −X⊥

g =

X> − (X>
g ∪ X⊥

g ).

For computing I⊥ we need to exclude items in L and R, as well as I>, i.e., I⊥ = ((X⊥−L)−R)−
I>. I⊥ = X⊥− (L∪R)− (X>−R−L) = X⊥− ((L∪R)

⋃
(X>− (L∪R))) = X⊥− (L∪R cupX>).

Plugging in values of L and R, and simplifying we get, I⊥ = X⊥ − (X⊥
g ∪ (X>

g − X⊥
g ) cupX>) =

X⊥ − (X⊥
g ∪ X>

g ∪ X>) = X⊥ − (X⊥
g ∪ X>).

Let L
q,p
−→ R be a downlink rule, where L = X>

g and R = X⊥
g −X>

g . Then I> = (X> −L)−R.

Substituting and simplifying, we get I> = (X> − X>
g ) − (X⊥

g − X>
g ) = X> − X>

g − X⊥
g =

X> − (X>
g ∪ X⊥

g ). We have I⊥ = X⊥ − L − R − I>. Similar to the uplink case, it simplifies to

I⊥ = X⊥ − (X⊥
g ∪ X>).

5.3 Representative Rule Set

Let R = {R1, R2, · · · , Rn} be the any set of rules, and let R′ ⊆ R. We say that R′ entails Ri ∈ R,
denoted as R′ ` Ri, if either ∃Rj ∈ R′ such that Rj � Ri, or we can deduce a rule Rj from rules
in R′ such that Rj � Ri. That is Ri has the same support and confidence as Rj and it can be
obtained by adding items to the antecedent and/or consequent of Rj . If R′ ` Ri for all Ri ∈ R, we
say that R′ is a representative set for R, and denote it as R′ ` R.

Let C be the set of all closed frequent itemsets mined from a database. Let Xi, Xj ∈ C, and
assume without loss of generality that Xi ⊆ Xj . Assume further that Xi and Xj are adjacent (or
the same), i.e.,

�
Xk, such that (Xi ⊂ Xk ⊆ Xj).

Let Rij denote the set of exact and inexact association rules that can be generated from any
such pair of adjacent closed itemsets Xi and Xj using the algorithms outlined above. Let Rmin

ij

be the set of minimal rules in Rij , and let <min =
⋃

i,j R
min
ij be the set of all minimal inexact and

exact rules generated from adjacent frequent closed itemsets Xi and Xj . Finally, let Ra denote the
set of all possible association rules.

Here we prove that the set of minimal association rules <min taken over all adjacent frequent
closed itemsets, constitutes a representative set for the set of all possible association rules Ra, i.e.,
<min ` Ra.

Lemma 5.10 <min ⊆ Ra.
Proof: Let R : X

q,p
−→ Y be any minimal rule R ∈ <min, then the rule R′ : X −→ Z − X is

an association rule generated from the frequent itemset Z = XY . It is obvious that R = R ′, thus
R ∈ Ra.

Lemma 5.11 Let R : (X1
q,p
−→ X2) ∈ Ra. If cit(X1) and cit(X2) are adjacent closed sets, then

<min ` R.
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Proof: We know that ∃X ′
1 ∈ Gmin(cit(X1)), with X ′

1 ⊆ X1 and ∃X ′
2 ∈ Gmin(cit(X2)), with

X ′
2 ⊆ X2. R is an association rule means that X1 ∩X2 = ∅, which implies that X ′

1 ∩X ′
2 = ∅. Since

cit(X1) and cit(X2) are adjacent closed sets, by Theorems 5.7 and 5.8, R′ : (X ′
1 −→ X ′

2) ∈ <min.
Since R′ � R, we obtain <min ` R.

Lemma 5.12 Let R : (X1
q,p
−→ X2) ∈ Ra. Let cit(X1) 6⊆ cit(X2), and cit(X2) 6⊆ cit(X1),i.e.,

the two closed sets are non-comparable. Then R is equivalent to the rule R ′ : I1 −→ I2 between
comparable closed sets I1 = cit(X1) and I2 = cit(X1 ∪ X2).

Proof: Immediate by Corollary 5.5.

Lemma 5.13 Let R : (X1
q,p
−→ X2) ∈ Ra. Let I1 = cit(X1) and I2 = cit(X2) be non-adjacent, but

related by the ⊆ relation. Then <min ` R.
Proof: We know that ∃X ′

1 ∈ Gmin(cit(X1)), with X ′
1 ⊆ X1 and ∃X ′

2 ∈ Gmin(cit(X2)), with
X ′

2 ⊆ X2. We shall show that the rule R′ : X ′
1 −→ X ′

2 can be deduced from <min. Since R′ � R, it
will follow that <min ` R.

