
Proceedings of FIMI'03

Workshop on

Frequent Itemset Mining

Implementations

19th November 2003, Melbourne, FL

in conjunction with

The 3rd IEEE International Conference on Data Mining

Editors

Mohammed J. Zaki
Computer Science Department

Rensselaer Polytechnic Institute

Troy, New York, USA

Bart Goethals
Computer Science Department

University of Helsinki

Helsinki, Finland

Program Committee
Roberto Bayardo, IBM Almaden Research Center

Johannes Gehrke, Cornell University

Jiawei Han, Univ. of Illinois at Urbana-Champaign

Hannu Toivonen, University of Helsinki, Finland

Also Available as

RPI CS Department Technical Report TR 03-14

Workshop Schedule

09:00 Welcome, introduction, results of the global experiments

10:30 Coffee break

11:00 Panel Session I (session chair: tba)

 "A fast APRIORI implementation", by Ferenc Bodon

 "Efficient Implementations of Apriori and Eclat", by Christian Borgelt

"Detailed Description of an Algorithm for Enumeration of Maximal

Frequent Sets with Irredundant Dualization", by Takeaki Uno and Ken

Satoh

"Probabilistic Iterative Expansion of Candidates in Mining Frequent

Itemsets", by Attila Gyenesei and Jukka Teuhola

 "Intersecting data to the closed sets with constraints", by Taneli Mielikäinen

12:30 Lunch (included in registration)

14:00 Panel Session II (session chair: tba)

"ARMOR: Association Rule Mining based on ORacle", by Vikram Pudi and

Jayant Haritsa

 "AIM: Another Itemset Miner", by Amos Fiat and Sagi Shporer

"LCM: An Efficient Algorithm for Enumerating Frequent Closed Item Sets",

by Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura

"MAFIA: A Performance Study of Mining Maximal Frequent Itemsets", by

Doug Burdick, Manuel Calimlim, Jason Flannick, Johannes Gehrke, and

Tomi Yiu

"kDCI: a Multi-Strategy Algorithm for Mining Frequent Sets", by Salvatore

Orlando, Claudio Lucchese, Paolo Palmerini, Raffaele Perego, and Fabrizio

Silvestri

15:30 Coffee break

16:00 Panel Session III (session chair: tba)

 "Apriori, a depth-first implementation", by Walter A. Kosters and Wim Pijls

"An Efficient Implementation of Pattern Growth Approach", by Guimei Liu,

Hongjun Lu, Jeffrey Xu Yu, Wang Wei, and Xiangye Xiao

"Efficiently Using Prefix-trees in Mining Frequent Itemsets", by Gösta

Grahne and Jianfei Zhu

"COFI-tree Mining: A New Approach to Pattern Growth with Reduced

Candidacy Generation", by Osmar R. Zaïane and Mohammed El-Hajj

"Mining Frequent Itemsets using Patricia Tries", by Andrea Pietracaprina

and Dario Zandolin

17:30 FIMI Award and concluding remarks

FIMI’03: Workshop on

Frequent Itemset Mining Implementations

FIMI Repository: http://fimi.cs.helsinki.fi/

FIMI Repository Mirror: http://www.cs.rpi.edu/~zaki/FIMI03/

Bart Goethals
Helsinki Institute for Information Technology (HIIT)

Department of Computer Science
University of Helsinki, Finland
bart.goethals@cs.helsinki.fi

Mohammed J. Zaki
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York, USA
zaki@cs.rpi.edu

1 Why Organize the FIMI Workshop?

Since the introduction of association rule mining in
1993 by Agrawal Imielinski and Swami [3], the frequent
itemset mining (FIM) tasks have received a great deal
of attention. Within the last decade, a phenomenal
number of algorithms have been developed for min-
ing all [3–5, 10, 18, 19, 21, 23, 26, 28, 31, 33], closed [6,
12, 22, 24, 25, 27, 29, 30, 32] and maximal frequent item-
sets [1, 2, 7, 11, 15–17, 20, 35]. Every new paper claims
to run faster than previously existing algorithms, based
on their experimental testing, which is oftentimes quite
limited in scope, since many of the original algorithms
are not available due to intellectual property and copy-
right issues. Zheng, Kohavi and Mason [34] observed
that the performance of several of these algorithms is
not always as claimed by its authors, when tested on
some different datasets. Also, from personal experi-
ence, we noticed that even different implementations
of the same algorithm could behave quite differently
for various datasets and parameters.

Given this proliferation of FIM algorithms, and
sometimes contradictory claims, there is a pressing
need to benchmark, characterize and understand the
algorithmic performance space. We would like to un-
derstand why and under what conditions one algorithm
outperforms another. This means testing the meth-
ods for a wide variety of parameters, and on different
datasets spanning dense and sparse, real and synthetic,
small and large, and so on.

Given the experimental, algorithmic nature of FIM
(and most of data mining in general), it is crucial that
other researchers be able to independently verify the
claims made in a new paper. Unfortunately, the FIM
community (with few exceptions) has a very poor track
record in this regard. Many new algorithms are not
available even as an executable, let alone the source
code. How many times have we heard “this is propri-
etary software, and not available.” This is not the way
other sciences work. Independent verifiability is the
hallmark of sciences like physics, chemistry, biology,
and so on. One may argue, that the nature of research
is different, they have detailed experimental procedure
that can be replicated, while we have algorithms, and
there is more than one way to code an algorithm. How-
ever, a good example to emulate is the bioinformat-
ics community. They have espoused the open-source
paradigm with more alacrity than we have. It is quite
common for journals and conferences in bioinformat-
ics to require that software be available. For example,
here is a direct quote from the journal Bioinformatics
(http://bioinformatics.oupjournals.org/):

Authors please note that software should be
available for a full 2 YEARS after publication
of the manuscript.

We organized the FIMI workshop to address the
three main deficiencies in the FIM community:

• Lack of publicly available implementations of FIM
algorithms

1

• Lack of publicly available “real” datasets

• Lack of any serious performance benchmarking of
algorithms

1.1 FIMI Repository

The goals of this workshop are to find out the main
implementation aspects of the FIM problem for all,
closed and maximal pattern mining tasks, and eval-
uating the behavior of the proposed algorithms with
respect to different types of datasets and parameters.
One of the most important aspects is that only open
source code submissions are allowed and that all sub-
missions will become freely available (for research pur-
poses only) on the online FIMI repository along with
several new datasets for benchmarking purposes. See
the URL: http://fimi.cs.helsinki.fi/.

1.2 Some Recommendations

We strongly urge all new papers on FIM to provide
access to source code or at least an executable immedi-
ately after publication. We request that researchers to
contribute to the FIMI repository both in terms of al-
gorithms and datasets. We also urge the data mining
community to adopt the open-source strategy, which
will serve to accelerate the advances in the field. Fi-
nally, we would like to alert reviewers that the FIMI
repository now exists, and it contains state-of-the-art
FIM algorithms, so there is no excuse for a new paper
to not do an extensive comparison with methods in the
FIMI repository. Such papers should, in our opinion,
be rejected outright!

2 The Workshop

This is a truly unique workshop. It consisted of
code submission as well as a paper submission describ-
ing the algorithm and a detailed performance study by
the authors on publicly provided datasets, along with
a detailed explanation on when and why their algo-
rithm performs better than existing implementations.
The submissions were tested independently by the co-
chairs, and the papers were reviewed by members of the
program committee. The algorithms were judged for
three main tasks: all frequent itemsets mining, closed
frequent itemset mining, and maximal frequent itemset
mining.
The workshop proceedings contains 15 papers de-

scribing 18 different algorithms that solve the frequent
itemset mining problems. The source code of the im-
plementations of these algorithms is publicly available
on the FIMI repository site.

The conditions for “acceptance” of a submission
were as follows: i) a correct implementation for the
given task, ii) an efficient implementation compared
with other submissions in the same category or a sub-
mission that provides new insight into the FIM prob-
lem. The idea is to highlight both successful and un-
successful but interesting ideas. One outcome of the
workshop will be to outline the focus for research on
new problems in the field.
In order to allow a fair comparison of these algo-

rithms, we performed an extensive set of experiments
on several real-life datasets, and a few synthetic ones.
Among these are three new datasets, i.e. a supermarket
basket dataset donated by Tom Brijs [9], a dataset con-
taining click-stream data of a Hungarian on-line news
portal donated by Ferenc Bodon [8], and a dataset con-
taining Belgian traffic accident descriptions donated by
Karolien Geurts [13].

2.1 Acknowledgments

We would like to thank the following program com-
mittee members for their useful suggestions and re-
views:

• Roberto Bayardo, IBM Almaden Research Center,
USA

• Johannes Gehrke, Cornell University, USA

• Jiawei Han, University of Illinois at Urbana-
Champaign, USA

• Hannu Toivonen, University of Helsinki, Finland

We also thank Taneli Mielikainen and Toon Calders for
their help in reviewing the submissions.
We extend our thanks to all the participants who

made submissions to the workshop, since their willing-
ness to participate and contribute source-code in the
public domain was essential in the creation of the FIMI
Repository. For the same reason, thanks are due to
Tom Brijs, Ferenc Bodon, and Karolien Geurts, who
contributed new datasets, and to Zheng, Kohavi and
Mason for the KDD Cup 2001 datasets.

3 The FIMI Tasks Defined

Let’s assume are given a set of items I. An item-
set I ⊆ I is some subset of items. A transaction is a
couple T = (tid , I) where tid is the transaction iden-
tifier and I is an itemset. A transaction T = (tid , I)
is said to support an itemset X, if X ⊆ I. A trans-
action database D is a set of transactions such that
each transaction has a unique identifier. The cover

of an itemset X in D consists of the set of transac-
tion identifiers of transactions in D that support X:
cover(X,D) := {tid | (tid , I) ∈ D, X ⊆ I}. The sup-
port of an itemset X in D is the number of transactions
in the cover of X in D:

support(X,D) := |cover(X,D)|.

An itemset is called frequent in D if its support in D
exceeds a given minimal support threshold σ. D and
σ are omitted when they are clear from the context.
The goal is now to find all frequent itemsets, given a
database and a minimal support threshold.
The search space of this problem, all subsets of I, is

clearly huge, and a frequent itemset of size k implies the
presence of 2k−2 other frequent itemsets as well, i.e., its
nonempty subsets. In other words, if frequent itemsets
are long, it simply becomes infeasible to mine the set of
all frequent itemsets. In order to tackle this problem,
several solutions have been proposed that only generate
a representing subset of all frequent itemsets. Among
these, the collections of all closed or maximal itemsets
are the most popular.
A frequent itemset I is called closed if it has no

frequent superset with the same support, i.e., if

I =
⋂

(tid,J)∈cover(I)

J

An frequent itemset is called maximal if it has no su-
perset that is frequent.
Obviously, the collection of maximal frequent item-

sets is a subset of the collection of closed frequent item-
sets which is a subset of the collection of all frequent
itemsets. Although all maximal itemsets characterize
all frequent itemsets, the supports of all their subsets
is not available, while this might be necessary for some
applications such as association rules. On the other
hand, the closed frequent itemsets form a lossless rep-
resentation of all frequent itemsets since the support
of those itemsets that are not closed is uniquely deter-
mined by the closed frequent itemsets. See [14] for a
recent survey of the FIM algorithms.

4 Experimental Evaluation

We conducted an extensive set of experiments for
different datasets, for all of the algorithms in the three
categories (all, closed and maximal). Figure 1 shows
the data characteristics.
Our target platform was a Pentium4, 3.2 GHz Pro-

cessor, with 1GB of memory, using a WesternDigital
IDE 7200rpms, 200GB, local disk. The operating sys-
tem was Redhat Linux 2.4.22 and we used gcc 3.2.2 for

the compilation. Other platforms were also tried, such
as an older dual 400Mhz Pentium III processors with
256MB memory, but a faster SCSI 10,000rpms disk.
Independent tests were also run on quad 500Mhz Pen-
tium III processors, with 1GB memory. There were
some minor differences, which have been reported on
the workshop website. Here we refer to the target plat-
form (3.2Ghz/1GB/7200rpms).

All times reported are real times, including system
and user times, as obtained from the unix time com-
mand. All algorithms were run with the output flag
turned on, which means that mined results were writ-
ten to a file. We made this decision, since in the real
world one wants to see the output, and the total wall
clock time is the end-to-end delay that one will see.
There was one unfortunate consequence of this, namely,
we were not able to run algorithms for mining all fre-
quent itemsets below a certain threshold, since the out-
put file exceeded the 2GB file size limit on a 32bit plat-
form. For each algorithm we also recorded its memory
consumption using the memusage command. Results
on memory usage are available on the FIMI website.

For the experiments, each algorithm was allocated
a maximum of 10 minutes to finish execution, after
which point it was killed. We had to do this to fin-
ish the evaluation in a reasonable amount of time. We
had a total of 18 algorithms in the all category, 6 in
the closed category, and 8 in the maximal category, for
a grand total of 32 algorithms. Please note the algo-
rithms eclat zaki, eclat goethals, charm and genmax,
were not technically submitted to the workshop, how-
ever we included them in the comparison since their
source code is publicly available. We used 14 datasets,
with an average of 7 values of minimum support. With
a 10 minute time limit per algorithm, the total time to
finish one round of evaluation took 31360 minutes of
running time, which translates to an upper-bound of
21 days! Since not all algorithms take a full 10 minute,
the actual time for one round was roughly 7-10 days.

We should also mention that some algorithms had
problems on certain datasets. For instance for min-
ing all frequent itemsets, armor is not able to handle
dense datasets very well (for low values of minimum
support it crashed for chess, mushroom, pumsb); pie
gives a segmentation fault for bms2, chess, retail and
the synthetic datasets; cofi gets killed for bms1 and
kosarak; and dftime/dfmem crash for accidents, bms1
and retail. For closed itemset mining, fpclose segment-
faults for bms1, bms2, bmspos and retail; borgelt eclat
also has problems with retail. Finally, for maximal set
mining, apriori borgelt crashes for bms1 for low value
of support and so does eclat borgelt for pumsb.

Database #Items Avg. Length #Transactions
accidents 468 33.8 340,183
bms1 497 2.5 59,602
bms2 3341 5.6 77,512
bmspos 1658 7.5 515,597
chess 75 37 3,196
connect 129 43 67,557
kosarak 41,270 8.1 990,002
mushroom 119 23 8,124
pumsb* 2088 50.5 49,046
pumsb 2113 74 49,046
retail 16,469 10.3 88,162
T10I5N1KP5KC0.25D200K 956 10.3 200,000
T20I10N1KP5KC0.25D200K 979 20.1 200,000
T30I15N1KP5KC0.25D200K 987 29.7 200,000

Figure 1. Database Characteristics

4.1 Mining All Frequent Itemsets

Figures 5 and 6 show the timings for the algorithms
for mining all frequent itemsets. Figure 2 shows the
best and second-best algorithms for high and low values
of support for each dataset.
There are several interesting trends that we observe:

1. In some cases, we observe a high initial running
time of the highest value of support, and the time
drops for the next value of minimum support. This
is due to file caching. Each algorithm was run with
multiple minimum support values before switching
to another algorithm. Therefore the first time the
database is accessed we observe higher times, but
on subsequent runs the data is cached and the I/O
time drops.

2. In some cases, we observe that there is a cross-over
in the running times as one goes from high to low
values of support. An algorithm may be the best
for high values of support, but the same algorithm
may not be the best for low values.

3. There is no one best algorithm either for high val-
ues or low values of support, but some algorithms
are the best or runner-up more often than others.

Looking at Figure 2, we can conclude that for high
values the best algorithms are either kdci or patricia,
across all databases we tested. For low values, the pic-
ture is not as clear; the algorithms likely to perform
well are patricia, fpgrowth* or lcm. For the runner-up
in the low support category, we once again see patricia
and kdci showing up.

4.2 Mining Closed Frequent Itemsets

Figures 7 and 8 show the timings for the algorithms
for mining closed frequent itemsets. Figure 3 shows the
best and second-best algorithms for high and low values
of support for each dataset. For high support values,
fpclose is best for 7 out of the 14 datasets, and lcm,
afopt, and charm also perform well on some datasets.
For low values of support the competition is between
fpclose and lcm for the top spot. For the runner-up
spot there is a mixed bag of algorithms: fpclose, afopt,
lcm and charm. If one were to pick an overall best
algorithm, it would arguably be fpclose, since it either
performs the best or shows up in the runner-up spot,
more times than any other algorithm. An interesting
observation is that for the cases where fpclose doesn’t
appear in the table it gives a segmentation fault (for
bms1, bms2, bmspos and retail).

4.3 Mining Maximal Frequent Itemsets

Figures 9 and 10 show the timings for the algo-
rithms for mining maximal frequent itemsets. Figure 4
shows the best and second-best algorithms for high and
low values of support for each dataset. For high values
of support fpmax* is the dominant winner or runner-
up. Genmax, mafia and afopt also are worth mention-
ing. For the low support category fpmax* again makes
a strong show as the best in 7 out of 14 databases, and
when it is not best, it appears as the runner-up 6 times.
Thus fpmax* is the method of choice for maximal pat-
tern mining.

4.4 Conclusions

We presented only some of the results in this re-
port. We refer the reader to the FIMI repository for
a more detailed experimental study. The study done
by us was also somewhat limited, since we performed
only timing and memory usage experiments for given
datasets. Ideally, we would have liked to do a more de-
tailed study of the scale-up of the algorithms, and for a
variety of different parameters; our preliminary studies
show that none of the algorithms is able to gracefully
scale-up to very large datasets, with millions of trans-
actions. One reason may be that most methods are
optimized for in-memory datasets, which points to the
area of out-of-core FIM algorithms an avenue for future
research.
In the experiments reported above, there were no

clear winners, but some methods did show up as the
best or second best algorithms for both high and low
values of support. Both patricia and kdci represent the
state-of-the-art in all frequent itemset mining, whereas
fpclose takes this spot for closed itemset mining, and
finally fpmax* appears to be one of the best for maxi-
mal itemset mining. An interesting observation is that
for the synthetic datasets, apriori borgelt seems to per-
form quite well for all, closed and maximal itemset min-
ing.
We refer the reader to the actual papers in these

proceedings to find out the details on each of the algo-
rithms in this study. The results presented here should
be taken in the spirit of experiments-in-progress, since
we do plan to diversify our testing to include more
parameters. We are confident that the workshop will
generate a very healthy and critical discussion on the
state-of-affairs in frequent itemset mining implementa-
tions.
To conclude, we hope that the FIMI workshop will

serve as a model for the data mining community to
hold more such open-source benchmarking tests, and
we hope that the FIMI repository will continue to grow
with the addition of new algorithms and datasets, and
once again to serve as a model for the rest of the data
mining world.

References

[1] C. Aggarwal. Towards long pattern generation in
dense databases. SIGKDD Explorations, 3(1):20–26,
2001.

[2] R. Agrawal, C. Aggarwal, and V. Prasad. Depth First
Generation of Long Patterns. In 7th Int’l Conference
on Knowledge Discovery and Data Mining, Aug. 2000.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.

In Proceedings of the 1993 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 207–
216. ACM Press, 1993.

[4] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. I. Verkamo. Fast discovery of association rules. In
U. Fayyad and et al, editors, Advances in Knowledge
Discovery and Data Mining, pages 307–328. AAAI
Press, Menlo Park, CA, 1996.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In 20th VLDB Conference, Sept.
1994.

[6] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and
L. Lakhal. Mining frequent patterns with counting
inference. SIGKDD Explorations, 2(2), Dec. 2000.

[7] R. J. Bayardo. Efficiently mining long patterns from
databases. In ACM SIGMOD Conf. Management of
Data, June 1998.

[8] F. Bodon. A fast apriori implementation. In Proceed-
ings of the IEEE ICDMWorkshop on Frequent Itemset

Mining Implementations, 2003.

[9] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using
association rules for product assortment decisions: A
case study. In Knowledge Discovery and Data Mining,
pages 254–260, 1999.

[10] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic
itemset counting and implication rules for market bas-
ket data. In ACM SIGMOD Conf. Management of

Data, May 1997.

[11] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a
maximal frequent itemset algorithm for transactional
databases. In Intl. Conf. on Data Engineering, Apr.
2001.

[12] D. Cristofor, L. Cristofor, and D. Simovici. Galois con-
nection and data mining. Journal of Universal Com-
puter Science, 6(1):60–73, 2000.

[13] K. Geurts, G. Wets, T. Brijs, and K. Vanhoof. Profil-
ing high frequency accident locations using association
rules. In Proceedings of the 82nd Annual Transporta-
tion Research Board, page 18, 2003.

[14] B. Goethals. Efficient Frequent Pattern Mining. PhD
thesis, transnational University of Limburg, Belgium,
2002.

[15] K. Gouda and M. J. Zaki. Efficiently mining maximal
frequent itemsets. In 1st IEEE Int’l Conf. on Data
Mining, Nov. 2001.

[16] G. Grahne and J. Zhu. High performance mining of
maximal frequent itemsets. In 6th International Work-
shop on High Performance Data Mining, May 2003.

[17] D. Gunopulos, H. Mannila, and S. Saluja. Discovering
all the most specific sentences by randomized algo-
rithms. In Intl. Conf. on Database Theory, Jan. 1997.

[18] J. Han, J. Pei, and Y. Yin. Mining frequent pat-
terns without candidate generation. In ACM SIGMOD
Conf. Management of Data, May 2000.

[19] M. Houtsma and A. Swami. Set-oriented mining of
association rules in relational databases. In 11th Intl.
Conf. Data Engineering, 1995.

High Support Low Support
Database 1st 2nd 1st 2nd
accidents kdci eclat zaki fpgrowth* patricia
bms1 patricia lcm
bms2 patricia lcm lcm patricia
bmspos kdci patricia fpgrowth* patricia
chess patricia kdci lcm patricia
connect kdci aim lcm kdci
kosarak kdci patricia patricia afopt
mushroom kdci lcm lcm kdci
pumsb patricia fpgrowth* mafia lcm
pumsb* kdci aim/patricia patricia kdci
retail patricia afopt lcm patricia/afopt
T10I5N1KP5KC0.25D200K patricia fpgrowth* fpgrowth* patricia
T20I10N1KP5KC0.25D200K kdci apriori borgelt fpgrowth* lcm
T30I15N1KP5KC0.25D200K kdci eclat zaki/apriori borgelt apriori borgelt fpgrowth*

Figure 2. All FIM: Best (1st) and Runner-up (2nd) for High and Low Supports

High Support Low Support
Database 1st 2nd 1st 2nd
accidents charm fpclose fpclose afopt
bms1 lcm fpclose lcm fpclose
bms2 lcm apriori borgelt lcm charm
bmspos apriori borgelt charm/afopt lcm charm
chess lcm fpclose lcm fpclose
connect fpclose afopt lcm fpclose
kosarak fpclose charm fpclose afopt
mushroom fpclose afopt fpclose lcm
pumsb fpclose/charm afopt lcm fpclose
pumsb* fpclose afopt/charm fpclose afopt
retail afopt lcm lcm apriori borgelt
T10I5N1KP5KC0.25D200K fpclose afopt fpclose lcm
T20I10N1KP5KC0.25D200K apriori borgelt charm fpclose lcm
T30I15N1KP5KC0.25D200K fpclose apriori borgelt apriori borgelt fpclose

Figure 3. Closed FIM: Best (1st) and Runner-up (2nd) for High and Low Supports

High Support Low Support
Database 1st 2nd 1st 2nd
accidents genmax fpmax* fpmax* mafia/genmax
bms1 fpmax* lcm lcm fpmax*
bms2 afopt fpmax* afopt fpmax*
bmspos fpmax* genmax fpmax* afopt
chess fpmax* afopt mafia fpmax*
connect fpmax* afopt fpmax* afopt
kosarak fpmax* genmax afopt fpmax*
mushroom fpmax* mafia fpmax* mafia
pumsb genmax fpmax* fpmax* afopt
pumsb* fpmax* mafia mafia fpmax*
retail afopt lcm afopt lcm
T10I5N1KP5KC0.25D200K fpmax* afopt fpmax* afopt
T20I10N1KP5KC0.25D200K apriori borgelt genmax fpmax* afopt
T30I15N1KP5KC0.25D200K genmax fpmax* apriori borgelt fpmax*

Figure 4. Maximal FIM: Best (1st) and Runner-up (2nd) for High and Low Supports

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

all-accidents

cofi
pie

patricia
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
afopt

apriori_borgelt
kdci

 0.1

 1

 10

 0.07 0.075 0.08 0.085 0.09 0.095 0.1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

all-bms1

patricia
apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

all-bms2

cofi
patricia

apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

all-bmspos

cofi
pie

patricia
apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

all-chess

cofi
pie

patricia
apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 0.1

 1

 10

 100

 1000

 55 60 65 70 75 80 85 90 95

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

all-connect

cofi
pie

patricia
apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

Figure 5. Comparative Performance: All

[20] D.-I. Lin and Z. M. Kedem. Pincer-search: A new al-
gorithm for discovering the maximum frequent set. In
6th Intl. Conf. Extending Database Technology, Mar.
1998.

[21] J.-L. Lin and M. H. Dunham. Mining association rules:

Anti-skew algorithms. In 14th Intl. Conf. on Data
Engineering, Feb. 1998.

[22] F. Pan, G. Cong, A. Tung, J. Yang, and M. Zaki.
CARPENTER: Finding closed patterns in long biolog-
ical datasets. In ACM SIGKDD Int’l Conf. on Knowl-

edge Discovery and Data Mining, Aug. 2003.
[23] J. S. Park, M. Chen, and P. S. Yu. An effective hash

based algorithm for mining association rules. In ACM
SIGMOD Intl. Conf. Management of Data, May 1995.

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Dis-
covering frequent closed itemsets for association rules.
In 7th Intl. Conf. on Database Theory, Jan. 1999.

[25] J. Pei, J. Han, and R. Mao. Closet: An efficient al-
gorithm for mining frequent closed itemsets. In SIG-
MOD Int’l Workshop on Data Mining and Knowledge

Discovery, May 2000.
[26] A. Savasere, E. Omiecinski, and S. Navathe. An ef-

ficient algorithm for mining association rules in large
databases. In 21st VLDB Conf., 1995.

[27] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia,
M. Bawa, and D. Shah. Turbo-charging vertical min-
ing of large databases. In ACM SIGMOD Intl. Conf.
Management of Data, May 2000.

[28] H. Toivonen. Sampling large databases for association
rules. In 22nd VLDB Conf., 1996.

[29] J. Wang, J. Han, and J. Pei. Closet+: Searching for
the best strategies for mining frequent closed itemsets.
In ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining, Aug. 2003.

[30] M. J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineer-

ing, 12(3):372-390, May-June 2000.
[31] M. J. Zaki and K. Gouda. Fast vertical mining using

Diffsets. In 9th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, Aug. 2003.

[32] M. J. Zaki and C.-J. Hsiao. ChARM: An efficient
algorithm for closed itemset mining. In 2nd SIAM
International Conference on Data Mining, Apr. 2002.

[33] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
In 3rd Intl. Conf. on Knowledge Discovery and Data
Mining, Aug. 1997.

[34] Z. Zheng, R. Kohavi, and L. Mason. Real world per-
formance of association rule algorithms. In Proceed-
ings of the 7th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages
401–406. ACM Press, 2001.

[35] Q. Zou, W. Chu, and B. Lu. Smartminer: a depth
first algorithm guided by tail information for mining
maximal frequent itemsets. In 2nd IEEE Int’l Conf.
on Data Mining, Nov. 2002.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

all-kosarak

pie
patricia

apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 0.1

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18 20

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

all-mushroom

cofi
pie

patricia
apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 0.1

 1

 10

 100

 1000

 50 55 60 65 70 75 80 85 90 95

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

all-pumsb

cofi
pie

patricia
apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 0.1

 1

 10

 100

 1000

 20 25 30 35 40 45 50

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

all-pumsb_star

cofi
pie

patricia
apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

all-retail

cofi
patricia

apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 1

 10

 100

 1000

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

all-T10I5N1KP5KC0.25D200K

cofi
patricia

apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

all-T20I10N1KP5KC0.25D200K

cofi
patricia

apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

 1

 10

 100

 1000

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

all-T30I15N1KP5KC0.25D200K

cofi
patricia

apriori-dftime
eclat_borgelt

apriori_bodon
lcm

armor
apriori_brave

eclat_zaki
aim

fpgrowth*
eclat_goethals

mafia
apriori-dfmem

afopt
apriori_borgelt

kdci

Figure 6. Comparative Performance: All

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

closed-accidents

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

closed-bms1

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

closed-bms2

charm
eclat_borgelt

lcm
afopt

apriori_borgelt

 1

 10

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

closed-bmspos

charm
eclat_borgelt

lcm
afopt

apriori_borgelt

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

closed-chess

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

closed-connect

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

Figure 7. Comparative Performance: Closed

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

closed-kosarak

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

closed-mushroom

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 50 55 60 65 70 75 80 85 90 95

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

closed-pumsb

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

closed-pumsb_star

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

closed-retail

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 1

 10

 100

 1000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

closed-T10I5N1KP5KC0.25D200K

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

closed-T20I10N1KP5KC0.25D200K

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

 1

 10

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

closed-T30I15N1KP5KC0.25D200K

charm
fpclose

eclat_borgelt
lcm

afopt
apriori_borgelt

Figure 8. Comparative Performance: Closed

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

maximal-accidents

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

maximal-bms1

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

maximal-bms2

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

maximal-bmspos

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

maximal-chess

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

maximal-connect

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

Figure 9. Comparative Performance: Maximal

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

maximal-kosarak

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

maximal-mushroom

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 50 55 60 65 70 75 80 85 90 95

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

maximal-pumsb

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

maximal-pumsb_star

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

maximal-retail

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 1

 10

 100

 1000

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

maximal-T10I5N1KP5KC0.25D200K

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

maximal-T20I10N1KP5KC0.25D200K

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

 1

 10

 100

 1000

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

To
ta

l T
im

e
(s

ec
)

Minimum Support (%)

maximal-T30I15N1KP5KC0.25D200K

ibe
mafia

eclat_borgelt
fpmax*

lcm
genmax

afopt
apriori_borgelt

Figure 10. Comparative Performance: Maximal

A fast APRIORI implementation

Ferenc Bodon∗

Informatics Laboratory, Computer and Automation Research Institute,
Hungarian Academy of Sciences

H-1111 Budapest, Lágymányosi u. 11, Hungary

Abstract

The efficiency of frequent itemset mining algorithms is
determined mainly by three factors: the way candidates are
generated, the data structure that is used and the implemen-
tation details. Most papers focus on the first factor, some
describe the underlying data structures, but implementa-
tion details are almost always neglected. In this paper we
show that the effect of implementation can be more impor-
tant than the selection of the algorithm. Ideas that seem
to be quite promising, may turn out to be ineffective if we
descend to the implementation level.

We theoretically and experimentally analyze APRIORI
which is the most established algorithm for frequent item-
set mining. Several implementations of the algorithm have
been put forward in the last decade. Although they are im-
plementations of the very same algorithm, they display large
differences in running time and memory need. In this pa-
per we describe an implementation of APRIORI that out-
performs all implementations known to us. We analyze, the-
oretically and experimentally, the principal data structure
of our solution. This data structure is the main factor in the
efficiency of our implementation. Moreover, we present a
simple modification of APRIORI that appears to be faster
than the original algorithm.

1 Introduction

Finding frequent itemsets is one of the most investigated
fields of data mining. The problem was first presented in
[1]. The subsequent paper [3] is considered as one of the
most important contributions to the subject. Its main algo-
rithm, APRIORI, not only influenced the association rule
mining community, but it affected other data mining fields
as well.

Association rule and frequent itemset mining became a
widely researched area, and hence faster and faster algo-

∗Research supported in part by OTKA grants T42706, T42481 and the
EU-COE Grant of MTA SZTAKI.

rithms have been presented. Numerous of them are APRI-
ORI based algorithms or APRIORI modifications. Those
who adapted APRIORI as a basic search strategy, tended
to adapt the whole set of procedures and data structures
as well [20][8][21][26]. Since the scheme of this impor-
tant algorithm was not only used in basic association rules
mining, but also in other data mining fields (hierarchi-
cal association rules [22][16][11], association rules main-
tenance [9][10][24][5], sequential pattern mining [4][23],
episode mining [18] and functional dependency discovery
[14] [15]), it seems appropriate to critically examine the al-
gorithm and clarify its implementation details.

A central data structure of the algorithm is trie or hash-
tree. Concerning speed, memory need and sensitivity of
parameters, tries were proven to outperform hash-trees [7].
In this paper we will show a version of trie that gives the
best result in frequent itemset mining. In addition to de-
scription, theoretical and experimental analysis, we provide
implementation details as well.

The rest of the paper is organized as follows. In Section
1 the problem is presented, in Section 2 tries are described.
Section 3 shows how the original trie can be modified to
obtain a much faster algorithm. Implementation is detailed
in Section 4. Experimental details are given in Section 5. In
Section 7 we mention further improvement possibilities.

2. Problem Statement

Frequent itemset mining came from efforts to discover
useful patterns in customers’ transaction databases. A cus-
tomers’ transaction database is a sequence of transactions
(T = 〈t1, . . . , tn〉), where each transaction is an itemset
(ti ⊆ I). An itemset with k elements is called a k-itemset.
In the rest of the paper we make the (realistic) assumption
that the items are from an ordered set, and transactions are
stored as sorted itemsets. The support of an itemset X in T,
denoted as suppT(X), is the number of those transactions
that contain X , i.e. suppT(X) = |{tj : X ⊆ tj}|. An
itemset is frequent if its support is greater than a support
threshold, originally denoted by min supp. The frequent

itemset mining problem is to find all frequent itemset in a
given transaction database.

The first, and maybe the most important solution for
finding frequent itemsets, is the APRIORI algorithm [3].
Later faster and more sophisticated algorithms have been
suggested, most of them being modifications of APRIORI
[20][8][21][26]. Therefore if we improve the APRIORI al-
gorithm then we improve a whole family of algorithms. We
assume that the reader is familiar with APRIORI [2] and we
turn our attention to its central data structure.

3. Determining Support with a Trie

The data structure trie was originally introduced to store
and efficiently retrieve words of a dictionary (see for exam-
ple [17]). A trie is a rooted, (downward) directed tree like a
hash-tree. The root is defined to be at depth 0, and a node
at depth d can point to nodes at depth d + 1. A pointer is
also called edge or link, which is labeled by a letter. There
exists a special letter * which represents an ”end” character.
If node u points to node v, then we call u the parent of v,
and v is a child node of u.

Every leaf ` represents a word which is the concatenation
of the letters in the path from the root to `. Note that if the
first k letters are the same in two words, then the first k steps
on their paths are the same as well.

Tries are suitable to store and retrieve not only words,
but any finite ordered sets. In this setting a link is labeled
by an element of the set, and the trie contains a set if there
exists a path where the links are labeled by the elements of
the set, in increasing order.

In our data mining context the alphabet is the (ordered)
set of all items I. A candidate k-itemset

C = {i1 < i2 < . . . < ik}

can be viewed as the word i1i2 . . . ik composed of letters
from I. We do not need the * symbol, because every in-
ner node represent an important itemset (i.e. a meaningful
word).

Figure 1 presents a trie that stores the candi-
dates {A,C,D}, {A,E,G}, {A,E,L}, {A,E,M}, {K,M,N}.
Numbers in the nodes serve as identifiers and will be used
in the implementation of the trie. Building a trie is straight-
forward, we omit the details, which can be found in [17].

In support count method we take the transactions one-
by-one. For a transaction t we take all ordered k-subsets X

of t and search for them in the trie structure. If X is found
(as a candidate), then we increase the support count of this
candidate by one. Here, we do not generate all k-subsets of
t, rather we perform early quits if possible. More precisely,
if we are at a node at depth d by following the jth item link,
then we move forward on those links that have the labels
i ∈ t with index greater than j, but less than |t|− k + d+1.

7

0

1

2 4

5 6

A

C E

D G M

9

8

K

M

N

3 10

L

Figure 1. A trie containing 5 candidates

In our approach, tries store not only candidates, but fre-
quent itemsets as well. This has the following advantages:

1. Candidate generation becomes easy and fast. We can
generate candidates from pairs of nodes that have the
same parents (which means, that except for the last
item, the two sets are the same).

2. Association rules are produced much faster, since re-
trieving a support of an itemset is quicker (remember
the trie was originally developed to quickly decide if a
word is included in a dictionary).

3. Just one data structure has to be implemented, hence
the code is simpler and easier to maintain.

4. We can immediately generate the so called nega-
tive border, which plays an important role in many
APRIORI-based algorithm (online association rules
[25], sampling based algorithms [26], etc.).

3.1 Support Count Methods with Trie

Support count is done, by reading transactions one-by-
one and determine which candidates are contained in the
actual transaction (denoted by t). Finding candidates in a
given transaction determines the overall running time pri-
marily. There are two simple recursive methods to solve
this task, both starts from the root of the trie. The recursive
step is the following (let us denote the number of edges of
the actual node by m).

1. For each item in the transaction we determine whether
there exists an edge whose label corresponds to the
item. Since the edges are ordered according to the la-
bels this means a search in an ordered set.

2. We maintain two indices, one for the items in the trans-
action, one for the edges of the node. Each index is ini-
tialized to the first element. Next we check whether the
element pointed by the two indices equals. If they do,

we call our procedure recursively. Otherwise we in-
crease the index that points to the smaller item. These
steps are repeated until the end of the transaction or the
last edge is reached.

In both methods if item i of the transaction leads to a
new node, then item j is considered in the next step only
if j > i (more precisely item j is considered, if j <

|t| + actual depth − m + 1).
Let us compare the running time of the methods. Since

both methods are correct, the same branches of the trie will
be visited. Running time difference is determined by the
recursive step. The first method calls the subroutine that
decides whether there exist an edge with a given label |t|
times. If binary search is evoked then it requires log2 m

steps. Also note that subroutine calling needs as many value
assignments as many parameters the subroutine has. We can
easily improve the first approach. If the number of edges
is small (i.e. if |t|m < m|t|) we can do the inverse pro-
cedure, i.e. for all labels we check whether there exists a
corresponding item. This way the overall running time is
proportional to min{|t| log2 m, m log2 |t|}.

The second method needs at least min{m, |t|} and at
most m + |t| steps and there is no subroutine call.

Theoretically it can happen that the first method is the
better solution (for example if |t|=1, m is large, and the
label of the last edge corresponds to the only item in the
transaction), however in general the second method is faster.
Experiments showed that the second method finished 50%
faster on the average.

Running time of support count can be further reduced if
we modify the trie a little. These small modifications, tricks
are described in the next subsections.

3.2 Storing the Length of Maximal Paths

Here we show how the time of finding supported candi-
dates in a transaction can be significantly reduced by stor-
ing a little extra information. The point is that we often
perform superfluous moves in trie search in the sense that
there are no candidates in the direction we are about to ex-
plore. To illustrate this, consider the following example.
Assume that after determining frequent 4-itemsets only can-
didate {A, B, C, D, E} was generated, and Figure 2 shows
the resulting trie.

If we search for 5-itemset candidates supported by the
transaction {A, B, C, D, E, F, G, H, I}, then we must visit
every node of the trie. This appears to be unnecessary since
only one path leads to a node at depth 5, which means that
only one path represents a 5-itemset candidate. Instead of
visiting merely 6 nodes, we visit 32 of them. At each node,
we also have to decide which link to follow, which can
greatly affect running time if a node has many links.

D EC

ED

E

E

B

E

E

D E E

DC

ED E

C D E

E

C

ED E

E

EDA

B

Figure 2. A trie with a single 5-itemset candi-
date

To avoid this superfluous traveling, at every node we
store the length of the longest directed path that starts from
there. When searching for k-itemset candidates at depth d,
we move downward only if the maximal path length at this
node is at least k − d. Storing counters needs memory, but
as experiments proved, it can seriously reduce search time
for large itemsets.

3.3 Frequency Codes

It often happens that we have to find the node that rep-
resents a given itemset. For example, during candidate gen-
eration, when the subsets of the generated candidate have
to be checked, or if we want to obtain the association rules.
Starting from the root we have to travel, and at depth d we
have to find the edge whose label is the same as the dth

element of the itemset.
Theoretically, binary search would be the fastest way to

find an item in an ordered list. But if we go down to the
implementation level, we can easily see that if the list is
small the linear search is faster than the binary (because an
iteration step is faster). Hence the fastest solution is to ap-
ply linear search under a threshold and binary above it. The
threshold does not depend on the characteristic of the data,
but on the ratio of the elementary operations (value assign-
ment, increase, division, . . .)

In linear search, we read the first item, compare with the
searched item. If it is smaller, then there is no edge with
this item, if greater, we step forward, if they equal then the
search is finished. If we have bad luck, the most frequent
item has the highest order, and we have to march to the end
of the line whenever this item is searched for.

On the whole, the search will be faster if the order of
items corresponds to the frequency order of them. We know
exactly the frequency order after the first read of the whole

database, thus everything is at hand to build the trie with
the frequency codes instead of the original codes. The fre-
quency code of an item i is fc[i], if i is the fc[i]th most
frequent item. Storing frequency codes and their inverses
increases the memory need slightly, in return it increases
the speed of retrieving the occurrence of the itemsets. A
theoretical analysis of the improvement can be read in the
Appendix.

Frequency codes also affect the structure of the trie, and
consequently the running time of support count. To illus-
trate this, let us suppose that 2 candidates of size 3 are gen-
erated: {A, B, C}, {A, B, D}. Different tries are generated
if the items have different code. The next figure present the
tries generated by two different coding.

A

B

C

D

A

A

B

B

B
B

B

order: C,D,A,B

B

DA

B

C

D

C

D

D
C

C

order: A,B,C,D

Figure 3. Different coding results in different
tries

If we want to find which candidates are stored in a basket
{A, B, C, D} then 5 nodes are visited in the first case and 7
in the second case. That does not mean that we will find the
candidates faster in the first case, because nodes are not so
”fat” in the second case, which means, that they have fewer
edges. Processing a node is faster in the second case, but
more nodes have to be visited.

In general, if the codes of the item correspond to the fre-
quency code, then the resulted trie will be unbalanced while
in the other case the trie will be rather balanced. Neither
is clearly more advantageous than the other. We choose
to build unbalanced trie, because it travels through fewer
nodes, which means fewer recursive steps which is a slow
operation (subroutine call with at least five parameters in
our implementation) compared to finding proper edges at a
node.

In [12] it was showed that it is advantageous to recode
frequent items according to ascending order of their fre-
quencies (i.e.: the inverse of the frequency codes) because
candidate generation will be faster. The first step of candi-
date generation is to find siblings and take the union of the
itemset represented by them. It is easy to prove that there
are less sibling relations in a balanced trie, therefore less
unions are generated and the second step of the candidate

generation is evoked fewer times. For example in our figure
one union would be generated and then deleted in the first
case and none would be generated in the second.

Altogether frequency codes have advantages and disad-
vantages. They accelerate retrieving the support of an item-
set which can be useful in association rule generation or in
on-line frequent itemset mining, but slows down candidate
generation. Since candidate generation is by many order of
magnitude faster that support count, the speed decrease is
not noticeable.

3.4 Determining the support of 1- and 2-itemset
candidates

We already mentioned that the support count of 1-
element candidates can easily be done by a single vector.
The same easy solution can be applied to 2-itemset can-
didates. Here we can use an array [19]. The next figure
illustrates the solutions.

.
1 2 3 N-1N

supp(i)=vector[i]

1 2 3 |L1| − 1
1 . . .
2 . . .

...
|L1| − 2
|L1| − 1

supp(fc[i], fc[j])=
array[fc[i]][fc[j]− fc[i]]

Figure 4. Data structure to determine the sup-
port of the items and candidate itempairs

Note that this solution is faster than the trie-based solu-
tion, since increasing a support takes one step. Its second
advantage is that it needs less memory.

Memory need can be further reduced by applying on-
the-fly candidate generation [12]. If the number of frequent
items is |L1| then the number of 2-itemset candidates is
(

|L1|
2

)

, out of which a lot will never occur. Thus instead of
the array, we can use trie. A 2-itemset candidate is inserted
only if it occurs in a basket.

3.5 Applying hashing techniques

Determining the support with a trie is relatively slow
when we have to step forward from a node that has many
edges. We can accelerate the search if hash-tables are em-
ployed. This way the cost of a step down is calculating one
hash value, thus a recursive step takes exactly |t| steps. We
want to keep the property that a leaf represents exactly one
itemset, hence we have to use perfect hashing. Frequency
codes suit our needs again, because a trie stores only fre-
quent items. Please note, that applying hashing techniques
at tries does not result in a hash-tree proposed in [3].

It is wasteful to change all inner nodes to hash-table,
since a hash-table needs much more memory than an or-
dered list of edges. We propose to alter only those in-
ner nodes into a hash-table, which have more edges than
a reasonable threshold (denoted by leaf max size). Dur-
ing trie construction when a new leaf is added, we have
to check whether the number of its parent’s edges exceeds
leaf max size. If it does, the node has to be altered to
hash-table. The inverse of this transaction may be needed
when infrequent itemsets are deleted.

If the frequent itemsets are stored in the trie, then the
number of edges can not grow as we go down the trie. In
practice nodes, at higher level have many edges, and nodes
at low level have only a few. The structure of the trie will
be the following: nodes over a (not necessarily a horizon-
tal) line will be hash-tables, while the others will be origi-
nal nodes. Consequently, where it was slow, search will be
faster, and where it was fast –because of the small number
of edges– it will remain fast.

3.6 Brave Candidate Generation

It is typical, that in the last phases of APRIORI there
are a small number of candidates. However, to determine
their support the whole database is scanned, which is waste-
ful. This problem was also mentioned in the original pa-
per of APRIORI [3], where algorithm APRIORI-HYBRID
was proposed. If a certain heuristic holds, then APRIORI
switches to APRIORI-TID, where for each candidate we
store the transactions that contain it (and support is imme-
diately obtained). This results in a much faster execution of
the latter phases of APRIORI.

The hard point of this approach is to tell when to switch
from APRIORI to APRIORI-TID. If the heuristics fails the
algorithm may need too much memory and becomes very
slow. Here we choose another approach that we call the
brave candidate generation and the algorithm is denoted by
APRIORI-BRAVE.

APRIORI-BRAVE keeps track of memory need, and
stores the amount of the maximal memory need. After de-
termining frequent k-itemsets it generates (k + 1)-itemset
candidates as APRIORI does. However, it does not carry
on with the support count, but checks if the memory need
exceeds the maximal memory need. If not, (k + 2)-itemset
candidates are generated, otherwise support count is evoked
and maximal memory need counter is updated. We carry on
with memory check and candidate generation till memory
need does not reach maximal memory need.