There are two cases to consider: 1) I1 ⊂ I2, 2) I2 ⊂ I1. Note that I1 6= I2 since they are
non-adjacent.

Case 1) – I1 ⊂ I2: Since they are non-adjacent, there exist a chain of k ≥ 1 distinct closed
sets I1 = Z0 ⊂ Z1 ⊂ · · ·Zk ⊂ Zk+1 = I2, such that Zi and Zi+1 are adjacent for 0 ≤ i ≤ k. Let
Z ′

i ∈ Gmin(Zi) denote a minimal generator of the closed set Zi.
By algorithm GenerateInexactRules (Figure 12), if Z ′

i+1 − Z ′
i 6= ∅, then R′

i : (Z ′
i −→ Z ′

i+1 −
Z ′

i) ∈ <min. If Z ′
i+1 − Z ′

i = ∅, then Z ′
i+1 ⊆ Z ′

i. But this is a contradiction, since the minimal
generator of a superset Zi+1 cannot be a subset of the minimal generator of a subset Zi. Thus
the rule R′

i : (Z ′
i −→ Z ′

i+1) ∈ <min for any Z ′
i ∈ Gmin(Zi) and Z ′

i+1 ∈ Gmin(Zi+1). It follows
that there exists a chain of minimal generators X ′

1 = Z ′
0, Z

′
1, · · · , Z

′
k, Z

′
k+1 = X ′

2 such that the rule
Z ′

i −→ Z ′
i+1−Z ′

i ∈ <min. From this we can deduce the rule R′ : X ′
1 −→ X ′

2. It is clear that R′ � R.
Case 2) – I2 ⊂ I1: Since they are non-adjacent, there exist a chain of k ≥ 1 distinct closed

sets I1 = Z0 ⊃ Z1 ⊃ · · ·Zk ⊃ Zk+1 = I2, such that Zi+1 and Zi are adjacent for 0 ≤ i ≤ k. Let
Z ′

i ∈ Gmin(Zi) denote a minimal generator of the closed set Zi.
By algorithm GenerateExactRules (Figure 11), if Z ′

i+1 − Z ′
i 6= ∅, then R′

i : (Z ′
i −→ Z ′

i+1 −
Z ′

i) ∈ <min. If Z ′
i+1 − Z ′

i = ∅, then Z ′
i+1 ⊆ Z ′

i. Since minimal generators of two distinct closed
sets cannot be equal, we have Z ′

i+1 6= Z ′
i. Thus Z ′

i+1 ⊂ Z ′
i. But in this case the inexact rule

Z ′
i+1 −→ Z ′

i − Z ′
i+1 ∈ <min.

It follows that there exists a chain of minimal generators X ′
1 = Z ′

0, Z
′
1, · · · , Z

′
k, Z

′
k+1 = X ′

2 such
that either the exact rule Z ′

i −→ Z ′
i+1 − Z ′

i ∈ <min or the inexact rule Z ′
i+1 −→ Z ′

i − Z ′
i+1 ∈ <min.

From this we can deduce the exact rule R′ : X ′
1 −→ X ′

2. It is clear that R′ � R.

Theorem 5.14 <min ` Ra.
Proof: Let R : (X1

q,p
−→ X2) ∈ Ra. Let I1 = cit(X1) and I2 = cit(X2). Consider 3 cases:

Case 1): If I1 and I2 are adjacent, then by Lemma 5.11 <min ` R.
Case 2): If I1 and I2 are non-adjacent but comparable, then by Lemma 5.13 <min ` R.
Case 3): If I1 and I2 are non-comparable, then by Lemma 5.12 R is equivalent to the rule

between comparable closed sets I1 and I ′2 = cit(X1∪X2). This reduces to case 2). Thus <min ` Ra.
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6 Experimental Evaluation

In this section we show some experimental evidence on the effectiveness as well as the interactive
performance of MIRAGE. All experiments described below were performed on a 400MHz Pen-
tium PC with 256MB of memory, running RedHat Linux 6.0. MIRAGE is coded in the Java
programming language.

We test the framework suing several real and synthetic datasets to evaluate the system perfor-
mance. Table 3 shows the characteristics of the real and synthetic datasets used in our evaluation.