This procedure will collect together the candidates of the
latter phases and determine their support in one database
read. For example, candidates in database T40I10D100K
with min supp = 0.01 will be processed the following
way: 1, 2, 3, 4-10, 11-14, which means 5 database scan

instead of 14.
One may say that APRIORI-BRAVE does not consume

more memory than APRIORI and it can be faster, be-
cause there is a possibility that some candidates at different
sizes are collected and their support is determined in one
read. However, accelerating in speed is not necessarily true.
APRIORI-BRAVE may generate (k+2)-itemset candidates
from frequent k-itemset, which can lead to more false can-
didates. Determining support of false candidates needs
time. Consequently, we cannot guarantee that APRIORI-
BRAVE is faster than APRIORI, however, test results prove
that this heuristics works well in real life.

3.7 A Deadend Idea- Support Lower Bound

The false candidates problem in APRIORI-BRAVE can
be avoided if only those candidates are generated that are
surely frequent. Fortunately, we can give a lower bound
to the support of a (k + j)-itemset candidate based on the
support of k-itemsets (j ≥ 0) [6]. Let X = X ′ ∪ Y ∪ Z.
The following inequality holds:

supp(X) ≥ supp(X ′ ∪ Y) + supp(X ′ ∪ Z) − supp(X ′).

And hence

supp(X) ≥ max
Y,Z∈X

{supp(X \ Y) + supp(X \ Z)

− supp(X \ Y \Z)}.

If we want to give a lower bound to a support of (k + j)-
itemset base on support of k-itemset, we can use the gener-
alization of the above inequality (X = X ′ ∪ x1 ∪ . . .∪ xj):

supp(X) ≥ supp(X ′ ∪ x1) + . . . + supp(X ′ ∪ xj)

− (j − 1)supp(X ′).

To avoid false candidate generation we generate only
those candidates that are surely frequent. This way, we
could say that neither memory need nor running time is
worse than APRIORI’s. Unfortunately, this is not true!

Test results proved that this method not only slower than
original APRIORI-BRAVE, but also APRIORI outperforms
it. The reason is simple. Determining the support threshold
is a slow operation (we have to find the support of

(

k+j

k−1

)

j

itemsets) and has to be executed many times. It loses more
time with determining support thresholds than we win by
generating sooner some candidates.

The failure of the support-threshold candidate generation
is a nice example when a promising idea turns out to be
useless at the implementation level.

3.8 Storing input

Many papers in the frequent itemset mining subject fo-
cus on the number of the whole database scan. They say

that reading data from disc is much slower than operating
in memory, thus the speed is mainly determined by this fac-
tor. However, in most cases the database is not so big and it
fits into the memory. Behind the scenery the operating sys-
tem swaps it in the memory and the algorithms read the disc
only once. For example, a database that stores 107 transac-
tion, and in each transaction there are 6 items on the aver-
age needs approximately 120Mbytes, which is a fraction of
today’s average memory capacity. Consequently, if we ex-
plicitly store the simple input data, the algorithm will not
speed up, but will consume more memory (because of the
double storing), which may result in swapping and slowing
down. Again, if we descend to the elementary operation of
an algorithm, we may conclude the opposite result.

Storing the input data is profitable if the same transac-
tions are gathered up. If a transaction occurs ` times, the
support count method is evoked once with counter incre-
ment `, instead of calling the procedure ` times with counter
increment 1. In Borgelt algorithm input is stored in a prefix
tree. This is dangerous, because data file can be too large.

We’ve chosen to store only reduced transactions. A re-
duced transaction stores only the frequent items of the trans-
action. Storing reduced transactions have all information
needed to discover frequent itemsets of larger sizes, but it
is expected to need less memory (obviously it depends on
min supp). Reduced transactions are stored in a tree for
the fast insertion (if reduced transactions are recode with
frequency codes then we almost get an FP-tree [13]). Op-
tionally, when the support of candidates of size k is deter-
mined we can delete those reduced transactions that do not
contain candidates of size k.

4. Implementation details

APRIORI is implemented in an object-oriented manner
in language C++. STL possibilities (vector, set, map)
are heavily used. The algorithm (class Apriori) and the
data structure (class Trie) are separated. We can change
the data structure (for example to a hash-tree) without mod-
ifying the source code of the algorithm.

The baskets in a file are first stored in a
vector<...>. If we choose to store input –which
is the default– the reduced baskets are stored in a
map<vector<...>,unsigned long>, where the
second parameter is the number of times that reduced
basket occurred. A better solution would be to apply
trie, because map does not make use of the fact that two
baskets can have the same prefixes. Hence insertion of a
basket would be faster, and the memory need would be
smaller, since the same prefixes would be stored just once.
Because of the lack of time trie-based basket storing was
not implemented and we do not delete a reduced basket
from the map if it did not contain any candidate during

some scan.
The class Trie can be programmed in many ways.

We’ve chosen to implement it with vectors and arrays. It
is simple, fast and minimal with respect to memory need.
Each node is described by the same element of the vectors
(or row of the arrays). The root belongs to the 0th element
of each vector. The following figure shows the way the trie
is represented by vectors and arrays.

a trie

k0
�

��1
k1

-2 k2
@

@R3
k3

-3 k5

-3 k4

edge
number

3
1
1
0
0
0

item
array

1 2 3
3
3

state
array

1 2 3
4
5

parent

-
0
0
0
1
2

max-
path

2
1
1
0
0
0

counter

652
453
320
310
243
198

Figure 5. Implementation of a trie

The vector edge number stores the number of edges
of the nodes. The itemarray[i] stores the label of the
edges, statearray[i] stores the end node of the edges
of node i. Vectors parent[i] and maxpath[i] store
the parents and the length of the longest path respectively.
The occurrences of itemset represented by the nodes can be
found in vector counter.

For vectors we use vector class offered by the STL,
but arrays are stored in a traditional C way. Obviously, it
is not a fixed-size array (which caused the ugly calloc,
realloc commands in the code). Each row is as long as
many edges the node has, and new rows are inserted as the
trie grows (during candidate generation). A more elegant
way would be if the arrays were implemented as a vector
of vectors. The code would be easier to understand and
shorter, because the algorithms of STL could also be used.
However, the algorithm would be slower because determin-
ing a value of the array takes more time. Tests showed that
sacrificing a bit from readability leads to 10-15% speed up.

In our implementation we do not adapt on-line 2-itemset
candidate generation (see Section 3.4) but use a vector and
an array (temp counter array) for determining the
support of 1- and 2-itemset candidates efficiently.

The vector and array description of a trie makes it pos-

sible to give a fast implementation of the basic functions
(like candidate generation, support count, . . .). For exam-
ple, deleting infrequent nodes and pulling the vectors to-
gether is achieved by a single scan of the vectors. For more
details readers are referred to the html-based documenta-
tion.

5. Experimental results

Here we present the experimental results of our imple-
mentation of APRIORI and APRIORI-BRAVE compared
to the two famous APRIORI implementations by Chris-
tian Borgelt (version 4.08)1 and Bart Goethals (release date:
01/06/2003)2. 3 databases were used: the well-known
T40I10D100K and T10I4D100K and a coded log of a click-
stream data of a Hungarian on-line news portal (denoted
by kosarak). This database contains 990002 transactions of
size 8.1 on the average.

Test were run on a PC with 2.8 GHz dual Xeon pro-
cessors and 3Gbyte RAM. The operating system was
Debian Linux, running times were obtained by the
/usr/bin/time command. The following 3 tables
present the test results of the 3 different implementations
of APRIORI and the APRIORI BRAVE on the 3 databases.
Each test was carried out 3 times; the tables contain the av-
erages of the results. The two well-known implementations
are denoted by the last name of the coders.

min Bodon Borgelt Goethals APRIORI
supp impl. impl. impl. BRAVE

0.05 8.57 10.53 25.1 8.3
0.030 10.73 11.5 41.07 10.6
0.020 15.3 13.9 53.63 14.0
0.010 95.17 155.83 207.67 100.27
0.009 254.33 408.33 458.7 178.93
0.0085 309.6 573.4 521.0 188.0

Running time (sec.)

Table 1. T40I10D100K database

Tables 4-6 show result of Bodon’s APRIORI implemen-
tation with hash techniques. The notation leaf max size
stands for the threshold above a node applies perfect hash-
ing technique.

Our APRIORI implementation beats Goethals imple-
mentation almost all the times, and beats Borgelt’s im-
plementation many times. It performs best at low sup-
port threshold. We can also see that in the case of these

1http://fuzzy.cs.uni-magdeburg.de/vborgelt/software.html#assoc
2http://www.cs.helsinki.fi/u/goethals/software/index.html

min Bodon Borgelt Goethals APRIORI
supp impl. . impl. impl. BRAVE

0.0500 4.23 5.2 11.73 2.87
0.0100 10.27 14.03 30.5 6.6
0.0050 17.87 16.13 40.77 12.7
0.0030 34.07 18.8 53.43 23.97
0.0020 70.3 21.9 69.73 46.5
0.0015 85.23 25.1 86.37 87.63

Running time (sec.)

Table 2. T10I4D100K database

min Bodon Borgelt Goethals APRIORI
supp impl. impl. impl. BRAVE
0.050 14.43 32.8 28.27 14.1
0.010 17.9 41.87 44.3 17.5
0.005 24.0 52.4 58.4 21.67
0.003 35.9 67.03 76.77 28.5
0.002 81.83 199.07 182.53 72.13
0.001 612.67 1488.0 1101.0 563.33

Running time (sec.)

Table 3. kosarak database

min leaf max size
supp 1 2 5 7 10 25 60 100

0.0500 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.4
0.0300 9.6 9.8 9.7 9.8 9.8 9.8 9.8 9.9
0.0200 13.8 14.4 13.6 13.9 13.6 13.9 13.9 14.1
0.0100 114.0 96.3 83.8 82.5 78.9 79.2 80.4 83.0
0.0090 469.8 339.6 271.8 258.1 253.0 253.0 251.0 253.8
0.0085 539.0 373.0 340.0 310.0 306.0 306.0 306.0 309.0

Runing time (sec.)

Table 4. T40I10D100K database

3 databases APRIORI BRAVE outperforms APRIORI at
most support threshold.

Strange, but hashing technique not always resulted in
faster execution. The reason for this might be that small
vectors are cached in, where linear search is very fast. If we
enlarge the size of the vector by altering it into a hashtable,
then the vector may be moved into the memory, where read
is a slower operation. Applying hashing technique is the
other example when an accelerating technique does not re-
sult in improvement.

min leaf max size
supp 1 2 5 7 10 25 60 100

0.0500 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
0.0100 7.8 7.3 6.9 6.9 6.9 6.9 7.0 7.1
0.0050 24.2 14.9 13.4 13.1 13 12.8 13.0 13.2
0.0030 55.3 34.6 30.3 25.9 25.2 25.2 25.3 25.8
0.0020 137.3 100.2 76.2 77.0 75.2 78.0 69.5 64.5
0.0015 235.0 176.0 125.0 130.0 125.0 132.0 115.0 103.0

Running time (sec.)

Table 5. T10I4D100K database

min leaf max size
supp 1 2 5 7 10 25 60 100

0.0500 14.6 14.3 14.3 14.2 14.2 14.2 14.2 14.2
0.0100 17.5 17.5 17.5 17.6 17.6 17.6 18 18.1
0.0050 21.0 21.0 22.0 21.0 22.0 22.0 22.8 22.8
0.0030 26.3 26.1 26.3 26.5 27.2 27.4 28.5 29.6
0.0020 98.8 77.5 62.3 60.0 59.7 61.0 61.0 63.4
0.0010 1630 1023.0 640.0 597.0 574.0 577.0 572.0 573.0

Running time (sec.)

Table 6. kosarak database

6. Further Improvement and Research Possi-
bilities

Our APRIORI implementation can be further improved
if trie is used to store reduced basket, and a reduced basket
is removed if it does not contain any candidate.

We mentioned that there are two basic ways of finding
the contained candidates in a given transaction. Further the-
oretical and experimental analysis may lead to the conclu-
sion that a mixture of the two approaches would lead to the
fastest execution.

Theoretically, hashing technique accelerates support
count. However, experiments did not support this claim.
Further investigations are needed to clear the possibilities
of this technique.

7. Conclusion

Determining frequent objects (itemsets, episodes, se-
quential patterns) is one of the most important fields of data
mining. It is well known that the way candidates are de-
fined has great effect on running time and memory need,
and this is the reason for the large number of algorithms. It
is also clear that the applied data structure also influences

efficiency parameters. However, the same algorithm that
uses a certain data structure has a wide variety of implemen-
tation. In this paper, we showed that different implementa-
tion results in different running time, and the differences can
exceed differences between algorithms. We presented an
implementation that solved frequent itemset mining prob-
lem in most cases faster than other well-known implemen-
tations.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
tion rules between sets of items in large databases. In Proc.
of the ACM SIGMOD Conference on Management of Data,
pages 207–216, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast discovery of association rules. In Advances
in Knowledge Discovery and Data Mining, pages 307–328,
1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. The International Conference on Very Large
Databases, pages 487–499, 1994.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In
P. S. Yu and A. L. P. Chen, editors, Proc. 11th Int. Conf. Data
Engineering, ICDE, pages 3–14. IEEE Press, 6–10 1995.

[5] N. F. Ayan, A. U. Tansel, and M. E. Arkun. An efficient algo-
rithm to update large itemsets with early pruning. In Knowl-
edge Discovery and Data Mining, pages 287–291, 1999.

[6] R. J. Bayardo, Jr. Efficiently mining long patterns from
databases. In Proceedings of the 1998 ACM SIGMOD inter-
national conference on Management of data, pages 85–93.
ACM Press, 1998.

[7] F. Bodon and L. R ónyai. Trie: an alternative data structure
for data mining algorithms. to appear in Computers and
Mathematics with Applications, 2003.

[8] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic
itemset counting and implication rules for market basket
data. SIGMOD Record (ACM Special Interest Group on
Management of Data),26(2):255, 1997.

[9] D. W.-L. Cheung, J. Han, V. Ng, and C. Y. Wong. Mainte-
nance of discovered association rules in large databases: An
incremental updating technique. In ICDE, pages 106–114,
1996.

[10] D. W.-L. Cheung, S. D. Lee, and B. Kao. A general in-
cremental technique for maintaining discovered association
rules. In Database Systems for Advanced Applications,
pages 185–194, 1997.

[11] Y. Fu. Discovery of multiple-level rules from large
databases, 1996.

[12] B. Goethals. Survey on frequent pattern mining. Technical
report, Helsinki Institute for Information Technology, 2003.

[13] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In W. Chen, J. Naughton, and P. A.
Bernstein, editors, 2000 ACM SIGMOD Intl. Conference on
Management of Data, pages 1–12. ACM Press, 05 2000.

[14] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: An efficient algorithm for discovering functional

and approximate dependencies. The Computer Journal,
42(2):100–111, 1999.

[15] Y. Huhtala, J. Kinen, P. Porkka, and H. Toivonen. Efficient
discovery of functional and approximate dependencies using
partitions. In ICDE, pages 392–401, 1998.

[16] Y. F. Jiawei Han. Discovery of multiple-level association
rules from large databases. In Proc. of the 21st Interna-
tional Conference on Very Large Databases (VLDB), Zurich,
Switzerland, 1995.

[17] D. E. Knuth. The Art of Computer Programming Vol. 3.
Addison-Wesley, 1968.

[18] H. Mannila, H. Toivonen, and A. I. Verkamo. Discover-
ing frequent episodes in sequences. In Proceedings of the
First International Conference on Knowledge Discovery and
Data Mining, pages 210–215. AAAI Press, 1995.

[19] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic as-
sociation rules. In ICDE, pages 412–421, 1998.

[20] J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash based
algorithm for mining association rules. In M. J. Carey and
D. A. Schneider, editors, Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data,
pages 175–186, San Jose, California, 22–25 1995.

[21] A. Sarasere, E. Omiecinsky, and S. Navathe. An efficient
algorithm for mining association rules in large databases.
In Proc. 21st International Conference on Very Large
Databases (VLDB), Zurich, Switzerland, Also Gatech Tech-
nical Report No. GIT-CC-95-04., 1995.

[22] R. Srikant and R. Agrawal. Mining generalized association
rules. In Proc. of the 21st International Conference on Very
Large Databases (VLDB), Zurich, Switzerland, 1995.

[23] R. Srikant and R. Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. Technical re-
port, IBM Almaden Research Center, San Jose, California,
1995.

[24] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An ef-
ficient algorithm for the incremental updation of association
rules in large databases. page 263.

[25] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An ef-
ficient algorithm for the incremental updation of association
rules in large databases. In Knowledge Discovery and Data
Mining, pages 263–266, 1997.

[26] H. Toivonen. Sampling large databases for association rules.
In The VLDB Journal, pages 134–145, 1996.

8. Appendix

Let us analyze formally how frequency code accelerate
the search. Suppose that the number of frequent items is m,
and the jth most frequent has to be searched for mj times
(n1 ≥ n2 ≥ . . . ≥ nm) and n =

∑m

i=1 ni. If an item is in
the position j, then the cost of finding it is c · j, where c is
a constant. For the sake of simplicity c is omitted. The total
cost of search based on frequency codes is

∑m

j=1 j · nj .
How much is the cost if the list is not ordered by fre-

quencies? We cannot determine this precisely, because we
don’t know which item is in the first position, which item
is in the second, etc. We can calculate the expected time of
the total cost if we assume that each order occurs with the
same probability. Then the probability of each permutation
is 1

m! . Thus

E[total cost] =
∑

π

1

m!
· (cost of π)

=
1

m!

∑

π

m
∑

j=1

π(j)nπ(j).

Here π runs through the permutations of 1, 2, . . . , m, and
the jth item of π is denoted by π(j). Since each item gets
to each position (m − 1)! times, we obtain that

E[total cost] =
1

m!
(m − 1)!

m
∑

j=1

nj

m
∑

k=1

k

=
1

m

(m + 1)m

2

m
∑

j=1

nj =
m + 1

2
n.

It is easy to prove that E[total cost] is greater than or
equal to the total cost of the search based on frequency
codes (because of the condition n1 ≥ n2 ≥ . . . ≥ nm).
We want to know more, namely how small the ratio

∑m

j=1 j · nj

nm+1
2

(1)

can be. In the worst case (n1 = n2 = . . . = nm) it is 1, in
best case (n1 = n − m + 1, n2 = n3 = . . . = nm = 1) it
converges to 0, if n → ∞.

We can not say anything more unless the probability dis-
tribution of frequent items is known. In many applications,
there are some very frequent items, and the probability of
rare items differs slightly. This is why we voted for an ex-
ponential decrease. In our model the probability of occur-
rence of the jth most frequent item is pj = aebj , where
a > 0, b < 0 are two parameters, such that aeb ≤ 1 holds.
Parameter b can be regarded as the gradient of the distribu-
tion, and parameter a determines the starting point3.

3Note that
P

pj does not have to be equal with 1, since more than one
item can occur in a basket.

We suppose, that the ratio of occurrences is the same
as the ratio of the probabilities, hence n1 : n2 : . . . :
nm = p1 : p2 : . . . : pm. From this and the condition
n =

∑m

j=1 nj , we infer that nj = n
pj

P

m
k=1

pk
. Using the

formula for geometric series, and using the notation x = eb

we obtain

nj = n
xj(x − 1)

xm+1 − 1
= n

x − 1

xm+1 − 1
· xj .

The total cost can be determined:
m

∑

j=1

j · nj =
n(x − 1)

xm+1 − 1

m
∑

j=1

j · xj .

Let us calculate
∑m

j=1 j · xj :

m
∑

j=1

j · xj =

m
∑

j=1

(j + 1) · xj −

m
∑

j=1

xj =
(

m
∑

j=1

xj+1
)′

−

m
∑

j=1

xj

=
mxm+2 − (m + 1)xm+1 + x

(x − 1)2
.

The ratio of total costs can be expressed in a closed formula:

cost ratio =
2x(mxm+1 − (m + 1)xm + 1)

(xm+1 − 1)(x − 1)(m + 1)
, (2)

where x = eb. We can see, that the speedup is independent
of a. In Figure 6 3 different distributions can be seen. The
first is gently sloping, the second has larger graduation and
the last distribution is quite steep.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 4 6 8 10 12 14 16 18 20

0.07e^(-0.06x)
0.7e^(-0.35x)
0.4e^(-0.1x)

Figure 6. 3 different probability distribution of
the items

If we substitute the parameters of the probability distri-
bution to the formula (2) (with m = 10), then the result will

be 0.39, 0.73 and 0.8, which meets our expectations: by
adapting frequency codes the search time will drop sharply
if the probabilities differ greatly from each other. We have
to remember that frequency codes do not have any effect on
nodes where binary search is applied.

Efficient Implementations of Apriori and Eclat

Christian Borgelt

Department of Knowledge Processing and Language Engineering
School of Computer Science, Otto-von-Guericke-University of Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany
Email: borgelt@iws.cs.uni-magdeburg.de

Abstract

Apriori and Eclat are the best-known basic algorithms
for mining frequent item sets in a set of transactions. In this
paper I describe implementations of these two algorithms
that use several optimizations to achieve maximum perfor-
mance, w.r.t. both execution time and memory usage. The
Apriori implementation is based on a prefix tree represen-
tation of the needed counters and uses a doubly recursive
scheme to count the transactions. The Eclat implementation
uses (sparse) bit matrices to represent transactions lists and
to filter closed and maximal item sets.

1. Introduction

Finding frequent item sets in a set of transactions is a
popular method for so-called market basket analysis, which
aims at finding regularities in the shopping behavior of
customers of supermarkets, mail-order companies, on-line
shops etc. In particular, it is tried to identify sets of prod-
ucts that are frequently bought together.

The main problem of finding frequent item sets, i.e., item
sets that are contained in a user-specified minimum num-
ber of transactions, is that there are so many possible sets,
which renders naı̈ve approaches infeasible due to their un-
acceptable execution time. Among the more sophisticated
approaches two algorithms known under the names of Apri-
ori [1, 2] and Eclat [8] are most popular. Both rely on a top-
down search in the subset lattice of the items. An example
of such a subset lattice for five items is shown in figure 1
(empty set omitted). The edges in this diagram indicate sub-
set relations between the different item sets.

To structure the search, both algorithms organize the sub-
set lattice as a prefix tree, which for five items is shown
in Figure 2. In this tree those item sets are combined in a
node which have the same prefix w.r.t. to some arbitrary,
but fixed order of the items (in the five items example, this

order is simply a, b, c, d, e). With this structure, the item
sets contained in a node of the tree can be constructed eas-
ily in the following way: Take all the items with which the
edges leading to the node are labeled (this is the common
prefix) and add an item that succeeds, in the fixed order of
the items, the last edge label on the path. Note that in this
way we need only one item to distinguish between the item
sets represented in one node, which is relevant for the im-
plementation of both algorithms.

The main differences between Apriori and Eclat are how
they traverse this prefix tree and how they determine the
support of an item set, i.e., the number of transactions the
item set is contained in. Apriori traverses the prefix tree in
breadth first order, that is, it first checks item sets of size 1,
then item sets of size 2 and so on. Apriori determines the
support of item sets either by checking for each candidate
item set which transactions it is contained in, or by travers-
ing for a transaction all subsets of the currently processed
size and incrementing the corresponding item set counters.
The latter approach is usually preferable.

Eclat, on the other hand, traverses the prefix tree in depth
first order. That is, it extends an item set prefix until it
reaches the boundary between frequent and infrequent item
sets and then backtracks to work on the next prefix (in lex-
icographic order w.r.t. the fixed order of the items). Eclat
determines the support of an item set by constructing the
list of identifiers of transactions that contain the item set. It
does so by intersecting two lists of transaction identifiers of
two item sets that differ only by one item and together form
the item set currently processed.

2. Apriori Implementation

My Apriori implementation uses a data structure that di-
rectly represents a prefix tree as it is shown in figure 2.
This tree is grown top-down level by level, pruning those
branches that cannot contain a frequent item set [4].

2.1. Node Organization

There are different data structures that may be used for
the nodes of the prefix tree. In the first place, we may use
simple vectors of integer numbers to represent the counters
for the item sets. The items (note that we only need one item
to distinguish between the counters of a node, see above) are
not explicitly stored in this case, but are implicit in the vec-
tor index. Alternatively, we may use vectors, each element
of which consists of an item identifier (an integer number)
and a counter, with the vector elements being sorted by the
item identifier.

The first structure has the advantage that we do not need
any memory to store the item identifiers and that we can
very quickly find the counter for a given item (simply use
the item identifier as an index), but it has the disadvantage
that we may have to add “unnecessary” counters (i.e., coun-
ters for item sets, of which we know from the information
gathered in previous steps that they must be infrequent), be-
cause the vector may not have “gaps”. This problem can
only partially be mitigated by enhancing the vector with an
offset to the first element and a size, so that unnecessary
counters at the margins of the vector can be discarded. The
second structure has the advantage that we only have the
counters we actually need, but it has the disadvantage that
we need extra memory to store the item identifiers and that
we have to carry out a binary search in order to find the
counter corresponding to a given item.

A third alternative would be to use a hash table per node.
However, although this reduces the time needed to access a
counter, it increases the amount of memory needed, because
for optimal performance a hash table must not be too full.
In addition, it does not allow us to exploit easily the order
of the items in the counting process (see below). Therefore
I do not consider this alternative here.

Obviously, if we want to optimize speed, we should
choose simple counter vectors, despite the gap problem.

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Figure 1. A subset lattice for five items (empty
set omitted).

If we want to optimize memory usage, we can decide dy-
namically, which data structure is more efficient in terms
of memory, accepting the higher counter access time due to
the binary search if necessary.

It should also be noted that we need a set of child point-
ers per node, at least for all levels above the currently added
one (in order to save memory, one should not create child
pointers before one is sure that one needs them). For orga-
nizing these pointers there are basically the same options as
for organizing the counters. However, if the counters have
item identifiers attached, there is an additional possibility:
We may draw on the organization of the counters, using
the same order of the items and leaving child pointers nil
if they are not needed. This can save memory, even though
we may have unnecessary nil pointers, because we do not
have to store item identifiers a second time.

2.2. Item Coding

It is clear that the way in which the items are coded (i.e.,
are assigned integer numbers as identifiers) can have a sig-
nificant impact on the gap problem for pure counter vectors
mentioned above. Depending on the coding we may need
large vectors with a lot of gaps or we may need only short
vectors with few gaps. A good heuristic approach to mini-
mize the number and the size of gaps seems to be this: It is
clear that frequent item sets contain items that are frequent
individually. Therefore it is plausible that we have only few
gaps if we sort the items w.r.t. their frequency, so that the in-
dividually frequent items receive similar identifiers if they
have similar frequency (and, of course, infrequent items are
discarded entirely). In this case it can be hoped that the off-
set/size representation of a counter vector can eliminate the
greater part of the unnecessary counters, because these can
be expected to cluster at the vector margins.

Extending this scheme, we may also consider to code the
items w.r.t. the number of frequent pairs (or even triples etc.)

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c
d d d

d

Figure 2. A prefix tree for five items (empty
set omitted).

2

they are part of, thus using additional information from the
second (or third etc.) level to improve the coding. This idea
can most easily be implemented for item pairs by sorting
the items w.r.t. the sum of the sizes of the transactions they
are contained in (with infrequent items discarded from the
transactions, so that this sum gives a value that is similar to
the number of frequent pairs, which, as these are heuristics
anyway, is sufficient).

2.3. Recursive Counting

The prefix tree is not only an efficient way to store the
counters, it also makes processing the transactions very sim-
ple, especially if we sort the items in a transaction ascend-
ingly w.r.t. their identifiers. Then processing a transaction is
a simple doubly recursive procedure: To process a transac-
tion for a node of the tree, (1) go to the child corresponding
to the first item in the transaction and process the remainder
of the transaction recursively for that child and (2) discard
the first item of the transaction and process it recursively for
the node itself (of course, the second recursion is more eas-
ily implemented as a simple loop through the transaction).
In a node on the currently added level, however, we incre-
ment a counter instead of proceeding to a child node. In this
way on the current level all counters for item sets that are
part of a transaction are properly incremented.

By sorting the items in a transaction, we can also apply
the following optimizations (this is a bit more difficult—or
needs additional memory—if hash tables are used to orga-
nize the counters and thus explains why I am not consider-
ing hash tables): (1) We can directly skip all items before
the first item for which there is a counter in the node, and (2)
we can abort the recursion if the first item of (the remainder
of) a transaction is beyond the last one represented in the
node. Since we grow the tree level by level, we can even
go a step further: We can terminate the recursion once (the
remainder of) a transaction is too short to reach the level
currently added to the tree.

2.4. Transaction Representation

The simplest way of processing the transactions is to
handle them individually and to apply to each of them the
recursive counting procedure described in the preceding
section. However, the recursion is a very expensive pro-
cedure and therefore it is worthwhile to consider how it can
be improved. One approach is based on the fact that of-
ten there are several similar transactions, which lead to a
similar program flow when they are processed. By organiz-
ing the transactions into a prefix tree (an idea that has also
been used in [6] in a different approach) transactions with
the same prefix can be processed together. In this way the
procedure for the prefix is carried out only once and thus

considerable performance gains can result. Of course, the
gains have to outweigh the additional costs of constructing
such a transaction tree to lead to an overall gain.

2.5. Transaction Filtering

It is clear that in order to determine the counter values on
the currently added level of the prefix tree, we only need the
items that are contained in those item sets that are frequent
on the preceding level. That is, to determine the support of
item sets of size k, we only need those items that are con-
tained in the frequent item sets of size k−1. All other items
can be removed from the transactions. This has the advan-
tage that the transactions become smaller and thus can be
counted more quickly, because the size of a transaction is a
decisive factor for the time needed by the recursive counting
scheme described above.

However, this can only be put to work easily if the trans-
actions are processed individually. If they are organized as
a prefix tree, a possibly costly reconstruction of the tree is
necessary. In this case one has to decide whether to con-
tinue with the old tree, accepting the higher counting costs
resulting from unnecessary items, or whether rebuilding the
tree is preferable, because the costs for the rebuild are out-
weighed by the savings resulting from the smaller and sim-
pler tree. Good heuristics seem to be to rebuild the tree if

nnew

ncurr

ttree

tcount

< 0.1,

where ncurr is the number of items in the current transac-
tion tree, nnew is the number of items that will be contained
in the new tree, ttree is the time that was needed for build-
ing the current tree and tcount is the time that was needed
for counting the transactions in the preceding step. The
constant 0.1 was determined experimentally and on average
seems to lead to good results (see also Section 4).

2.6. Filtering Closed and Maximal Item Sets

A frequent item set is called closed if there is no super-
set that has the same support (i.e., is contained in the same
number of transactions). Closed item sets capture all infor-
mation about the frequent item sets, because from them the
support of any frequent item set can be determined.

A frequent item set is called maximal if there is no super-
set that is frequent. Maximal item sets define the boundary
between frequent and infrequent sets in the subset lattice.

Any frequent item set is often also called a free item set
to distinguish it from closed and maximal ones.

In order to find closed and maximal item sets with Apri-
ori one may use a simple filtering approach on the prefix
tree: The final tree is traversed top-down level by level
(breadth first order). For each frequent item set all subsets

3

with one item less are traversed and marked as not to be re-
ported if they have the same support (closed item sets) or
unconditionally (maximal item sets).

3. Eclat Implementation

My Eclat implementation represents the set of transac-
tions as a (sparse) bit matrix and intersects rows to deter-
mine the support of item sets. The search follows a depth
first traversal of a prefix tree as it is shown in Figure 2.

3.1. Bit Matrices

A convenient way to represent the transactions for the
Eclat algorithm is a bit matrix, in which each row corre-
sponds to an item, each column to a transaction (or the other
way round). A bit is set in this matrix if the item corre-
sponding to the row is contained in the transaction corre-
sponding to the column, otherwise it is cleared.

There are basically two ways in which such a bit matrix
can be represented: Either as a true bit matrix, with one
memory bit for each item and transaction, or using for each
row a list of those columns in which bits are set. (Obvi-
ously the latter representation is equivalent to using a list
of transaction identifiers for each item.) Which representa-
tion is preferable depends on the density of the dataset. On
32 bit machines the true bit matrix representation is more
memory efficient if the ratio of set bits to cleared bits is
greater than 1:31. However, it is not advisable to rely on
this ratio in order to decide between a true and a sparse bit
matrix representation, because in the search process, due
to the intersections carried out, the number of set bits will
decrease. Therefore a sparse representation should be used
even if the ratio of set bits to cleared bits is greater than
1:31. In my current implementation a sparse representation
is preferred if the ratio is greater than 1:7, but this behavior
can be changed by a user.

A more sophisticated option would be to switch to the
sparse representation of a bit matrix during the search once
the ratio of set bits to cleared bits exceeds 1:31. However,
such an automatic switch, which involves a rebuild of the
bit matrix, is not implemented in the current version.

3.2. Search Tree Traversal

As already mentioned, Eclat searches a prefix tree like
the one shown in Figure 2 in depth first order. The tran-
sition of a node to its first child consists in constructing a
new bit matrix by intersecting the first row with all follow-
ing rows. For the second child the second row is intersected
with all following rows and so on. The item correspond-
ing to the row that is intersected with the following rows
thus is added to form the common prefix of the item sets

processed in the corresponding child node. Of course, rows
corresponding to infrequent item sets should be discarded
from the constructed matrix, which can be done most con-
veniently if we store with each row the corresponding item
identifier rather than relying on an implicit coding of this
item identifier in the row index.

Intersecting two rows can be done by a simple logical
and on a fixed length integer vector if we work with a true
bit matrix. During this intersection the number of set bits
in the intersection is determined by looking up the number
of set bits for given word values (i.e., 2 bytes, 16 bits) in a
precomputed table. For a sparse representation the column
indices for the set bits should be sorted ascendingly for effi-
cient processing. Then the intersection procedure is similar
to the merge step of merge sort. In this case counting the set
bits is straightforward.

3.3. Item Coding

As for Apriori the way in which items are coded has an
impact on the execution time of the Eclat algorithm. The
reason is that the item coding not only affects the num-
ber and the size of gaps in the counter vectors for Apriori,
but also the structure of the pruned prefix tree and thus the
structure of Eclat’s search tree. Sorting the items usually
leads to a better structure. For the sorting there are basi-
cally the same options as for Apriori (see Section 2.2).

3.4. Filtering Closed and Maximal Item Sets

Determining closed and maximal item sets with Eclat is
slightly more difficult than with Apriori, because due to the
backtrack Eclat “forgets” everything about a frequent item
set once it is reported. In order to filter for closed and max-
imal item sets, one needs a structure that records these sets,
and which allows to determine quickly whether in this struc-
ture there is an item set that is a superset of a newly found
set (and whether this item set has the same support if closed
item sets are to be found).

In my implementation I use the following approach to
solve this problem: Frequent item sets are reported in a node
of the search tree after all of its child nodes have been pro-
cessed. In this way it is guaranteed that all possible super-
sets of an item set that is about to be reported have already
been processed. Consequently, we can maintain a repos-
itory of already found (closed or maximal) item sets and
only have to search this repository for a superset of the item
set in question. The repository can only grow (we never
have to remove an item set from it), because due to the re-
port order a newly found item set cannot be a superset of an
item set in the repository.

For the repository one may use a bit matrix in the same
way as it is used to represent the transactions: Each row

4

corresponds to an item, each column to a found (closed or
maximal) frequent item set. The superset test consists in in-
tersecting those rows of this matrix that correspond to the
items in the frequent item set in question. If the result is
empty, there is no superset in the repository, otherwise there
is (at least) one. (Of course, the intersection loop is termi-
nated as soon as an intersection gets empty.)

To include the information about the support for closed
item sets, an additional row of the matrix is constructed,
which contains set bits in those columns that correspond to
item sets having the same support as the one in question.
With this additional row the intersection process is started.

It should be noted that the superset test can be avoided
if any direct descendant (intersection product) of an item
set has the same support (closed item sets) or is frequent
(maximal item set).

In my implementation the repository bit matrix uses the
same representation as the matrix that represents the trans-
actions. That is, either both are true bit matrices or both are
sparse bit matrices.

4. Experimental Results

I ran experiments with both programs on five data sets,
which exhibit different characteristics, so that the advan-
tages and disadvantages of the two approaches and the dif-
ferent optimizations can be observed. The data sets I used
are: BMS-Webview-1 (a web click stream from a leg-care
company that no longer exists, which has been used in the
KDD cup 2000 [7, 9]), T10I4D100K (an artificial data set
generated with IBM’s data generator [10]), census (a data
set derived from an extract of the US census bureau data
of 1994, which was preprocessed by discretizing numeric
attributes), chess (a data set listing chess end game posi-
tions for king vs. king and rook), and mushroom (a data
set describing poisonous and edible mushrooms by differ-
ent attributes). The last three data sets are available from
the UCI machine learning repository [3]. The discretiza-
tion of the numeric attributes in the census data set was
done with a shell/gawk script that can be found on the
WWW page mentioned below. For the experiments I used
an AMD Athlon XP 2000+ machine with 756 MB main
memory running S.u.S.E. Linux 8.2 and gcc version 3.3.

The results for these data sets are shown in Figures 3
to 7. Each figure consists of five diagrams, a to e, which are
organized in the same way in each figure. Diagram a shows
the decimal logarithm of the number of free (solid), closed
(short dashes), and maximal item sets (long dashes) for dif-
ferent support values. From these diagrams it can already be
seen that the data sets have clearly different characteristics.
Only census and chess appear to be similar.

Diagrams b and c show the decimal logarithm of the ex-
ecution time in seconds for different parameterizations of

Apriori (diagram b) and Eclat (diagram c). To ease the com-
parison of the two diagrams, the default parameter curve for
the other algorithm (the solid curve in its own diagram) is
shown in grey in the background.

The curves in diagram b represent the following settings:

solid: Items sorted ascendingly w.r.t. the sum of the sizes of
the transactions they are contained in; prefix tree to repre-
sent the transactions, which is rebuild every time the heuris-
tic criterion described in section 2.5 is fulfilled.
short dashes: Like solid curve, prefix tree used to represent
the transactions, but never rebuild.
long dashes: Like solid curve, but transactions are not or-
ganized as a prefix tree; items that are no longer needed are
not removed from the transactions.
dense dots: Like long dash curve, but items sorted ascend-
ingly w.r.t. their frequency in the transactions.

In diagram b it is not distinguished whether free, closed,
or maximal item sets are to be found, because the time for
filtering the item sets is negligible compared to the time
needed for counting the transactions (only a small differ-
ence would be visible in the diagrams, which derives mainly
from the fact that less time is needed to write the smaller
number of closed or maximal item sets).

In diagram c the solid, short, and long dashes curve show
the results for free, closed, and maximal item sets, respec-
tively, with one representation of the bit matrix, the dense
dots curve the results for free item sets for the other rep-
resentation (cf. section 3.1). Whether the solid, short, and
long dashes curve refer to a true bit matrix and the dense
dots curve to a sparse one or the other way round depends
on the data set and is indicated in the corresponding section
below.

Diagrams d and e show the decimal logarithm of the
memory in bytes used for different parameterizations of
Apriori (diagram d) and Eclat (diagram e). Again the grey
curve refers to the default parameter setting of the other al-
gorithm (the solid curve in its own diagram).

The curves in diagram d represent the following settings:

solid: Items sorted ascendingly w.r.t. the sum of the sizes of
the transaction they are contained in; transactions organized
as a prefix tree; memory saving organization of the prefix
tree nodes as described in section 2.1.
short dashes: Like solid, but no memory saving organiza-
tion of the prefix tree nodes (always pure vectors).
long dashes: Like short dashes, but items sorted descend-
ingly w.r.t. the sum of the sizes of the transaction they are
contained in.
dense dots: Like long dashes, but items not sorted.

Again it is not distinguished whether free, closed, or
maximal item sets are to be found, because this has no influ-
ence on the memory usage. The meaning of the line styles
in diagram e is the same as in diagram c (see above).

5

34 35 36 37 38 39 40 41 42 43 44 45

4

5

6

a

34 35 36 37 38 39 40 41 42 43 44 45

0

1

2

b

34 35 36 37 38 39 40 41 42 43 44 45

0

1

2

c

34 35 36 37 38 39 40 41 42 43 44 45

6

7

8

d

34 35 36 37 38 39 40 41 42 43 44 45

6

7

8

e

Figure 3. Results on BMS-Webview-1

BMS-Webview-1: Characteristic for this data set is the di-
vergence of the number of free, closed, and maximal item
sets for lower support values. W.r.t. the execution time of
Apriori this data set shows perfectly the gains that can re-
sult from the different optimizations. Sorting the items w.r.t.
the sum of transactions sizes (long dashes in diagram b)
improves over sorting w.r.t. simple frequency (dense dots),
organizing the transactions as a prefix tree (short dashes)
improves further, removing no longer needed items yields
another considerable speed-up (solid curve). However, for
free and maximal item sets and a support less than 44 trans-
actions Eclat with a sparse bit matrix representation (long
dashes and solid curve in diagram c) is clearly better than
Apriori, which also needs a lot more memory. Only for
closed item sets Apriori is the method of choice (Eclat:
short dashes in diagram c), which is due to the more expen-
sive filtering with Eclat. Using a true bit matrix with Eclat
is clearly not advisable as it performs worse than Apriori
and down to a support of 39 transactions even needs more
memory (dense dots in diagrams c and e).
T10I4D100K: The numbers of all three types of item sets
sharply increase for lower support values; there is no di-
vergence as for BMS-Webview-1. For this data set Apri-
ori outperforms Eclat, although for a support of 5 transac-
tions Eclat takes the lead for free item sets. For closed and
maximal item sets Eclat cannot challenge Apriori. It is re-
markable that for this data set rebuilding the prefix tree for
the transactions in Apriori slightly degrades performance
(solid vs. short dashes in diagram b, with the dashed curve
almost covered by the solid one). For Eclat a sparse bit ma-
trix representation (solid, short, and long dashes curve in
diagrams c and e) is preferable to a true bit matrix (dense
dots). (Remark: In diagram b the dense dots curve is almost
identical to the long dashes curve and thus is covered.)
Census: This data set is characterized by an almost constant
ratio of the numbers of free, closed, and maximal item sets,
which increase not as sharply as for T10I4D100K. For free
item sets Eclat with a sparse bit matrix representation (solid
curve in diagram c) always outperforms Apriori, while it
clearly loses against Apriori for closed and maximal item
sets (long and short dashes curves in diagrams c and e, the
latter of which is not visible, because it lies outside the dia-
gram — the execution time is too large due to the high num-
ber of closed item sets). For higher support values, how-
ever, using a true bit matrix representation with Eclat to find
maximal item sets (sparse dots curves in diagrams c and e)
comes close to being competitive with Apriori. Again it is
remarkable that rebuilding the prefix tree of transactions in
Apriori slightly degrades performance.
Chess: W.r.t. the behavior of the number of free, closed, and
maximal item sets this dataset is similar to census, although
the curves are bend the other way. The main difference to
the results for census are that for this data set a true bit ma-

6

5 10 15 20 25 30 35 40 45 50 55 60

4

5

6

a

5 10 15 20 25 30 35 40 45 50 55 60

1

2

b

5 10 15 20 25 30 35 40 45 50 55 60

1

2

c

5 10 15 20 25 30 35 40 45 50 55 60

7

8

d

5 10 15 20 25 30 35 40 45 50 55 60

7

8

e

Figure 4. Results on T10I4D100K

10 20 30 40 50 60 70 80 90 100

5

6

7 a

10 20 30 40 50 60 70 80 90 100

1

2

b

10 20 30 40 50 60 70 80 90 100

1

2

c

10 20 30 40 50 60 70 80 90 100

7

8

d

10 20 30 40 50 60 70 80 90 100

7

8

e

Figure 5. Results on census

7

1500 1600 1700 1800 1900 2000

4

5

6

a

1500 1600 1700 1800 1900 2000

0

1

2

b

1500 1600 1700 1800 1900 2000

0

1

2

c

1500 1600 1700 1800 1900 2000

5

6

7

d

1500 1600 1700 1800 1900 2000

5

6

7

e

Figure 6. Results on chess

trix representation for Eclat (solid, short, and long dashes
curves in diagrams c and e) is preferable to a sparse one
(dense dots), while for census it is the other way round. The
true bit matrix representation also needs less memory, in-
dicating a very dense data set. Apriori can compete with
Eclat only when it comes to closed item sets, where it per-
forms better due to its more efficient filtering of the fairly
high number of closed item sets.
Mushroom: This data set differs from the other four in the
position of the number of closed data sets between the num-
ber of free and maximal item sets. Eclat with a true bit ma-
trix representation (solid, short, and long dashes curves in
diagrams c and e) outperforms Eclat with a sparse bit ma-
trix representation (dense dots), which in turn outperforms
Apriori. However, the sparse bit matrix (dense dots in di-
agram c) gains ground towards lower support values, mak-
ing it likely to take the lead for a minimum support of 100
transactions. Even for closed and maximal item sets Eclat is
clearly superior to Apriori, which is due to the small num-
ber of closed and maximal item sets, so that the filtering is
not a costly factor. (Remark: In diagram b the dense dots
curve is almost identical to the long dashes curve and thus
is covered. In diagram d the short dashes curve, which lies
over the dense dots curve, is covered the solid one.)

5. Conclusions

For free item sets Eclat wins the competition w.r.t. ex-
ecution time on four of the five data sets and it always
wins w.r.t. memory usage. On the only data set on which
it loses the competition (T10I4D100K), it takes the lead for
the lowest minimum support value tested, indicating that for
lower minimum support values it is the method of choice,
while for higher minimum support values its disadvantage
is almost negligible (note that for this data set all execution
times are less than 30s).

For closed item sets the more efficient filtering gives
Apriori a clear edge w.r.t. execution time, making it win
on all five data sets. For maximal item sets the picture is
less clear. If the number of maximal item sets is high, Apri-
ori wins due to its more efficient filtering, while Eclat wins
for a lower number of maximal item sets due to its more
efficient search.

6. Programs

The implementations of Apriori and Eclat described in
this paper (WindowsTM and LinuxTM executables as well as
the source code) can be downloaded free of charge at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html
The special program versions submitted to this workshop
rely on the default parameter settings of these programs
(solid curves in the diagrams b to e of Section 4).

8

200 300 400 500 600 700 800 900 1000

3

4

5

6

7 a

200 300 400 500 600 700 800 900 1000

0

1

2

3
b

200 300 400 500 600 700 800 900 1000

0

1

2

3
c

200 300 400 500 600 700 800 900 1000

6

7

8

d

200 300 400 500 600 700 800 900 1000

6

7

8

e

Figure 7. Results on mushroom

References

[1] R. Agrawal, T. Imielienski, and A. Swami. Min-
ing Association Rules between Sets of Items in Large
Databases. Proc. Conf. on Management of Data, 207–
216. ACM Press, New York, NY, USA 1993

[2] A. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. Verkamo. Fast Discovery of Association Rules. In:
[5], 307–328

[3] C.L. Blake and C.J. Merz. UCI Repository of Machine
Learning Databases. Dept. of Information and Com-
puter Science, University of California at Irvine, CA,
USA 1998
http://www.ics.uci.edu/ mlearn/MLRepository.html

[4] C. Borgelt and R. Kruse. Induction of Association
Rules: Apriori Implementation. Proc. 14th Conf. on
Computational Statistics (COMPSTAT). Berlin, Ger-
many 2002

[5] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, eds. Advances in Knowledge Discov-
ery and Data Mining. AAAI Press / MIT Press, Cam-
bridge, CA, USA 1996

[6] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns
without Candidate Generation. In: Proc. Conf. on
the Management of Data (SIGMOD’00, Dallas, TX).
ACM Press, New York, NY, USA 2000

[7] R. Kohavi, C.E. Bradley, B. Frasca, L. Mason, and
Z. Zheng. KDD-Cup 2000 Organizers’ Report: Peel-
ing the Onion. SIGKDD Exploration 2(2):86–93.
2000.