All datasets except the PUMS (pumsb and pumsb*) sets are taken from UC Irvine Machine
Learning Database Repository. The PUMS datasets contain census data, and pumsb* is the same
as pumsb without items of support equals to 80% or more. The connect and chess datasets are
obtained from their respective game steps. Finally, the mushroom set contains characteristics of
various species of mushrooms. Real datasets are usually very dense, i.e. they produce many long
frequent itemsets even for a very high value of support. We also chose a few synthetic datasets (also
available from IBM Almaden), which have been used as benchmarks for testing previous association
mining algorithms. These datasets mimic the transactions in a retailing environment. Usually the
synthetic datasets are sparse when compared to the real sets. We used two dense and two sparse
(the last two rows in Table 3) synthetic datasets for our study.

Database # Items Record Length # Records

chess 76 37 3,196
connect 130 43 67,557
mushroom 120 23 8,124
pumsb* 7117 50 49,046
pumsb 7117 74 49,046

T20I12D100K 1000 20 100,000
T40I8D100K 1000 40 100,000

T10I4D100K 1000 10 100,000
T20I4D100K 1000 20 100,000

Table 3: Database Characteristics

6.1 Redundant vs. Minimal Rules

In the first set of experiments we show the effectiveness of the minimal association rule framework
in cutting down the number of rules presented to the user, when compared against presenting
all (redundant) association rules. Table 4 shows the database used with two different values of
minimum support πmin (expressed as fraction of database records, instead of an absolute number
of records). The next three columns show the number of all association rules (|R|), the number

of all minimal rules (|Rmin|), and the rule reduction ratio ( |R
min|
|R| ). The results indicate that the

number of minimal rules can be much smaller than the number of all association rules; the reduction
ratio of minimal rules w.r.t all rules, can range from a factor of 2 to more than 3000 times!

6.2 Interactive Performance

Given that MIRAGE is an entire framework for interactive graphical exploration of minimal asso-
ciation rules, it is difficult to quantitatively evaluate it. Here we give some results on the interactive
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Database πmin |R| |Rmin| |Rmin|
|R|

chess 80% 552564 27711 20
chess 70% 8171198 152074 54

connect 97% 8092 1116 7
connect 90% 3640704 18848 193

mushroom 40% 7020 475 15
mushroom 20% 19191656 5741 3343

pumsb* 60% 2358 192 12
pumsb* 40% 5659536 13479 420

pumsb 95% 1170 267 4
pumsb 85% 1408950 44483 32

T20I12D100K 0.5% 40356 2642 15
T40I8D100K 1.5% 1609678 11379 142

T10I4D100K 0.5% 2216 1231 1.8
T10I4D100K 0.1% 431838 86902 5.0
T20I4D100K 1.0% 2736 1738 1.6
T20I4D100K 0.25% 391512 89963 4.4

Table 4: Redundant vs. Minimal Rules

performance of MIRAGE while generating minimal rules. In out experiments we measure the aver-
age rule generation time (ARGT) for different values of πmin. We also measure the height of lattice,
which is given as the maximum level difference between any two lattice nodes. As the support is
lowered more and longer closed sets are mined, and the lattice height increases.

πmin ARGT Height
(msec)

0.94 0.70 4

0.945 0.69 4

0.95 0.45 3

0.955 0.45 3

0.96 0.60 3

0.965 0.71 3

0.97 0.46 2

0.975 0.87 2

0.98 2.73 1

Table 5: Average RGT: Pumsb

πmin ARGT Height
(msec)

0.575 2.15 7

0.6 2.58 7

0.625 1.44 6

0.65 0.17 3

0.7 0.12 3

0.75 0.44 2

0.8 0.15 2

Table 6: Average RGT: T10I4D100K

Tables 5 and 6, the interactive rule generation times for one real (pumsb) and one synthetic
dataset (T10I4D100K). We can observe that the rule generation is very fast, taking only a few
milliseconds per pair of lattice nodes. Similar results were obtained for other datasets.
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7 Conclusions

This paper presents a novel framework for the mining and exploration of association rules, based
on the concept of minimal association rules. Minimal association rules are the most general rules
(i.e., having most general antecedent and consequent) that satisfy a given support and confidence
threshold. Minimal rules are typically a lot less than the the full set of association rules, and this
helps address the combinatorial rule explosion problem. We show formally that the set of minimal
rules is a representative set for all association rules.

We proposed MIRAGE, a tool for interactive graphical exploration of minimal association
rules, which uses lattice-based interactive rule visualization approach, displaying the rules in a very
compact form; all association rules can also be generated if desired. Hence, there is no information
loss. MIRAGE uses a database back-end for effective, persistent rule management for easy retrieval
at a later point in time. As part of future work, we plan to implement a more flexible approach to
user-specified constraints during rule exploration.
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