[8] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New Algorithms for Fast Discovery of Association
Rules. Proc. 3rd Int. Conf. on Knowledge Discovery
and Data Mining (KDD’97), 283–296. AAAI Press,
Menlo Park, CA, USA 1997

[9] Z. Zheng, R. Kohavi, and L. Mason. Real World Per-
formance of Association Rule Algorithms. In: Proc.
7th Int. Conf. on Knowledge Discovery and Data Min-
ing (SIGKDD’01). ACM Press, New York, NY, USA
2001

[10] Synthetic Data Generation Code for Associations and
Sequential Patterns. http://www.almaden.ibm.com/
software/quest/Resources/index.shtml Intelligent
Information Systems, IBM Almaden Research Center

9

Detailed Description of an Algorithm for Enumeration of Maximal

Frequent Sets with Irredundant Dualization

Takeaki Uno, Ken Satoh

National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

Email: uno, ksatoh@nii.ac.jp

Abstract
We describe an implementation of an algorithm for
enumerating all maximal frequent sets using irredun-
dant dualization, which is an improved version of that
of Gunopulos et al. The algorithm of Gunopulos et
al. solves many dualization problems, and takes long
computation time. We interleaves dualization with
the main algorithm, and reduce the computation time
for dualization by as long as one dualization. This
also reduces the space complexity. Moreover, we ac-
celerate the computation by using sparseness.

1. Introduction

Let E be an item set and T be a set of transactions
defined on E. For an item set S ⊆ E, we denote the
set of transactions including S by X(S). We define
the frequency of S by |X(S)|. For a given constant α,
if an item set S satisfies |X(S)| ≥ α, then S is said to
be frequent. A frequent item set included in no other
frequent item set is said to be maximal. An item set
not frequent is called infrequent. An infrequent item
set including no other infrequent item set is said to
be minimal.

This paper describes an implementation of an algo-
rithm for enumerating all maximal frequent sets us-
ing dualization in detail presented at [SatohUno03].
The algorithm is an improved version of that of
Gunopulos et al. [Gunopulos97a, Gunopulos97b].
The algorithm computes maximal frequent sets based
on computing minimal transversals of a hyper-

graph, computing minimal hitting set, or, in
other words, computing a dualization of a mono-

tone function [Fredman96]. The algorithm finds all
minimal item sets not included in any current ob-
tained maximal frequent set by dualization. If a fre-
quent item set is in those minimal item sets, then the
algorithm finds a new maximal frequent set includ-
ing the frequent item set. In this way, the algorithm

avoids checking all frequent item sets. However, this
algorithm solves dualization problems many times,
hence it is not fast for practical purpose. Moreover,
the algorithm uses the dualization algorithm of Fred-
man and Khachiyan [Fredman96] which is said to be
slow in practice.

We improved the algorithm in [SatohUno03] by
using incremental dualization algorithms proposed
by Kavvadias and Stavropoulos [Kavvadias99], and
Uno [Uno02]. We developed an algorithm by in-
terleaving dualization with finding maximal frequent
sets. Roughly speaking, our algorithm solves one du-
alization problem with the size |Bd+|, in which Bd+

is the set of maximal frequent sets, while the algo-
rithm of Gunopulos et al. solves |Bd+| dualization
problems with sizes from 1 through |Bd+|. This re-
duces the computation time by a factor of 1/|Bd+|.

To reduce the computation time more, we used
Uno’s dualization algorithm [Uno02]. The experi-
mental computation time of Uno’s algorithm is lin-
ear in the number of outputs, and O(|E|) per out-
put, while that of Kavvadias and Stavropoulos seems
to be O(|E|2). This reduces the computation time
by a factor of 1/|E|. Moreover, we add an improve-
ment based on sparseness of input. By this, the
experimental computation time per output is re-
duced to O(ave(Bd+)) where ave(Bd+) is the av-
erage size of maximal frequent sets. In summary,
we reduced the computation time by a factor of
ave(Bd+) / (|Bd+| × |E|2) by using the combina-
tion of the algorithm of Gunopulos et al. and the
algorithm of Kavvadias and Stavropoulos.

In the following sections, we describe our algorithm
and the computational result. Section 2 describes
the algorithm of Gunopulos et al. and Section 3 de-
scribes our algorithm and Uno’s algorithm. Section 4
explains our improvement using sparseness. Compu-
tational experiments for FIMI’03 instances are shown
in Section 5, and we conclude the paper in Section 6.

1

Dualize and Advance[Gunopulos97a]
1 Bd+ := {go up(∅)}
2 Compute MHS(Bd+).
3 If no set in MHS(Bd+) is frequent, output MHS(Bd+).
4 If there exists a frequent set S in MHS(Bd+), Bd+ := Bd+ ∪ {go up(S)} and go to 2.

Figure 1: Dualize and Advance Algorithm

2. Enumerating maximal frequent sets

by dualization

In this section, we describe the algorithm of Gunop-
ulos et al. Explanations are also in [Gunopulos97a,
Gunopulos97b, SatohUno03], however, those are
written with general terms. In this section, we ex-
plain in terms of frequent set mining.

Let Bd− be the set of minimal infrequent sets. For
a subset family H of E, a hitting set HS of H is a set
such that for every S ∈ H, S ∩ HS
= ∅. If a hitting
set includes no other hitting set, then it is said to be
minimal. We denote the set of all minimal hitting
sets of H by MHS(H). We denote the complement
of a subset S w.r.t. E by S. For a subset family H,
we denote {S|S ∈ H} by H.

There is a strong connection between the maximal
frequent sets and the minimal infrequent sets by the
minimal hitting set operation.

Proposition 1 [Mannila96] Bd− = MHS(Bd+)

Using the following proposition, Gunopulos et al.
proposed an algorithm called Dualize and Advance
shown in Fig. 1 to compute the maximal frequent
sets [Gunopulos97a].

Proposition 2 [Gunopulos97a] Let Bd+ ⊆ Bd+.
Then, for every S ∈ MHS(Bd+), either S ∈ Bd−

or S is frequent (but not both).

In the above algorithm, go up(S) for a subset S of
E is a maximal frequent set which is computed as
follows.

1. Select one element e from S and check the fre-
quency of S ∪ {e}.

2. If it is frequent, S := S ∪ {e} and go to 1.

3. Otherwise, if there is no element e in S such that
S ∪ {e} is frequent, then return S.

Proposition 3 [Gunopulos97a] The number of fre-
quency checks in the “Dualize and Advance” algo-
rithm to compute Bd+ is at most |Bd+| · |Bd−| +
|Bd+| · |E|2.

Basically, the algorithm of Gunopulos et al. solves
dualization problems with sizes from 1 through
|Bd+|. Although we can terminate dualization when
we find a new maximal frequent set, we may check
each minimal infrequent item set again and again.
This is one of the reasons that the algorithm of
Gunopulos et al. is not fast in practice. In the next
section, we propose a new algorithm obtained by in-
terleaving gp up into a dualization algorithm. The
algorithm basically solves one dualization problem of
size |Bd+|.

3. Description of our algorithm

The key lemma of our algorithm is the following.

Lemma 1 [SatohUno03] Let Bd+
1 and Bd+

2 be sub-
sets of Bd+. If Bd+

1 ⊆ Bd+
2 ,

MHS(Bd+
1) ∩ Bd− ⊆ MHS(Bd+

2) ∩ Bd−

Suppose that we have already found minimal hit-
ting sets corresponding to Bd+ of a subset Bd+ of
the maximal frequent sets. The above lemma means
that if we add a maximal frequent set to Bd+, any
minimal hitting set we found which corresponds to a
minimal infrequent set is still a minimal infrequent
set. Therefore, if we can use an algorithm to visit
each minimal hitting set based on an incremental ad-
dition of maximal frequent sets one by one, we no
longer have to check the same minimal hitting set
again even if maximal frequent sets are newly found.
The dualization algorithms proposed by Kavvadias
and Stavropoulos [Kavvadias99] and Uno[Uno02] are
such kinds of algorithms. Using these algorithms, we
reduce the number of checks.

Let us show Uno’s algorithm [Uno02]. This is
an improved version of Kavvadias and Stavropou-
los’s algorithm [Kavvadias99]. Here we introduce
some notation. A set S ∈ H is called critical for
e ∈ hs, if S ∩ hs = {e}. We denote a family of
critical sets for e w.r.t. hs and H as crit(e, hs).
Note that mhs is a minimal hitting set of H if and
only if for every e ∈ mhs, crit(e, mhs) is not empty.

2

global S0, ..., Sm;
compute mhs(i,mhs) /* mhs is a minimal hitting set of S0, ..., Si */
begin

1 if i == m then output mhs and return;
2 else if Si+1 ∩ mhs
= ∅ then compute mhs(i + 1, mhs);

else

begin

3 for every e ∈ Si+1 do

4 if for every e′ ∈ mhs, there exists Sj ∈ crit(e′, mhs), j ≤ i
s.t. Sj does not contain e then

5 comupute mhs(i + 1, mhs∪ {e});
end

return;
end

Figure 2: Algorithm to Enumerate Minimal Hitting Sets

Suppose that H = {S1, ..., Sm}, and let MHSi be
MHS({S0 , ..., Si})(1 ≤ i ≤ n). We simply denote
MHS(H) by MHS. A hitting set hs for {S1, ..., Si}
is minimal if and only if crit(e, hs) ∩ {S1, ..., Si}
= ∅
for any e ∈ hs.

Lemma 2 [Uno02] For any mhs ∈ MHSi(1 ≤ i ≤
n), there exists just one minimal hitting set mhs′ ∈
MHSi−1 satisfying either of the following conditions
(but not both),

• mhs′ = mhs.

• mhs′ = mhs \ {e} where crit(e, mhs) ∩
{S0, ..., Si} = {Si}.

We call mhs′ the parent of mhs, and mhs a child of
mhs′. Since the parent-child relationship is not cyclic,
its graphic representation forms a forest in which each
of its connected components is a tree rooted at a min-
imal hitting set of MHS1. We consider the trees as
traversal routes defined for all minimal hitting sets
of all MHSi. These transversal routes can be traced
in a depth-first manner by generating children of the
current visiting minimal hitting set, hence we can
enumerate all minimal hitting sets of MHS in linear
time of

∑
i |MHSi|. Although

∑
i |MHSi| can be ex-

ponential to |MHS|, such cases are expected to be
exceptional in practice. Experimentally,

∑
i |MHSi|

is linear in |MHS|.
To find children of a minimal hitting set, we use the

following proposition that immediately leads from
the above lemma.

Proposition 4 [Uno02]
Any child mhs′ of mhs ∈ MHSi satisfies one of the

following conditions.
(1) mhs′ = mhs
(2) mhs′ = mhs ∪ {e}
In particular, no mhs has a child satisfying (1) and
a child satisfying (2).

If mhs ∩ Si+1
= ∅ then mhs ∈ MHSi+1, and (1)
holds. If mhs∩ Si+1 = ∅, then mhs
∈ MHSi+1, and
(2) can hold for some e ∈ Si+1. If mhs′ = mhs∪ {e}
is a child of mhs, then for any e′ ∈ mhs, there is
Sj ∈ crit(e′, mhs), j ≤ i such that e
∈ Sj . From these
observations, we obtain the algorithm described in
Fig. 2.

An iteration of the algorithm in Fig. 2 takes:

• O(|mhs|) time for line 1.

• O(|Si+1 ∪ mhs|) time for line 2.

• O((|E| − |mhs|) ×
∑

e′∈mhs |crit(e
′, mhs) ∩

{S0, ..., Si}|) time for lines 3 to 5, except for the
computation of crit.

To compute crit quickly, we store crit(e, mhs) in
memory, and update them when we generate a recur-
sive call. Note that this takes O(m) memory. Since
crit(e′, mhs ∪ {e}) is obtained from crit(e′, mhs) by
removing sets including e (i.e., crit(e′, mhs∪ {e}) =
{S|S ∈ crit(e′, mhs), e′
∈ Si+1}), crit(e′, mhs∪ {e})
for all e′ can be computed in O(m) time. Hence
the computation time of an iteration is bounded by
O(|E| × m).

Based on this dualization algorithm, we devel-
oped a maximal frequent sets enumeration algorithm.
First, the algorithm sets the input H of the dual-
ization problem to the empty set. Then, the algo-
rithm solves the dualization in the same way as the

3

Irredundant Border Enumerator
global integer bdpnum; sets bd+

0 , bd+
1;

main()
begin

bdpnum := 0;
construct bdp(0, ∅);
output all the bd+

j (0 ≤ j ≤ bdpnum);
end

construct bdp(i, mhs)
begin

if i == bdpnum /* minimal hitting set for ∪bdpnum
j:=0 bd+

j is found */
then goto 1 else goto 2

1. if mhs is not frequent, return; /* new Bd− element is found */

bd+
bdpnum := go up2(mhs); /* new Bd+ element is found */

bdpnum := bdpnum + 1; /* proceed to 2 */

2. if bd+
i ∩ mhs
= ∅ then construct bdp(i + 1, mhs);

else

begin

for every e ∈ bd+
i do

if bd+
i ∪ {e} is a minimal hitting set of {bd+

0 , bd+
1 ..., bd+

i−1}) then construct bdp(i + 1, mhs∪ {e});

return;

end

Figure 3: Algorithm to Check Each Minimal Hitting Set Only Once

above algorithm. When a minimal hitting set mhs
is found, the algorithm checks its frequency. If mhs
is frequent, the algorithm finds a maximal frequent
set S including it, and adds S to H as a new element
of H. Now mhs is not a minimal hitting set since
S ∩ mhs = ∅. The algorithm continues generating a
recursive call to find a minimal hitting set of the up-
dated H. In the case that mhs is not frequent, from
Lemma 1, mhs continues to be a minimal hitting set
even when H is updated. Hence, we backtrack and
find other minimal hitting sets.

When the algorithm terminates, H is the set of
maximal frequent sets, and the set of all minimal
hitting sets the algorithm found is the set of minimal
infrequent sets. The recursive tree the algorithm gen-
erated is a subtree of the recursive tree obtained by
Uno’s dualization algorithm inputting Bd+, which is
the set of the complement of maximal frequent sets.

This algorithm is described in Fig. 3. We call the
algorithm Irredundant Border Enumerator (IBE al-
gorithm, for short).

Theorem 1 The computation time of IBE is
O(Dual(Bd+) + |Bd+|g), where Dual(¯Bd+) is the
computation time of Uno’s algorithm for dualizing
Bd+, and g is the computation time for go up.

Note also that, the space complexity of the IBE
algorithm is O(ΣS∈Bd+ |S|) since all we need to mem-
orize is Bd+ and once a set in Bd− is checked, it is
no longer need to be recorded. On the other hand,
Gunopulos et al. [Gunopulos97a] suggests a usage
of Fredman and Khachiyan’s algorithm [Fredman96]
which needs a space of O(ΣS∈(Bd+∪Bd−)|S|) since the
algorithm needs both Bd+ and Bd− at the last stage.

4. Using sparseness

In this section, we speed up the dualization phase
of our algorithm by using a sparseness of H. In real
data, the sizes of maximal frequent sets are usually
small. They are often bounded by a constant. We use
this sparse structure for accelerating the algorithm.

4

global S0, ..., Sm;
compute mhs(i,mhs) /* mhs is a minimal hitting set of S0, ..., Si */
begin

1 if uncov(mhs) == ∅ then output mhs and return;
2 i := minimum index of uncov(mhs) ;
3 for every e ∈ mhs do

4 increase the counter of items in ∪S∈crit(mhs,e)S by one
end

5 for every e′
∈ mhs s.t. counter is increased by |mhs| do /* items included in all ∪S∈crit(mhs,e)S */
6 compute mhs(i + 1, mhs ∪ {e});

return;
end

Figure 4: Improved Dualization Algorithm Using Sparseness

First, we consider a way to reduce the computa-
tion time of iterations. Let us see the algorithm
described in Fig. 2. The bottle neck part of
the computation of an iteration of the algorithm is
lines 3 to 5, which check the existence of a criti-
cal set Sj ∈ crit(mhs, e′), j < i such that e
∈ Sj .
To check this condition for an item e
∈ mhs, we
spend O(

∑
e′∈mhs |crit(mhs, e′)|) time, hence this

check for all e
∈ mhs takes O((|E| − |mhs|) ×∑
e′∈mhs |crit(mhs, e′)|) time.

Instead of this, we compute
⋃

S∈crit(mhs,e) S for

each e ∈ mhs. If and only if e′ ∈
⋃

S∈crit(mhs,e) S

for all e ∈ mhs, e′ satisfies the condition of “if” at
line 4. To compute

⋃
S∈crit(mhs,e) S for all e ∈ mhs,

we take O(
∑

e∈mhs

∑
S∈crit(mhs,e) |S|) time. In the

case of IBE algorithm, S is a maximal frequent set,
hence the average size of |S| is expected to be small.
The sizes of minimal infrequent sets are not greater
than the maximum size of maximal frequent sets, and
they are usually smaller than the average size of the
maximal frequent sets. Hence, |mhs| is also expected
to be small.

Second, we reduce the number of iterations. For
mhs ⊆ E, we define uncov(mhs) by the set of S ∈ H
satisfying S ∩mhs = ∅. If mhs∩Si
= ∅, the iteration
inputting mhs and i does nothing but generates a
recursive call with increasing i by one. This type of
iterations should be skipped. Only iterations execut-
ing lines 3 to 5 are crucial. Hence, in each iteration,
we set i to the minimum index among uncov(mhs).
As a result of this, we need not execute line 2, and
the number of iterations is reduced from

∑
i |MHSi|

to |
⋃

i MHSi|. We describe the improved algorithm
in Fig. 4.

In our implementation, when we generate a recur-

sive call, we allocate memory for each variable used
in the recursive call. Hence, the memory required
by the algorithm can be up to O(|E| ×m). However,
experimentally the required memory is always linear
in the input size. Note that we can reduce the worst
case memory complexity by some sophisticated algo-
rithms.

5. Experiments

In this section, we show some results of the com-
putational experiments of our algorithms. We im-
plement our algorithm using C programming lan-
guage, and examined instances of FIMI2003. For
instances of KDD-cup 2000[KDDcup00], we com-
pared the results to the computational experiments of
CHARM[Zaki02], closed[Pei00], FP-growth[Han00],
and Apriori[Agrawal96] shown in [Zheng01]. The ex-
periments in [Zheng01] were done on a PC with a
Duron 550MHz CPU and 1GB RAM memory. Our
experiments were done on a PC with a Pentium III
500MHz CPU and 256MB RAM memory, which is
little slower than a Duron 550MHz CPU. The re-
sults are shown in Figs. 4 – 14. Note that our algo-
rithm uses at most 170MB for any following instance.
We also show the number of frequent sets, frequent
closed/maximal item sets, and minimal frequent sets.

In our experiments, IBE algorithm takes approx-
imately O(|Bd−| × ave(Bd+)) time, while the com-
putation time of other algorithms deeply depends on
the number of frequent sets, the number of frequent
closed item sets, and the minimum support. We re-
call that ave(Bd+) is the average size of maximal
frequent sets. In some instances, our IBE algorithm
performs rather well compared to other algorithms.
In these cases, the number of maximal frequent item

5

sets is smaller than number of frequent item sets.
IBE algorithm seems to give a good performance for
difficult problems such that the number of maximal
frequent sets is very small rather than those of fre-
quent item sets and frequent closed item sets.

6. Conclusion

In this paper, we describe the detailed im-
plementation method of our algorithm proposed
in [SatohUno03] and we give some experimental re-
sults on test data.

Acknowledgments

We are grateful to Heikki Mannila for participating
useful discussions about this research.

References

[Agrawal96] Agrawal, R., Mannila, H., Srikant, R.,
Toivonen, H., and Verkamo, A. I., “Fast Dis-
covery of Association Rules”, U. M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, (eds), Advances in Knowledge Discov-
ery and Data Mining, chapter 12, pp. 307–328
(1996).

[Fredman96] Fredman, M. L. and Khachiyan, L.,
“On the Complexity of Dualization of Mono-
tone Disjunctive Normal Forms”, Journal of Al-
gorithms 21(3), pp. 618 – 628 (1996)

[Gunopulos97a] Gunopulos, D., Khardon, R., Man-
nila, H. and Toivonen, H., “Data mining, Hy-
pergraph Transversals, and Machine Learning”,
Proc. of PODS’97, pp. 209 – 216 (1997).

[Gunopulos97b] Gunopulos, D., Mannila, H., and
Saluja, S., “Discovering All Most Specific Sen-
tences using Randomized Algorithms”, Proc. of
ICDT’97, pp. 215 – 229 (1997).

[Han00] Han, J., Pei, J., Yin, Y., “Mining Frequent
Patterns without Candidate Generation,” SIG-
MOD Conference 2000, pp. 1-12, 2000

[Kavvadias99] Kavvadias, D. J., and Stavropoulos,
E. C., “Evaluation of an Algorithm for the
Transversal Hypergraph Problem”, Algorithm
Engineering, pp 72 – 84 (1999).

[KDDcup00] Kohavi, R., Brodley, C. E., Frasca, B.,
Mason, L., and Zheng, Z., “KDD-Cup 2000 Or-
ganizers’ Report: Peeling the Onion,” SIGKDD
Explorations, 2(2), pp. 86-98, 2000.

[Mannila96] Mannila, H. and Toivonen, T., “On
an Algorithm for Finding All Interesting Sen-
tences”, Cybernetics and Systems, Vol II, The
Thirteen European Meeting on Cybernetics and
Systems Research, pp. 973 – 978 (1996).

[Pei00] Pei, J., Han, J., Mao, R., “CLOSET: An Ef-
ficient Algorithm for Mining Frequent Closed
Itemsets,” ACM SIGMOD Workshop on Re-
search Issues in Data Mining and Knowledge
Discovery 2000, pp. 21-30, 2000.

[SatohUno03] Satoh, K., Uno, T., “Enumerating
Maximal Frequent Sets using Irredundant Dual-
ization”, Lecture Notes in Artificial Intelligence
(Proc. of Discovery Science 2003), Springer-
Varlag, pp. 192-201, 2003.

[Uno02] Uno, T., “A Practical Fast Algorithm
for Enumerating Minimal Set Coverings”, SI-
GAL83, Information Processing Society of
Japan, pp. 9 – 16 (in Japanese) (2002).

[Zaki02] Zaki, M. J., Hsiao, C., “CHARM: An Effi-
cient Algorithm for Closed Itemset Mining,” 2nd
SIAM International Conference on Data Mining
(SDM’02), pp. 457-473, 2002.

[Zheng01] Zheng, Z., Kohavi, R., and Mason, L.,
“Real World Performance of Association Rule
Algorithms,” KDD 2001, pp. 401-406, 2001.

6

BMS-WebView1

1

10

100

1000

10000

6
0

4
8

3
6

2
4

1
2

6 support

time(sec)

Apriori
FP-growth
closet
CHARM
IBE

BMS-WebView2

1

10

100

1000

10000

100000

7
7

6
2

4
6

3
1

1
5

7 support

time(sec)

Apriori
FP-growth
closet
CHARM
IBE

BMS-POS

10

100

1000

10000

100000

5
1
7

4
1
3

3
1
0

2
0
6

1
0
3

5
1

support

time(sec)

Apiori
FP-growth
CHARM
IBE

T10I4D100K

1

10

100

1000

10000

0
.
1

0
.
0
8

0
.
0
6

0
.
0
4

0
.
0
2

0
.
0
1

support

time(sec)

Apriori
FP-growth
closet
CHARM
IBE

T40I10D100K

100

1000

10000

1600 1300 1000 700 support

time(sec
)

IBE

pumsb

10

100

1000

10000

45000 44000 43000 42000 41000 40000 support

time(sec)

IBE

7

pumsb_star

1

10

100

1000

10000

30000 25000 20000 15000 10000
support

time(sec)

IBE

kosarak

100

1000

10000

3000 2500 2000 1500 1000
support

time(sec)

IBE

mushroom

10

100

1000

30 20 10 5 2 support

time(sec
)

IBE

connect

100

1000

10000

63
00
0

60
00
0

57
00
0

54
00
0

51
00
0

48
00
0

45
00
0

support

time(sec
)

IBE

chess

10

100

1000

10000

2200 1900 1600 1300 1000 support

time(sec
)

IBE

8

BMS-Web-View1: #item 497, #transactions, 59602, ave. size of transaction 2.51

support 60 48 36 24 12 6

Apriori 1.1 3.6 113 - - -

FP-growth 1.2 1.8 51 - - -

Closet 33 74 - - - -

Charm 2.2 2.7 7.9 133 422 -

IBE 5.8 9.6 45 42 333 2982

#freq. sets 3992 10287 461522 - - -

#closed sets 3974 9391 64762 155651 422692 1240701

#max. freq. sets 2067 4028 15179 12956 84833 129754

#min. infreq. sets 66629 81393 150278 212073 579508 4320003

maximum use of memory: 45MB

BMS-Web-View2: #items 3340, #transactions 77512, ave. size of transaction 4.62

support 77 62 46 31 15 7

Apriori 13.1 15 29.6 58.2 444 -

Fp-growth 7.03 10 17.2 29.6 131 763

Closet 1500 2250 3890 6840 25800 -

Charm 5.82 6.66 7.63 13.8 27.2 76

IBE 25 32 46 98 355 1426

#closed sets 22976 37099 60352 116540 343818 754924

#freq. sets 24143 42762 84334 180386 1599210 9897303

#max. freq. sets 3901 5230 7841 16298 43837 118022

#min. infreq. sets 657461 958953 1440057 2222510 3674692 5506524

maximal use of memory: 100MB

BMS-POS: #items 1657, #transactions 517255, ave. size of transaction 6.5

support 517 413 310 206 103 51

Apriori 251 341 541 1000 2371 10000

Fp-growth 196 293 398 671 1778 6494

Closet - - - - - -

Charm 100 117 158 215 541 3162

IBE 1714 2564 4409 9951 44328 -

#closed sets 121879 200030 378217 840544 1742055 21885050

#freq. sets 121956 200595 382663 984531 5301939 33399782

#max. freq. sets 30564 48015 86175 201306 891763 4280416

#min. infreq. sets 236274 337309 530946 1047496 3518003 -

maximum use of memory: 110MB

T10I4D100K: #items 1000, #transactions 100000, ave. size of transaction 10

support 100 80 60 40 20 10

Apriori 33 39 45 62 117 256

Fp-growth 7.3 7.7 8.1 9.0 12 20

Closet 13 16 18 23 41 130

Charm 11 13 16 24 45 85

IBE 96 147 263 567 1705 -

#freq. sets 15010 28059 46646 84669 187679 335183

#closed sets 13774 22944 38437 67537 131342 229029

#max. freq. sets 7853 11311 16848 25937 50232 114114

#min. infreq. sets 392889 490203 736589 1462121 4776165 -

maximum use of memory: 60MB

T40I10D100K: #items 1000, #transactions 100000, ave. size of transaction 39.6

support 1600 1300 1000 700

IBE 378 552 1122 2238

#freq. sets 4591 10110 65236 550126

#closed sets 4591 10110 65236 548349

#max. freq. sets 4003 6944 21692 41473

#min. infreq. sets 245719 326716 521417 1079237

9

maximum memory use: 74MB

pumsb: #items 7117, #transactions 49046, ave. size of transaction 74

support 45000 44000 43000 42000

IBE 301 582 1069 1840

#freq. sets 1163 2993 7044 15757

#closed sets 685 1655 3582 7013

#max. freq. sets 144 288 541 932

#min. infreq. sets 7482 7737 8402 9468

maximum use of memory: 70MB

pumsb star: #items 7117, #transactions 49046, ave. size of transaction 50

support 30000 25000 20000 15000 10000 5000

IBE 8 19 59 161 556 2947

#freq. sets 165 627 21334 356945 >2G -

#closed sets 66 221 2314 14274 111849 -

#max. freq. sets 4 17 81 315 1666 15683

#min. infreq. sets 7143 7355 8020 9635 19087 98938

maximum use of memory: 44MB

kosarak: #items 41217, #transactions 990002, ave. size of transaction 8

support 3000 2500 2000 1500 1000

IBE 226 294 528 759 2101

#freq. sets 4894 8561 34483 219725 711424

#closed sets 4865 8503 31604 157393 496675

#max. freq. sets 792 1146 2858 4204 16231

#min. infreq. sets 87974 120591 200195 406287 875391

maximum use of memory: 170MB

mushroom: #items 120, #transactions 8124, ave. size of transaction 23

support 30 20 10 5 2

IBE 132 231 365 475 433

#freq. sets 505205917 781458545 1662769667 >2G >2G

#closed sets 91122 109304 145482 181243 230585

#max. freq. sets 15232 21396 30809 34131 27299

#min. infreq. sets 66085 79481 81746 69945 31880

maximum use of memory 47MB

connect: #items 130, #transactions 67577, ave. size of transaction 43

support 63000 60000 57000 54000 51000 48000 45000

IBE 229 391 640 893 1154 1381 1643

#freq. sets 6327 41143 171239 541911 1436863 - -

#closed sets 1566 4372 9041 15210 23329 - -

#max. freq. sets 152 269 464 671 913 1166 1466

#min. infreq. sets 297 486 703 980 1291 1622 1969

maximum use of memory: 60MB

chess: #items 76, #transactions 3196, ave. size of transaction 37

support 2200 1900 1600 1300 1000

IBE 19 61 176 555 2191

#freq. sets 59181 278734 1261227 5764922 29442848

#closed sets 28358 106125 366529 1247700 4445373

#max. freq. sets 1047 3673 11209 35417 114382

#min. infreq. sets 1725 5202 14969 46727 152317

maximum use of memory: 50MB

10

Probabilistic Iterative Expansion of Candidates

in Mining Frequent Itemsets

Attila Gyenesei and Jukka Teuhola

Turku Centre for Computer Science, Dept. of Inf. Technology, Univ. of Turku, Finland

Email: {gyenesei,teuhola}@it.utu.fi

Abstract

A simple new algorithm is suggested for frequent

itemset mining, using item probabilities as the basis for

generating candidates. The method first finds all the

frequent items, and then generates an estimate of the

frequent sets, assuming item independence. The candi-

dates are stored in a trie where each path from the root to

a node represents one candidate itemset. The method

expands the trie iteratively, until all frequent itemsets are

found. Expansion is based on scanning through the data

set in each iteration cycle, and extending the subtries

based on observed node frequencies. Trie probing can be

restricted to only those nodes which possibly need exten-

sion. The number of candidates is usually quite moderate;

for dense datasets 2-4 times the number of final frequent

itemsets, for non-dense sets somewhat more. In practical

experiments the method has been observed to make

clearly fewer passes than the well-known Apriori method.

As for speed, our non-optimised implementation is in some

cases faster, in some others slower than the comparison

methods.

1. Introduction

We study the well-known problem of finding frequent

itemsets from a transaction database, see [2]. A trans-

action in this case means a set of so-called items. For

example, a supermarket basket is represented as a trans-

action, where the purchased products represent the items.

The database may contain millions of such transactions.

The frequent itemset mining is a task, where we should

find those subsets of items that occur at least in a given

minimum number of transactions. This is an important

basic task, applicable in solving more advanced data

mining problems, for example discovering association

rules [2]. What makes the task difficult is that the number

of potential frequent itemsets is exponential in the number

of distinct items.

In this paper, we follow the notations of Goethals [7].

The overall set of items is denoted by I. Any subset X I

is called an itemset. If X has k items, it is called a k-

itemset. A transaction is an itemset identified by a tid. A

transaction with itemset Y is said to support itemset X, if

X Y. The cover of an itemset X in a database D is the set

of transactions in D that support X. The support of itemset

X is the size of its cover in D. The relative frequency

(probability) of itemset X with respect to D is

D

DXSupport
DXP

),(
),(

(1)

An itemset X is frequent if its support is greater than or

equal to a given threshold . We can also express the

condition using a relative threshold for the frequency:

P(X, D) rel , where 0 rel 1. There are variants of

the basic �all-frequent-itemsets� problem, namely the

maximal and closed itemset mining problems, see [1, 4, 5,

8, 12]. However, here we restrict ourselves to the basic

task.

A large number of algorithms have been suggested for

frequent itemset mining during the last decade; for

surveys, see [7, 10, 15]. Most of the algorithms share the

same general approach: generate a set of candidate

itemsets, count their frequencies in D, and use the

obtained information in generating more candidates, until

the complete set is found. The methods differ mainly in

the order and extent of candidate generation. The most

famous is probably the Apriori algorithm, developed

independently by Agrawal et al. [3] and Mannila et al.

[11]. It is a representative of breadth-first candidate

generation: it first finds all frequent 1-itemsets, then all

frequent 2-itemsets, etc. The core of the method is clever

pruning of candidate k-itemsets, for which there exists a

non-frequent k-1-subset. This is an application of the

obvious monotonicity property: All subsets of a frequent

itemset must also be frequent. Apriori is essentially based

on this property.

The other main candidate generation approach is depth-

first order, of which the best-known representatives are

Eclat [14] and FP-growth [9] (though the �candidate�

concept in the context of FP-growth is disputable). These

two are generally considered to be among the fastest

algorithms for frequent itemset mining. However, we shall

mainly use Apriori as a reference method, because it is

technically closer to ours.

Most of the suggested methods are analytical in the

sense that they are based on logical inductions to restrict

the number of candidates to be checked. Our approach

(called PIE) is probabilistic, based on relative item

frequencies, using which we compute estimates for

itemset frequencies in candidate generation. More

precisely, we generate iteratively improving approxi-

mations (candidate itemsets) to the solution. Our general

endeavour has been to develop a relatively simple method,

with fast basic steps and few iteration cycles, at the cost of

somewhat increased number of candidates. However,

another goal is that the method should be robust, i.e. it

should work reasonably fast for all kinds of datasets.

2. Method description

Our method can be characterized as a generate-and-test

algorithm, such as Apriori. However, our candidate

generation is based on probabilistic estimates of the

supports of itemsets. The testing phase is rather similar to

Apriori, but involves special book-keeping to lay a basis

for the next generation phase.

We start with a general description of the main steps of

the algorithm. The first thing to do is to determine the

frequencies of all items in the dataset, and select the

frequent ones for subsequent processing. If there are m

frequent items, we internally identify them by numbers

0, �, m-1. For each item i, we use its probability (relative

frequency) P(i) in the generation of candidates for

frequent itemsets.

The candidates are represented as a trie structure,

which is normal in this context, see [7]. Each node is

labelled by one item, and a path of labels from the root to

a node represents an itemset. The root itself represents the

empty itemset. The paths are sorted, so that a subtrie

rooted by item i can contain only items > i. Note also that

several nodes in the trie can have the same item label, but

not on a single path. A complete trie, storing all subsets of

the whole itemset, would have 2m nodes and be

structurally a binomial tree [13], where on level j there are

)(m
j nodes, see Fig. 1 for m = 4.

The trie is used for book-keeping purposes. However, it

is important to avoid building the complete trie, but only

some upper part of it, so that the nodes (i.e. their root

paths) represent reasonable candidates for frequent sets. In

our algorithm, the first approximation for candidate

itemsets is obtained by computing estimates for their

probabilities, assuming independence of item occurrences.

It means that, for example, for an itemset {x, y, z} the

estimated probability is the product P(x)P(y)P(z). Nodes

are created in the trie from root down along all paths as

long as the path-related probability is not less that the

threshold rel. Note that the probability values are

monotonically non-increasing on the way down. Fig. 2

Figure 1. The complete trie for 4 items.

Figure 2. An initial trie for the transaction set
{(0, 3), (1, 2), (0, 1, 3), (1)}, with minimum support

threshold = 1/6. The virtual nodes with pro-
babilities < 1/6 are shown using dashed lines.

shows an example of the initial trie for a given set of

transactions (with m = 4). Those nodes of the complete

trie (Fig. 1) that do not exist in the actual trie are called

virtual nodes, and marked with dashed circles in Fig. 2.

The next step is to read the transactions and count the

true number of occurrences for each node (i.e. the related

path support) in the trie. Simultaneously, for each visited

node, we maintain a counter called pending support (PS),

being the number of transactions for which at least one

3/16

1/4

2 3 3

1 2 3

0

2

3

3

1

3

2 3

3

2 3 3

1 2 3

0

2

3

3

1

3

2 3

3

1/2 3/4 1/2

3/8 1/8 1/4 3/8 1/8

3/32 3/16 1/16 3/32

3/64

virtual child of the node would match. The pending

support will be our criterion for the expansion of the node:

If PS(x) , then it is possible that a virtual child of node

x is frequent, and the node must be expanded. If there are

no such nodes, the algorithm is ready, and the result can

be read from the trie: All nodes with support represent

frequent itemsets.

Trie expansion starts the next cycle, and we iterate until

the stopping condition holds. However, we must be very

careful in the expansion: which virtual nodes should we

materialize (and how deep, recursively), in order to avoid

trie �explosion�, but yet approach the final solution? Here

we apply item probabilities, again. In principle, we could

take advantage of all information available in the current

trie (frequencies of subsets, etc.), as is done in the Apriori

algorithm and many others. However, we prefer simpler

calculation, based on global probabilities of items.

Suppose that we have a node x with pending support

PS(x) . Assume that it has virtual child items v0, v1, �,

vs-1 with global probabilities P(v0), P(v1), �, P(vs-1). Every

transaction contributing to PS(x) has a match with at least

one of v0, v1, �, vs-1. The local probability (LP) for a

match with vi is computed as follows:

)(ivLP

)10(matches, , v One of v matches |iv P

 matches), , vP(One of v

 matches, vOne of v matchesivP

10

))10()((

)10(

)(

 matches, , vOne of vP

 matchesivP

))(1())1(1))(0(1(1

)(

svPvPvP

 ivP
 (2)

Using this formula, we get an estimated support ES(vi):

))(()()(iVParentPSivLPivES (3)

If ES(vi) , then we conclude that vi is expected to be

frequent. However, in order to guarantee a finite number

of iterations in the worst case, we have to relax this

condition a bit. Since the true distribution may be very

skewed, almost the whole pending support may belong to

only one virtual child. To ensure convergence, we apply

the following condition for child expansion in the kth

iteration,

 k
ivES)((4)

with some constant between 0 and 1. In the worst case

this will eventually (when k is high enough) result in

expansion, to get rid of a PS-value . In our tests, we

used the heuristic value = average probability of fre-

quent items. The reasoning behind this choice is that it

speeds up the local expansion growth by one level, on the

average (k levels for k). This acceleration restricts the

number of iterations efficiently. The largest extensions are

applied only to the �skewest� subtries, so that the total size

of the trie remains tolerable. Another approach to choose

 would be to do a statistical analysis to determine confi-

dence bounds for ES. However, this is left for future work.

Fig. 3 shows an example of trie expansion, assuming

that the minimum support threshold = 80, = 0.8, and k

= 1. The item probabilities are assumed to be P(y) = 0.7,

P(z) = 0.5, and P(v) = 0.8. Node t has a pending support of

100, related to its two virtual children, y and z. This means

that 100 transactions contained the path from root to t,

plus either or both of items y and z, so we have to test for

expansion. Our formula gives y a local probability LP(y) =

0.7 / (1 (1 0.7)(1 0.5)) 0.82, so the estimated support

is 82 > = 64, and we expand y. However, the local

probability of z is only 0.59, so its estimated support is

59, and it will not be expanded.

Figure 3. An example of expansion for probabili-
ties P(y) = 0.7, P(z) = 0.5, and P(v) = 0.8.

When a virtual node (y) has been materialized, we

immediately test also its expansion, based on its ES-value,

recursively. However, in the recursive steps we cannot

apply formula (2), because we have no evidence of the

children of y. Instead, we apply the unconditional

probabilities of z and v in estimation: LP(z) = 82 0.5 = 41

< = 64, and LP(v) = 82 0.8 = 65.6 > 64. Node v is

materialized, but z is not. Expansion test continues down

from v. Thus, both in initialization of the trie and in its

expansion phases, we can create several new levels (i.e.

longer candidates) at a time, contrary to e.g. the base

version of Apriori. It is true that also Apriori can be

modified to create several candidate levels at a time, but at

the cost of increased number of candidates.

After the expansion phase the iteration continues with

the counting phase, and new values for node supports and

pending supports are determined. The two phases alternate

t

�

PS=100

ES=82 ES=59

ES=41 ES=65.6

x y z

z v

until all pending supports are less than . We have given

our method the name �PIE�, reflecting this Probabilistic

Iterative Expansion property.

3. Elaboration

The above described basic version does a lot of extra

work. One observation is that as soon as the pending

support of some node x is smaller than , we can often

�freeze� the whole subtrie, because it will not give us

anything new; we call it �ready�. The readiness of nodes

can be checked easily with a recursive process: A node x

is ready if PS(x) < and all its real children are ready.

The readiness can be utilized to reduce work both in

counting and expansion phases. In counting, we process

one transaction at a time and scan its item subsets down

the trie, but only until the first ready node on each path.

Also the expansion procedure is skipped for ready nodes.

Finally, a simple stopping condition is when the root

becomes ready.

Another tailoring, not yet implemented, relates to the

observation that most of the frequent itemsets are found in

the first few iterations, and a lot of I/O effort is spent to

find the last few frequent sets. For those, not all

transactions are needed in solving the frequency. In the

counting phase, we can distinguish between relevant and

irrelevant transactions. A transaction is irrelevant, if it

does not increase the pending support value of any non-

ready node. If the number of relevant transactions is small

enough, we can store them separately (in main memory or

temporary file) during the next scanning phase.

Our implementation of the trie is quite simple; saving

memory is considered, but not as the first preference. The

child linkage is implemented as an array of pointers, and

the frequent items are renumbered to 0, �, m-1 (if there

are m frequent items) to be able to use them as indices to

the array. A minor improvement is that for item i, we need

only m-i-1 pointers, corresponding to the possible children

i+1, �, m-1.

The main restriction of the current implementation is

the assumption that the trie fits in the main memory.

Compression of nodes would help to some extent: Now

we reserve a pointer for every possible child node, but

most of them are null. Storing only non-null pointers

saves memory, but makes the trie scanning slower. Also,

we could release the ready nodes as soon as they are

detected, in order to make room for expansions. Of

course, before releasing, the related frequent itemsets

should be reported. However, a fully general solution

should work for any main memory and trie size. Some

kind of external representation should be developed, but

this is left for future work.

A high-level pseudocode of the current implementation

is given in the following. The recursive parts are not

coded explicitly, but should be rather obvious.

Algorithm PIE Probabilistic iterative expansion of
candidates in frequent itemset mining

Input: A transaction database D, the minimum

support threshold .
Output: The complete set of frequent itemsets.

1. // Initial steps.
2. scan D and collect the set F of frequent items;

3. := average probability of items in F;
4. iter := 0;

5. // The first generation of candidates, based on

 // item probabilities.
6. create a PIE-trie P so that it contains all such

 ordered subsets S F for which

 (Prob(s S)) |D| ; // Frequency test
7. set the status of all nodes of P to not-ready;

8. // The main loop: alternating count, test and

 // expand.
9. loop

10. // Scan the database and check readiness.
11. scan D and count the support and pending

 support values for non-ready nodes in P;
12. iter := iter + 1;

13. for each node p P do

14. if pending_support(p) < then
15. if p is a leaf then set p ready
16. else if the children of p are ready then
17. set p ready;
18. if root(P) is ready then exit loop;

19. // Expansion phase: Creation of subtries on

 // the basis of observed pending supports.
20. for each non-ready node p in P do

21. if pending_support(p) then
22. for each virtual child v of p do
23. compute local_prob(v) by formula (2);
24. estim_support(v) :=

 local_prob(v) pending_support(p);

25. if estim_support(v)
iter

 then

26. create node v as the child of p;

27. add such ordered subsets S F\{1..v}

 as descendant paths of v, for which

 (Prob(s S)) estim_support(v)

iter

 ;

28. // Gather up results from the trie
29. return the paths for nodes p in P such that

 support(p) ;
30. end

4. Experimental results

For verifying the usability of our PIE algorithm, we

used four of the test datasets made available to the

Workshop on Frequent Itemset Mining Implementations

(FIMI�03) [6]. The test datasets and some of their

properties are described in Table 1. They represent rather

different kinds of domains, and we wanted to include both

dense and non-dense datasets, as well as various numbers

of items.

Table 1. Test dataset description

Dataset #Transactions #Items

Chess 3 196 75

Mushroom 8 124 119

T40I10D100K 100 000 942

Kosarak 900 002 41 270

For the PIE method, the interesting statistics to be

collected are the number of candidates, depth of the trie,

and the number of iterations. These results are given in

Table 2 for selected values of , for the �Chess� dataset.

We chose values of that keep the number of frequent

itemsets reasonable (extremely high numbers are probably

useless for any application). The table shows also the

number of frequent items and frequent sets, to enable

comparison with the number of candidates. For this dense

dataset, the number of candidates varies between 2-4

times the number of frequent itemsets. For non-dense

datasets the ratio is usually larger. Table 2 shows also the

values of the �security parameter� , being the average

probability of frequent items. Considering I/O perfor-

mance, we can see that the number of iteration cycles (=

number of file scans) is quite small, compared to the base

version of the Apriori method, for which the largest

frequent itemset dictates the number of iterations. This is

roughly the same as the trie depth, as shown in Table 2.

The PIE method can also be characterized by describ-

ing the development of the trie during the iterations. The

most interesting figures are the number of nodes and the

number of ready nodes, given in Table 3. Especially the

number of ready nodes implies that even though we have

rather many candidates (= nodes in the trie), large parts of

them are not touched in the later iterations.

Table 3. Development of the trie for dataset

�Chess�, with three different values of .

 Iteration
#Frequent

sets found
#Nodes

#Ready

nodes

1 4 720 4 766 2 021

2 6 036 9 583 9 255

3 6 134 10 296 10 173

2600

4 6 135 10 516 10 516

1 15 601 15 760 5 219

2 20 344 34 995 25 631

3 20 580 47 203 46 952
2400

4 20 582 47 515 47 515

1 44 022 44 800 1 210

2 58 319 112 370 64 174

3 59 176 206 292 196 782

4 59 181 216 931 216 922

2200

5 59 181 216 943 216 943

For speed comparison, we chose the Apriori and FP-

growth implementations, provided by Bart Goethals [6].

The results for the four test datasets and for different

minimum support thresholds are shown in Table 4. The

processor used in the experiments was a 1.5 GHz Pentium

4, with 512 MB main memory. We used a g++ compiler,

using optimizing switch �O6. The PIE algorithm was

coded in C.

Table 2. Statistics from the PIE algorithm for dataset �Chess�.

#Frequent

items

#Frequent

sets
Alpha #Candidates

Trie

depth
#Iterations

#Apriori�s

iterations

3 000 12 155 0.970 400 6 3 6

2 900 13 473 0.967 1 042 8 4 7

2 800 16 1 350 0.953 2 495 8 4 8

2 700 17 3 134 0.947 5 218 9 4 8

2 600 19 6 135 0.934 10 516 10 4 9

2 500 22 11 493 0.914 18 709 11 4 10

2 400 23 20 582 0.907 47 515 12 4 11

2 300 24 35 266 0.900 131 108 13 4 12

2 200 27 59 181 0.877 216 943 14 5 13

Table 4. Comparison of execution times (in
seconds) of three frequent itemset mining

programs for four test datasets.

(a) Chess

#Freq.

sets
Apriori

FP-

growth
PIE

3 000 155 0.312 0.250 0.125

2 900 473 0.469 0.266 0.265

2 800 1 350 0.797 0.297 1.813

2 700 3 134 1.438 0.344 6.938

2 600 6 135 3.016 0.438 14.876

2 500 11 493 10.204 0.610 26.360

2 400 20 582 21.907 0.829 78.325

2 300 35 266 42.048 1.156 203.828

2 200 59 181 73.297 1.766 315.562

(b) Mushroom

#Freq.

sets
Apriori

FP-

growth
PIE

5 000 41 0.375 0.391 0.062

4 500 97 0.437 0.406 0.094

4 000 167 0.578 0.438 0.141

3 500 369 0.797 0.500 0.297

3 000 931 1.062 0.546 1.157

2 500 2 365 1.781 0.610 6.046

2 000 6 613 3.719 0.750 27.047

1 500 56 693 55.110 1.124 153.187

(c) T40I10D100K

#Freq.

sets
Apriori

FP-

growth
PIE

20 000 5 2.797 6.328 0.797

18 000 9 2.828 6.578 1.110

16 000 17 3.001 7.250 1.156

14 000 24 3.141 8.484 1.187

12 000 48 3.578 14.750 1.906

10 000 82 4.296 23.874 4.344

8 000 137 7.859 41.203 11.796

6 000 239 20.531 72.985 29.671

4 000 440 35.282 114.953 68.672

(c) Kosarak

#Freq.

sets
Apriori

FP-

growth
PIE

20 000 121 27.970 30.141 5.203

18 000 141 28.438 31.296 6.110

16 000 167 29.016 32.765 7.969

14 000 202 29.061 33.516 9.688

12 000 267 29.766 34.875 12.032

10 000 376 34.906 37.657 18.016

8 000 575 35.891 41.657 30.453

6 000 1 110 39.656 51.922 70.376

We can see that in some situations the PIE algorithm is

the fastest, in some others the slowest. This is probably a

general observation: the performance of most frequent

itemset mining algorithms is highly dependent on the data

set and threshold. It seems that PIE is at its best for sparse

datasets (such as T40I10D100K and Kosarak), but not so

good for very dense datasets (such as �Chess� and

�Mushroom�). Its speed for large thresholds probably

results from the simplicity of the algorithm. For smaller

thresholds, the trie gets large and the counting starts to

consume more time, especially with a small main memory

size.

One might guess that our method is at its best for

random data sets, because those would correspond to our

assumption about independent item occurrences. We

tested this with a dataset of 100 000 transactions, each of

which contained 20 random items out of 30 possible. The

results were rather interesting: For all tested thresholds for

minimum support, we found all the frequent itemsets in

the first iteration. However, verification of the complete-

ness required one or two additional iterations, with a

clearly higher number of candidates, consuming a

majority of the total time. Table 5 shows the time and

number of candidates both after the first and after the final

iteration. The stepwise growth of the values reveals the

levelwise growth of the trie. Apriori worked well also for

this dataset, being in most cases faster than PIE. Results

for FP-growth (not shown) are naturally much slower,

because randomness prevents a compact representation of

the transactions.

We wish to point out that our implementation was an

initial version, with no special tricks for speed-up. We are

convinced that the code details can be improved to make

the method still more competitive. For example, buffering

of transactions (or temporary files) were not used to

enhance the I/O performance.

5. Conclusions and future work

A probability-based approach was suggested for

frequent itemset mining, as an alternative to the �analytic�

methods common today. It has been observed to be rather

robust, working reasonably well for various kinds of

datasets. The number of candidate itemsets does not

�explode�, so that the data structure (trie) can be kept in

the main memory in most practical cases.

The number of iterations is smallest for random

datasets, because candidate generation is based on just that

assumption. For skewed datasets, the number of iterations

may somewhat grow. This is partly due to our simplifying

premise that the items are independent. This point could

be tackled by making use of the conditional probabilities

obtainable from the trie. Initial tests did not show any

significant advantage over the basic approach, but a more

Table 5. Statistics from the PIE algorithm for a random dataset.

PIE

After iteration 1. After the last iteration (final)
Apriori

#Freq.

sets #Freq.

sets

Time

(sec.)
#Cand. #Cand.

#Iter-

ations

Time

(sec.)

#Iter-

ations

Time

(sec.)

50 000 30 30 0.500 30 464 2 2.234 2 3.953

44 000 42 42 2.016 465 509 3 2.704 3 5.173

43 800 124 124 1.875 465 1 247 3 10.579 3 6.015

43 700 214 214 1.876 465 1 792 3 20.250 3 7.235

43 600 331 331 1.891 465 2 775 3 37.375 3 9.657

43 500 413 413 1.860 465 3 530 3 48.953 3 11.876

40 000 465 465 1.844 465 4 443 2 62.000 3 13.875

28 400 522 522 60.265 4 525 4 900 3 64.235 4 15.016

28 300 724 724 61.422 4 525 5 989 3 82.140 4 15.531

28 200 1 270 1 270 61.469 4 525 8 697 3 115.250 4 19.265

28 100 2 223 2 223 61.734 4 525 13 608 3 167.047 4 31.266

28 000 3 357 3 357 60.969 4 525 19 909 3 219.578 4 69.797

sophisticated probabilistic analysis might imply some

ways to restrict the number of candidates. The exploration

of these elaborations, as well as tuning the buffering, data

structure, and parameters, is left for future work.

References

 [1] R. Agrawal, C. Aggarwal, and V.V.V. Prasad, �Depth First

Generation of Long Patterns�, In R. Ramakrishnan, S.

Stolfo, R. Bayardo, and I. Parsa (eds.), Proc. of the Int.

Conf. on Knowledge Discovery and Data Mining, ACM,

Aug. 2000, pp. 108-118.

 [2] R. Agrawal, T. Imielinski, and A. Swami, �Mining Associ-

ation Rules Between Sets of Items in Large Databases�, In

P. Buneman and S. Jajodia (eds.), Proc. of ACM SIGMOD

Int. Conf. of Management of Data, May 1993, pp. 207-216.

 [3] R. Agrawal and R. Srikant, �Fast Algorithms for Mining

Association Rules in Large Databases�, In J.B. Bocca, M.

Jarke, and C. Zaniolo (eds.), Proc. of the 20th VLDB Conf.,

Sept. 1994, pp. 487-499.

 [4] R.J. Bayardo, �Efficiently Mining Long Patterns from

Databases�, In L.M. Haas and A. Tiwary (eds.), Proc. of

the ACM SIGMOD Int. Conf. on Management of Data,

June 1998, pp. 85-93.

 [5] D. Burdick, M. Calimlim, and J. Gehrke, �MAFIA: a

Maximal Frequent Itemset Algorithm for Transactional

Databases�, Proc. of IEEE Int. Conf. on Data Engineering,

April 2001, pp. 443-552.

 [6] Frequent Itemset Mining Implementations (FIMI�03)

Workshop website, http://fimi.cs.helsinki.fi, 2003.

 [7] B. Goethals, �Efficient Frequent Pattern Mining�, PhD

thesis, University of Limburg, Belgium, Dec. 2002.

 [8] K. Gouda and M.J. Zaki, �Efficiently Mining Maximal

Frequent Itemsets�, In N. Cercone, T.Y. Lin, and X. Wu

(eds.), Proc. of 2001 IEEE International Conference on

Data Mining, Nov. 2001, pp. 163-170.

 [9] J. Han, J. Pei, and Y. Yin, �Mining Frequent Patterns

Without Candidate Generation�, In W. Chen, J. Naughton,

and P.A. Bernstein (eds.), Proc. of ACM SIGMOD Int.

Conf. on Management of Data, 2000, pp. 1-12.

[10] J. Hipp, U. Güntzer, and N. Nakhaeizadeh, �Algorithms

for Association Rule Mining - a General Survey and

Comparison�, ACM SIGKDD Explorations 2, July 2000,

pp. 58-65.

[11] H. Mannila, H. Toivonen, and A.I. Verkamo, �Efficient

Algorithms for Discovering Association Rules�, In U.M.

Fayyad and R. Uthurusamy (eds.), Proc. of the AAAI

Workshop on Knowledge Discovery in Databases, July

1994, pp. 181-192.

[12] J. Pei, J. Han, and R. Mao, �Closet: An Efficient Algo-

rithm for Mining Frequent Closed Itemsets�, Proc. of ACM

SIGMOD Workshop on Research Issues in Data Mining

and Knowledge Discovery, May 2000, pp. 21-30.

[13] J. Vuillemin, �A Data Structure for Manipulating Priority

Queues�, Comm. of the ACM, 21(4), 1978, pp. 309-314.

[14] M.J. Zaki, �Scalable Algorithms for Association Mining�,

IEEE Transactions on Knowledge and Data Engineering

12 (3), 2000, pp. 372-390.

[15] Z. Zheng, R. Kohavi, and L. Mason, �Real World Perfor-

mance of Association Rule Algorithms�, In F. Provost and

R. Srikant (eds.), Proc. of the Seventh ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, 2001, pp. 401-406.

Intersecting Data to Closed Sets with Constraints

Taneli Mielikäinen
HIIT Basic Research Unit

Department of Computer Science
University of Helsinki, Finland

Taneli.Mielikainen@cs.Helsinki.FI

Abstract

We describe a method for computing closed sets with
data-dependent constraints. Especially, we show how the
method can be adapted to find frequent closed sets in a
given data set. The current preliminary implementation of
the method is quite inefficient but more powerful pruning
techniques could be used. Also, the method can be easily
applied to wide variety of constraints. Regardless of the po-
tential practical usefulness of the method, we hope that the
sketched approach can shed some additional light to fre-
quent closed set mining.

1 Introduction

Much of the research in data mining has concentrated on
finding from some given (finite) set R all subsets that sat-
isfy some condition. (For the rest of the paper we assume,
w.l.o.g., that R is a finite subset of N.)

The most prominent example of this task is probably
the task of finding all subsets X ⊆ R that are contained
at least minsupp times in the sets of a given sequence
d = d1 . . . dn of subsets di ⊆ R, i.e., to find the collec-
tion

F (minsupp, d) = {X ⊆ R : supp (X, d) ≥ minsupp}

where

supp (X, d) = |{i : X ⊆ di, 1 ≤ i ≤ n}| .

The collection F (minsupp, d) is known as the collection
of frequent sets. (We could have defined the collection of
frequent sets by by the frequency of sets which is a normal-
ized version of supports: fr (X, d) = supp (X, d) /n.)

Recently one particular subclass of frequent sets, fre-
quent closed sets, has received quite much attention. A set
X is closed in d if supp (X, d) > supp (Y, d) for all proper

supersets Y of X . The collection of closed sets (in d) is
denoted by

C (d) = {X ⊆ R : Y ⊆ R, Y ⊃ X

⇒ supp (X, d) > supp (Y.d)}

The collection of frequent closed sets consists of the sets
that are frequent and closed, i.e.,

FC (minsupp, d) = F (minsupp, d) ∩ C (d) .

Most of the closed set mining algorithms [3, 12, 13, 14,
16, 19, 20] are based on backtracking [10]. In this paper we
describe an alternative approach based on alternating be-
tween closed set generation by intersections and pruning
heuristics. The method can be adapted to many kinds of
constraints and needs only few passes over the data.

The paper is organized as follows. In Section 2 we
sketch the method, in Section 3 we adapt the method for
finding closed sets with frequency constraints, in Section 4
we describe some implementations details the method, and
in Section 5 we experimentally study the properties of the
method. Section 6 concludes the work and suggests some
improvements to the work.

2 The Method

Let us assume that R =
⋃

i∈{1,...,n} di as sometimes R is
not known explicitly. Furthermore, we shall use shorthand
di,j for the subsequence di . . . dj , 1 ≤ i ≤ j ≤ n. The
elements of R are sometimes called items and the sets di

transactions.
As noted in the previous section, a set X ⊆ R is closed

in d if and only if supp (X, d) > supp (Y, d) for all proper
supersets Y of X . However, the closed sets can be defined
also as intersection of the transactions (see e.g. [11]):

Definition 1 A set X ⊆ R is closed in d if and only if there
is I ⊆ {1, . . . , n} such that X =

⋂

i∈I di. (By convention,
⋂

i∈∅ di = R.)

A straightforward implementation of Definition 1

C (d) =

{

⋂

i∈I

di : I ⊆ {1, . . . , n}

}

leads to quite inefficient method for computing all closed
sets:1

BRUTE-FORCE(d)
1 R←

⋃

i∈{1,...,n} di

2 supp (R)← 0
3 for each I ⊆ {1, . . . , n} , I 6= ∅
4 do X ←

⋂

i∈I di

5 if supp (X) < |I|
6 then supp (X)← |I|
7 return (supp : C → N)

A more efficient solution can be found by the following
recursive definition of closed sets:

C (d1) = {R, d1}

C (d1,i+1) = C (d1,i) ∪ {X ∩ di+1 : X ∈ C (d1,i)}

Thus the closed sets can be computed by initializing
C =

{

R =
⋃

i∈{1,...,n} di

}

(since R is always closed), ini-
tializing supp to R 7→ 0, and calling the following algo-
rithm for each di (1 ≤ i ≤ n):
INTERSECT(supp : C → N, di)
1 for each X ∈ C
2 do C ← C ∪ {X ∩ di}
3 if supp (X ∩ di) < supp (X) + 1
4 then supp (X ∩ di)← supp (X) + 1
5 return (supp : C → N)

Using the above algorithm the sequence d does not have
to be stored as each di is needed just for updating the current
approximation of R and intersecting the current collection
C of closed sets.

The closed sets can be very useful way to understand
data sets that consist of only few different transactions and
they have been studied in the field of Formal Concept Anal-
ysis [6]. However, many times all closed sets are not of
interest but only frequent closed sets are needed. The sim-
plest way to adapt the approach described above for finding
the frequent closed sets is to first compute all closed sets
C (d) and then remove the infrequent ones:

FC (minsupp, d) = {X ∈ C (d) : supp (X, d) ≥ minsupp}

by removing all closed sets that are not frequent.
Unfortunately the collection of closed sets can be much

larger than the collection of frequent closed sets. Thus the

1If supp (X) is not defined then its value is interpreted to be 0.

above approach can generate huge number of closed sets
that do not have to be generated.

A better approach to find the frequent closed sets is to
prune the closed sets that cannot satisfy the constraints –
such as the minimum support constraint – as soon as pos-
sible. If the sequence is scanned only once and nothing is
known about the sequence d in advance then no pruning of
infrequent closed sets can be done: the rest of the sequence
can always contain each closed set at least minsupp times.

If more than one pass can be afforded or something is
known about the data d in advance then the pruning of
closed sets that do not satisfy the constraints can be done
as follows:
INTERSECTOR(d)
1 supp← INIT-CONSTRAINTS (d)
2 for each di in d
3 do supp← INTERSECT (supp, di)
4 UPDATE-CONSTRAINTS (supp, di)
5 supp← PRUNE-BY-CONSTRAINTS (supp, di)
6 return (supp : C → N)

The function INTERSECTOR is based on three subrou-
tines: function INIT-CONSTRAINTS initializes the data
structures used in pruning and computes the initial col-
lection of closed sets, e.g. the the collection C = {R},
function UPDATE-CONSTRAINTS updates the data struc-
tures by one transaction at a time, and function PRUNE-BY-
CONSTRAINTS prunes those current closed sets that cannot
satisfy the constraints.

3 Adaptation to Frequency Constraints

The actual behaviors of the functions INIT-
CONSTRAINTS, UPDATE-CONSTRAINTS and PRUNE-BY-
CONSTRAINTS depend on the constraints used to determine
the closed sets that are interesting. We shall concentrate
on implementing the minimum and the maximum support
constraints, i.e., finding the closed sets X ∈ C (d) such that
minsupp ≤ supp (X, d) ≤ maxsupp.

The efficiency of pruning depends crucially on how
much is known about the data. For example, if only the
number of transactions in the sequence is known, then all
possible pruning is essentially determined by Observation 1
and Observation 2.

Observation 1 For all 1 ≤ i ≤ n holds:

supp (X, d1,i)+n−i < minsupp⇒ supp (X, d) < minsupp

Observation 2 For all 1 ≤ i ≤ n holds:

supp (X, d1,i) > maxsupp⇒ supp (X, d) > maxsupp

Checking the constraints induced by Observation 1 and
Observation 2 can be computed very efficiently. However,
the pruning based on these observations might not be very
effective: all closed sets in d1,n−minsupp can have fre-
quency at least minsupp and all closed sets in d1,maxsupp

can have frequency at most maxsupp. Thus all closed sets
in d1,min{n−minsupp,maxsupp} are generated before the ob-
servations can be used to prune anything.

To be able to do more extreme pruning we need more
information about the sequence d. If we are able to know the
number of transactions in the sequence, it might be possible
to count the supports of items. In that case Observation 3
can be exploited.

Observation 3 If there exists A ∈ X such that
supp (X, d1,i) + supp ({A} , di+1,n) < minsupp then
supp (X, d) < minsupp.

Also, if we know the frequencies of some sets then we
can make the following observation:

Observation 4 If there exists Y ⊆ X such that
supp (X, d1,i) + supp (Y, di+1,n) < minsupp then
supp (X, d) < minsupp.

Note that these observations do not mean that we could
remove the infrequent closed sets from the collection since
an intersection of an infrequent closed set with some trans-
action might still be frequent in the sequence d. However,
we can do some pruning based on the observations as shown
in Proposition 1.

Proposition 1 Let Z be the largest subset of X ∈
C such that for all A ∈ Z hold supp (X, d1,i) +
supp ({A} , di+1,n) ≥ minsupp. Then X ∈ C can be re-
moved from C if there is a W ⊆ Y ∈ C, Z ⊂ W , such
that supp (Y, d1,i) ≥ supp (X, d1,i) and for all A ∈ W
hold supp (Y, d1,i)+supp ({A} , di+1,n) ≥ minsupp, and
replaced by Z otherwise.

Proof. All frequent subsets of X are contained in Z. If
there is a proper superset W ⊆ Y ∈ C of Z such that
supp (Y, d1,i) + supp ({A} , di+1,n) ≥ minsupp then all
frequent subsets of X are contained in W and thus X can
be removed. Otherwise Z is the largest subset of X that can
be frequent and there is no superset of Z that could be fre-
quent. If Z is not closed, then its support is equal to some of
its proper supersets’ supports. If Z is added to C then none
of proper supersets is frequent and thus also Z is infrequent.
�

This idea of replacing infrequent sets based on the sup-
ports items can be generalized to the case where we know
supports for some collection S of sets.

Proposition 2 Let S be the collection of sets such that
supp (Y, d1,i) and supp (Y, d1,i) are known for all Y ∈ S,
and let S ′ consist of sets Y ∈ S, Y ⊆ X , such that
supp (X, d1,i) + supp (Y, di+1,n) < minsupp. Then all
frequent subsets of X ∈ C are the collection S ′′ of subsets
Z ⊆ X such that Z 6⊆ Y for all Y ∈ S ′, no W ⊂ Z ∈ S ′′

is contained in S ′′.

Proof. If Z ⊆ X is frequent then there is a set in S ′′ con-
taining Z, or Z is contained in some set in S ′ but there is an-
other set Y ∈ C such that supp (Y, d1,i) > supp (X, d1,i).
�

Proposition 3 Let S, S ′ and S ′′ be as in Proposi-
tion 2. Then X ∈ C can be replaced by the collection
S ′′′ consisting of sets in S ′′ such that supp (Y, d1,i) +
supp (W,di+1,n) < minsupp for some W ⊆ Z ⊆ Y with
Y ∈ C and W ∈ S .

Proof. If Z ⊆ X is frequent then it is subset of some set
in S ′′ or there is Y ∈ C, Z ⊆ Y , such that supp (Y, d1,i) +
supp (W,di+1,n) < minsupp for all W ∈ S,W ⊆ Z.

If Z ∈ S ′′ is not closed then it is infrequent since none
of its supersets is frequent. �

The efficiency of pruning depends crucially also on the
ordering of the transactions. In Section 5 we experimentally
evaluate some orderings with different data sets.

4 The Organization of the Implementation

A preliminary adaptation of the algorithm INTERSEC-
TOR of Section 2 to minimum support and maximum sup-
port constraints is implemented as a program intersec-
tor. The main components of the implementation are
classes Itemarray, ItemarrayInput and Itemar-
rayMap.

The class Itemarray is a straightforward implemen-
tation consisting of int n expressing the number of items
in the set and int* items that is a length (at least) n ar-
ray of items (that are assumed to be nonnegative integers)
in ascending order. One of the reasons why this very simple
representation of a set is used is that Itemarrays are used
also in the data sources, and although some more sophisti-
cated data structures would enable to do some operations
more efficiently, we believe that Itemarray reflects bet-
ter what an arbitrary source of transactions could give.

The class ItemarrayInput implements an inter-
face to the data set d. The class handles the prun-
ing of infrequent items from the input and maintain-
ing the numbers of remaining occurrences of each
item occurring in the data set. The data set d is
accessed by a function pair<Itemarray*,int>*

getItemarray() which returns a pointer to next
pair<Itemarray*,int>. The returned pointer is
NULL if the previous pair were the last one in the data set d.
The main difference to the reference implementation given
at the home page of Workshop on Frequent Itemset Mining
Implementations2 is that pair<Itemarray*,int>* is
returned instead of Itemarray*. This change were made
partly to reflect the attempt to have the closure property of
inductive databases [9] but also because in some cases the
data set is readily available in that format (or can be easily
transformed into that format). The interface Itemarray-
Input is currently implemented in two classes Itemar-
rayFileInput and ItemarrayMemoryInput. Both
of the classes read the data set d from a file consisting of
rows of integers with possible count in brackets. Multiple
occurrences of same item in one row are taken into account
only once. For example, the input file

1 2 4 3 2 5 (54)
1 1 1 1

is transformed into pairs 〈(1, 2, 3, 4, 5) , 54〉 and 〈(1) , 1〉.
The class ItemarrayFileInput maintains in the

main memory only the item statistics (such as the num-
ber of remaining occurrences of each item) thus pos-
sibly reading the data set several times. The class
ItemarrayMemoryInput reads the whole data set d
into main memory. The latter one can be much faster since
it can also reorder the data set and replace all transactions
di, 1 ≤ i ≤ n, with same frequent items by one pair with
appropriate count. The implementations of these classes are
currently quite slow which might be seen as imitating the
performance of real databases quite faithfully.

The class ItemarrayMap represents a mapping
from Itemarrays to supports. The class con-
sists of a mapping map<Itemarray*,int,CardLex>
itemarrays that maps the sets to supports, and a
set set<Itemarray*,CardLex> forbidden con-
sisting of the sets that are known to be infrequent or
too frequent. The set set<Itemarray*,CardLex>
forbidden is needed mainly because of the maximum
frequency constraint. The class consists two methods:

• The method intersect(const
pair<Itemarray*,int>*) intersects the
current collection sets represented by the map-
ping map<Itemarray*,int,CardLex>
itemarrays by the given set
pair<Itemarray*,int>* and updates the
supports appropriately.

• The method prune(ItemarrayInput&) prunes
the sets that are already known to be infrequent or

2http://fimi.cs.helsinki.fi/

too frequent based on the statistics maintained by the
implementation of the interface ItemarrayInput.
(The class CardLex defines a total ordering of sets
(of integers) by their cardinality and lexicographically
within of each group with same sizes.) The prun-
ing rules used in the current implementation of the
method prune(ItemarrayInput&) are Observa-
tion 1, Observation 2, and Observation 3.

5 The Experiments

name # of rows total # of items
T10I4D100K 100000 1010228
T40I10D100K 100000 3960507
chess 3196 118252
connect 67557 2904951
internet 10104 300985
kosarak 990002 8019015
mushroom 8124 186852
pumsb 49046 3629404
pumsb* 49046 2475947

Table 1. The data sets

We tested the efficiency and behavior of the implemen-
tation by the data sets listed in Table 1. All data sets except
internet were provided by the Workshop on Frequent
Itemset Mining Implementations. The data set internet
is the Internet Usage data from UCI KDD Repository3.

If the data sequence is read to main memory then it can
be easily reordered. Also, even if this is not the case, there
exist efficient external memory sorting algorithms that can
be used to reorder the data [18]. The ordering of the data
can affect the performance significantly.

We experimented especially with two orderings: order-
ing in ascending cardinality and ordering in descending
cardinality. The results are shown in Figures 1–9. Each
point (|C| , i) in the figures corresponds to the number |C|
of closed sets in the sequence d1,i that could be frequent in
the whole sequence d. Note that the reason why there is
no point for each number i (1 ≤ i ≤ n) of seen transac-
tions is that same set of items can occur several times in the
sequence d.

There is no clear winner within the ascending and
descending orderings: with data sets T10I4D100K,
T40I10D100K, internet, kosarak, and mushroom
the ascending order is better whereas the descending order
seems to be better with data sets chess, connect, and
pumsb. However, it is not clear whether this is due to the
chosen minimum support thresholds.

3http://kdd.ics.uci.edu/

http://fimi.cs.helsinki.fi/
http://kdd.ics.uci.edu/

0

200

400

600

800

1000

1200

0 20000 40000 60000 80000 100000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 1. T10I4D100K, minsupp = 4600

0

5000

10000

15000

20000

25000

30000

0 20000 40000 60000 80000 100000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 2. T40I10D100K, minsupp = 16000

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000 2500 3000 3500

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 3. chess, minsupp = 2300

0

50000

100000

150000

200000

250000

300000

350000

0 10000 20000 30000 40000 50000 60000 70000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 4. connect, minsupp = 44000

0

5000

10000

15000

20000

25000

30000

0 2000 4000 6000 8000 10000 12000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 5. internet, minsupp = 4200

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 6. kosarak, minsupp = 42000

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 7. mushroom, minsupp = 2000

0

20000

40000

60000

80000

100000

120000

140000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 8. pumsb, minsupp = 44000

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 9. pumsb*, minsupp = 32000

One interpretation of the results is the following: small
set di cannot increase the size of C dramatically since all
new closed sets are subsets of di and di has at most 2|di|

closed subsets. However, the small sets do not decrease the
remaining number of occurrences of items very much either.
In the case of large sets dj the situation is the opposite: each
large set dj decreases the supports supp ({A} , dj+1,n) of
each item A ∈ dj but on the other hand it can generate
several new closed sets.

Also, we experimented with two data sets internet
and mushroom to see how the behavior of the method
changes when changing the minimum support threshold
minsupp. The results are shown in Figure 10 and Fig-
ure 11.

The pruning seems to work satisfactory if the minimum
support threshold minsupp is high enough. However, it is
not clear how much this is due to the pruning of infrequent
items in the class ItemarrayInput and how much due
to the pruning done by the class ItemarrayMap. Unfor-
tunately, the performance rapidly collapses as the minimum
support threshold decreases. It is possible that more aggres-
sive pruning could help when the minimum support thresh-
old minsupp is low.

6 Conclusions and Future Work

In this paper we have sketched an approach for finding
closed sets with some constraints from data with only few
passes over the data. Also, we described a preliminary im-
plementation of the method for finding frequent but not too
frequent closed sets from data. The current version of the
implementation is still quite inefficient but it can hopefully
shed some light to the interplay of data and closed sets.

As the current implementation of the approach is still
very preliminary, there is plenty of room for improvements,
e.g., the following ones:

• The ordering of input seems to play crucial role in the
efficiency of the method. Thus the favorable order-
ings should be detected and strategies for automati-
cally finding them should be studied.

• The pruning heuristics described in this paper are still
quite simplistic. Thus, more sophisticated pruning
techniques such as inclusion-exclusion [5] should be
tested. Also, pruning co-operation between closed sets
generation and the data source management should be
tighten.

• The pruning done by the data source management
could be improved. For example, the data source man-
agement could recognize consecutive redundancy in
the the data source.

0

50

100

150

200

250

3800 4000 4200 4400 4600 4800 5000

e
la

p
s
e

d
 t

im
e

 i
n

 s
e

c
o

n
d

s

minimum support threshold

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000

Figure 10. internet, scalability

• The intersection approach can be used to find all closed
sets that are subsets of some given sets [11]. The
method can be used to compute closed sets from the
maximal sets in one pass over the data. As there ex-
ist very efficient methods for computing maximal sets
[1, 2, 4, 7, 8, 15], it is possible that the performance
of the combination could be quite competitive. Also,
supersets of maximal frequent sets can be found with
high probability from a small sample. Using these esti-
mates one could compute supersets of frequent closed
sets. This approach can be efficient if the supersets
found from the sample are close enough to the actual
maximal sets.

• After two passes over the data it is easy to do the third
pass, or even more. Thus one could apply the intersec-
tions with several different minimum support thresh-
olds to get refining collection of frequent closed sets in
the data: the already found frequent closed sets with
high frequencies could be used to prune less frequent
closed sets more efficiently than e.g. the occurrence
counters for frequent items.

0

10

20

30

40

50

60

70

1600 1800 2000 2200 2400 2600 2800 3000

e
la

p
s
e

d
 t

im
e

 i
n

 s
e

c
o

n
d

s

minimum support threshold

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

n
u

m
b

e
r

o
f

p
o

te
n

ti
a

l
fr

e
q

u
e

n
t

c
lo

s
e

d
 s

e
ts

number of seen transactions

1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

Figure 11. mushroom, scalability

• If it is not necessary to find the exact collection of
closed sets with exact supports, then a sampling could
be applied [17]. Also, if the data is generated by e.g.
an i.i.d. source then one can sometimes obtain accurate
bounds for the supports from relatively short prefixes
d1,i of the sequence d.

• Other kinds of constraints than frequency thresholds
should be implemented and experimented with.

References

[1] R. J. Bayardo Jr. Efficiently mining long patterns from
databases. In A. T. Laura M. Haas, editor, SIGMOD 1998,
Proceedings ACM SIGMOD International Conference on
Management of Data, pages 85–93. ACM, 1998.

[2] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On
the complexity of generating maximal frequent and minimal
infrequent sets. In H. Alt and A. Ferreira, editors, STACS
2002, volume 2285 of Lecture Notes in Computer Science,
pages 133–141. Springer-Verlag, 2002.

[3] J.-F. Boulicaut and A. Bykowski. Frequent closures as a
concise representation for binary data mining. In T. Terano,

H. Liu, and A. L. P. Chen, editors, Knowledge Discovery
and Data Mining, volume 1805 of Lecture Notes in Artificial
Intelligence, pages 62–73. Springer-Verlag, 2000.

[4] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A max-
imal frequent itemset algorithm for transactional databases.
In Proceedings of the 17th International Conference of Data
Engineering (ICDE’01), pages 443–452, 2001.

[5] T. Calders and B. Goethals. Mining all non-derivable fre-
quent itemsets. In T. Elomaa, H. Mannila, and H. Toivonen,
editors, Principles of Data Mining and Knowledge Discov-
ery, volume 2431 of Lecture Notes in Artificial Intelligence,
pages 74–865. Springer-Verlag, 2002.

[6] B. Ganter and R. Wille. Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag, 1999.

[7] K. Gouda and M. J. Zaki. Efficiently mining maximal fre-
quent itemsets. In N. Cercone, T. Y. Lin, and X. Wu, ed-
itors, Proceedings of the 2001 IEEE International Confer-
ence on Data Mining, pages 163–170. IEEE Computer So-
ciety, 2001.

[8] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivo-
nen, and R. S. Sharma. Discovering all most specific sen-
tences. ACM Transactions on Database Systems, 28(2):140–
174, 2003.

[9] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery. Communications of The ACM,
39(11):58–64, 1996.

[10] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms:
Generation, Enumeration and Search. CRC Press, 1999.

[11] T. Mielikäinen. Finding all occurring sets of interest. In
J.-F. Boulicaut and S. Džeroski, editors, 2nd International
Workshop on Knowledge Discovery in Inductive Databases,
pages 97–106, 2003.

[12] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki.
CARPENTER: Finding closed patterns in long biological
datasets. In Proceedings of the Ninth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining. ACM, 2003.

[13] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discover-
ing frequent closed itemsets for association rules. In C. Beeri
and P. Buneman, editors, Database Theory - ICDT’99, vol-
ume 1540 of Lecture Notes in Computer Science, pages 398–
416. Springer-Verlag, 1999.

[14] J. Pei, J. Han, and T. Mao. CLOSET: An efficient algorithm
for mining frequent closed itemsets. In D. Gunopulos and
R. Rastogi, editors, ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, pages 21–
30, 2000.

[15] K. Satoh and T. Uno. Enumerating maximal frequent sets
using irredundant dualization. In G. Grieser, Y. Tanaka,
and A. Yamamoto, editors, Discovery Science, volume 2843
of Lecture Notes in Artificial Intelligence, pages 256–268.
Springer-Verlag, 2003.

[16] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and
L. Lakhal. Computing iceberg concept lattices with TI-
TANIC. Data & Knowledge Engineering, 42:189–222, 2002.

[17] H. Toivonen. Sampling large databases for association rules.
In T. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors, VLDB’96, Proceedings of 22nd International
Conference on Very Large Data Bases, pages 134–145. Mor-
gan Kaufmann, 1996.

[18] J. S. Vitter. External memory algorithms and data struc-
tures: Dealing with massive data. ACM Computing Surveys,
33(2):209–271, 2001.

[19] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the
best strategies for mining frequent closed itemsets. In Pro-
ceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2003.

[20] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algo-
rithms for closed itemset mining. In R. Grossman, J. Han,
V. Kumar, H. Mannila, and R. Motwani, editors, Proceed-
ings of the Second SIAM International Conference on Data
Mining. SIAM, 2002.

AIM: Another Itemset Miner

Amos Fiat, Sagi Shporer

School of Computer Science

Tel-Aviv University

Tel Aviv, Israel

{fiat, shporer}@tau.ac.il

Abstract

We present a new algorithm for mining frequent
itemsets. Past studies have proposed various algo-
rithms and techniques for improving the efficiency of
the mining task. We integrate a combination of these
techniques into an algorithm which utilize those tech-
niques dynamically according to the input dataset. The
algorithm main features include depth first search with
vertical compressed database, diffset, parent equiva-
lence pruning, dynamic reordering and projection. Ex-
perimental testing suggests that our algorithm and
implementation significantly outperform existing algo-
rithms/implementations.

1. Introduction

Finding association rules is one of the driving appli-
cations in data mining, and much research has been
done in this field [10, 7, 4, 6]. Using the support-
confidence framework, proposed in the seminal paper
of [1], the problem is split into two parts — (a) finding
frequent itemsets, and (b) generating association rules.

Let I be a set of items. A subset X ⊆ I is called
an itemset. Let D be a transactional database, where
each transaction T ∈ D is a subset of I : T ⊆ I. For an
itemset X, support(X) is defined to be the number of
transactions T for whichX ⊆ T . For a given parameter
minsupport, an itemset X is call a frequent itemset
if support(X) ≥ minsupport. The set of all frequent
itemsets is denoted by F .

The remainder of this paper is organized as follows.
Section 2 contains a short of related work. In section 3
we describe the AIM-F algorithm. Section 4 contains
experimental results. In Section 5 we conclude this
short abstact with a discussion.

1.1. Contributions of this paper

We combine several pre-existing ideas in a fairly
straightforward way and get a new frequent itemset
mining algorithm. In particular, we combine the sparse
vertical bit vector technique along with the difference
sets technique of [14], thus reducing the computation
time when compared with [14]. The various techniques
were put in use dynamically according to the input
dataset, thus utilizing the advantages and avoiding the
drawbacks of each technique.
Experimental results suggest that for a given level of

support, our algorithm/implementation is faster than
the other algorithms with which we compare ourselves.
This set includes the dEclat algorithm of [14] which
seems to be the faster algorithm amongst all others.

2. Related Work

Since the introduction of the Apriori algorithm by
[1, 2] many variants have been proposed to reduce time,
I/O and memory.
Apriori uses breath-first search, bottom-up ap-

proach to generate frequent itemsets. (I.e., constructs
i+1 item frequent itemsets from i item frequent item-
sets). The key observation behind Apriori is that all
subsets of a frequent itemset must be frequent. This
suggests a natural approach to generating frequent
itemsets. The breakthrough with Apriori was that
the number of itemsets explored was polynomial in the
number of frequent itemsets. In fact, on a worst case
basis, Apriori explores no more than n itemsets to out-
put a frequent itemset, where n is the total number of
items.
Subsequent to the publication of [1, 2], a great many

variations and extensions were considered [3, 7, 13].
In [3] the number of passes over the database was re-
duced . [7] tried to reduce the search space by combin-
ing bottom-up and top-down search – if a set is infre-

quent than so are supersets, and one can prune away
infrequent itemsets found during the top-down search.
[13] uses equivalence classes to skip levels in the search
space. A new mining technique, FP-Growth, proposed
in [12], is based upon representing the dataset itself as
a tree. [12] perform the mining from the tree represen-
tation.
We build upon several ideas appearing in previous

work, a partial list of which is the following:

• Vertical Bit Vectors [10, 4] - The dataset is stored
in vertical bit vectors. Experimentally, this has
been shown to be very effective.

• Projection [4] - A technique to reduce the size of
vertical bit vectors by trimming the bit vector to
include only transaction relevant to the subtree
currently being searched.

• Difference sets [14] - Instead of holding the entire
tidset at any given time, Diffsets suggest that only
changes in the tidsets are needed to compute the
support.

• Dynamic Reordering [6] - A heuristic for reducing
the search space - dynamically changing the order
in which the search space is traversed. This at-
tempts to rearrange the search space so that one
can prune infrequent itemsets earlier rather than
later.

• Parent Equivalence Pruning [4, 13] - Skipping lev-
els in the search space, when a certain item added
to the itemset contributes no new information.

To the best of our knowledge no previous imple-
mentation makes use of this combination of ideas, and
some of these combinations are non-trivial to combine.
For example, projection has never been previously used
with difference sets and to do so requires some new ob-
servations as to how to combine these two elements.
We should add that there are a wide variety of other

techniques introduced over time to find frequent item-
sets, which we do not make use of. A very partial list
of these other ideas is

• Sampling - [11] suggest searching over a sample of
the dataset, and later validates the results using
the entire dataset. This technique was shown to
generate the vast majority of frequent itemsets.

• Adjusting support - [9] introduce SLPMiner, an
algorithm which lowers the support as the item-
sets grow larger during the search space. This at-
tempts to avoid the problem of generating small
itemsets which are unlikely to grow into large item-
sets.

{ : 1 2 3 }

{ 1 : 2 3 }
 { 2 : 3 }
 { 3 : }

{ 1 2 : 3 }

{ 1 2 3 : }

{ 1 3 : }
 { 2 3 : }

Figure 1. Full lexicographic tree of 3 items

3. The AIM-F algorithm

In this section we describe the building blocks that
make up the AIM-F algorithm. High level pseudo code
for the AIM-F algorithm appears in Figure 7.

3.1. Lexicographic Trees

Let < be some lexicographic order of the items in I
such that for every two items i and j, i 6= j : i < j or
i > j. Every node n of the lexicographic tree has two
fields, n.head which is the itemset node n represent,
and n.tail which is a list of items, possible extensions
to n.head. A node of the lexicographic tree has a level.
Itemsets for nodes at level k nodes contain k items. We
will also say that such itemsets have length k. The root
(level 0) node n.head is empty, and n.tail = I. Figure
1 is an example of lexicographic tree for 3 items.
The use of lexicographic trees for itemset generation

was proposed by [8].

3.2. Depth First Search Traversal

In the course of the algorithm we traverse the lexico-
graphic tree in a depth-first order. At node n, for every
element α in the node’s tail, a new node n′ is generated
such that n′.head = n.head

⋃

α and n′.tail = n.tail−α.
After the generation of n′, α is removed from n.tail, as
it will be no longer needed (see Figure 3).
Several pruning techniques, on which we elaborate

later, are used in order to speed up this process.

3.3 Vertical Sparse Bit-Vectors

Comparison between horizontal and vertical
database representations done in [10] shows that the
representation of the database has high impact on the
performance of the mining algorithm. In a vertical
database the data is represented as a list of items,

2

Project(p : vector, v : vector)
/* p - vector to be projected upon

v - vector being projected */
(1) t = Empty Vector
(2) i = 0
(3) for each nonzero bit in p, at offset j, in

ascending order of offsets:
(4) Set i’th bit of target vector t to be the

j’th bit of v.
(5) i = i+ 1
(6) return t

Figure 2. Projection

DFS(n : node,)
(1) t = n.tail
(2) while t 6= ∅
(3) Let α be the first item in t
(4) remove α from t

(5) n′.head = n.head
⋃

α

(6) n′.tail = t

(7) DFS(n′)

Figure 3. Simple DFS

where every item holds a list of transactions in which
it appears.
The list of transactions held by every item can be

represented in many ways. In [13] the list is a tid-list,
while [10, 4] use vertical bit vectors. Because the data
tends to be sparse, vertical bit vectors hold many “0”
entries for every “1”, thus wasting memory and CPU
for processing the information. In [10] the vertical bit
vector is compressed using an encoding called skinning
which shrinks the size of the vector.
We choose to use a sparse vertical bit vector. Ev-

ery such bit vector is built from two arrays - one for
values, and one for indexes. The index array gives the
position in the vertical bit vector, and the value array
is the value of the position, see Figure 8. The index
array is sorted to allow fast AND operations between
two sparse bit vectors in a similar manner to the AND
operation between the tid-lists. Empty values will be
thrown away during the AND operation, save space
and computation time.

3.3.1 Bit-vector projection

In [4], a technique called projection was introduced.
Projection is a sparse bit vector compression technique
specifically useful in the context of mining frequent

Apriori(n : node, minsupport : integer)
(1) t = n.tail
(2) while t 6= ∅
(3) Let α be the first item in t
(4) remove α from t

(5) n′.head = n.head
⋃

α

(6) n′.tail = t

(7) if (support(n′.head) ≥ minsupport)
(8) Report n′.head as frequent itemset
(9) Apriori(n′)

Figure 4. Apriori

PEP(n : node, minsupport : integer)
(1) t = n.tail
(2) while t 6= ∅
(3) Let α be the first item in t
(4) remove α from t

(5) n′.head = n.head
⋃

α

(6) n′.tail = t

(7) if (support(n′.head) = support(n.head))
(8) add α to the list of items removed by

PEP
(9) else if (support(n′.head) ≥ minsupport)
(10) Report n′.head

⋃

{All subsets of items
removed by PEP} as frequent itemsets

(11) PEP(n′)

Figure 5. PEP

itemsets. The idea is to eliminate redundant zeros in
the bit-vector - for itemset P , all the transactions which
does not include P are removed, leaving a vertical bit
vector containing only 1s. For every itemset generated
from P (a superset of P), PX, all the transactions
removed from P are also removed. This way all the
extraneous zeros are eliminated.

The projection done directly from the vertical bit
representation. At initialization a two dimensional ma-
trix of 2w by 2w is created, where w is the word length
or some smaller value that we choose to work with.
Every entry (i,j) is calculated to be the projection of
j on i (thus covering all possible projections of single
word). For every row of the matrix, the number of bits
being projected is constant (a row represents the word
being projected upon).

Projection is done by traversing both the vector to
project upon, p, and the vector to be projected, v. For
every word index we compute the projection by table

3

DynamicReordering(n : node, minsupport : integer)
(1) t = n.tail
(2) for each α in t
(3) Compute sα = support(n.head

⋃

α)
(4) Sort items α in t by sα in ascending order.
(5) while t 6= ∅
(6) Let α be the first item in t
(7) remove α from t

(8) n′.head = n.head
⋃

α

(9) n′.tail = t

(10) if (support(n′.head) ≥ minsupport)
(11) Report n′.head as frequent itemset
(12) DynamicReordering(n′)

Figure 6. Dynamic Reordering

lookup, the resulting bits are then concatenated to-
gether. Thus, computing the projection takes no longer
than the AND operation between two compressed ver-
tical bit lists.
In [4] projection is used whenever a rebuilding

threshold was reached. Our tests show that because
we’re using sparse bit vectors anyway, the gain from
projection is smaller, and the highest gains are when
we use projection only when calculating the 2-itemsets
from 1-itemsets. This is also because of the penalty
of using projection with diffsets, as described later, for
large k-itemsets. Even so, projection is used only if the
sparse bit vector will shrunk significantly - as a thresh-
old we set 10% - if the sparse bit vector contains less
than 10% of ’1’s it will be projected.

3.3.2 Counting and support

To count the number of ones within a sparse bit vector,
one can hold a translation table of 2w values, where w
is the word length. To count the number of ones in a
word requires only one memory access to the transla-
tion table. This idea first appeared in the context of
frequent itemsets in [4].

3.4 Diffsets

Difference sets (Diffsets), proposed in [14], are a
technique to reduce the size of the intermediate in-
formation needed in the traversal using a vertical
database. Using Diffsets, only the differences between
the candidate and its generating itemsets is calculated
and stored (if necessary). Using this method the inter-
mediate vertical bit-vectors in every step of the DFS
traversal are shorter, this results in faster intersections

AIM-F(n : node, minsupport : integer)
/* Uses DFS traversal of lexicographic itemset tree
Fast computation of small frequent itemsets
for sparse datasets
Uses difference sets to compute support
Uses projection and bit vector compression
Makes use of parent equivalence pruning
Uses dynamic reordering */

(1) t = n.tail
(2) for each α in t
(3) Compute sα = support(n.head

⋃

α)
(4) if (sα = support(n.head))
(5) add α to the list of items removed by PEP
(6) remove α from t

(7) else if (sα < minsupport)
(8) remove α from t

(9) Sort items in t by sα in ascending order.
(10)While t 6= ∅
(11) Let α be the first item in t
(12) remove α from t

(13) n′.head = n.head
⋃

α

(14) n′.tail = t

(15) Report n′.head
⋃

{All subsets of items
removed by PEP} as frequent itemsets

(16) AIM-F(n′)

Figure 7. AIM-F

between those vectors.
Let t(P) be the tidset of P . The Diffset d(PX) is

the tidset of tids that are in t(P) but not in t(PX),
formally : d(PX) = t(P) − t(PX) = t(P) − t(X). By
definition support(PXY) = support(PX)−|d(PXY)|,
so only d(PXY) should be calculated. However
d(PXY) = d(PY) − d(PX) so the Diffset for every
candidate can be calculated from its generating item-
sets.
Diffsets have one major drawback - in datasets,

where the support drops rapidly between k-itemset to
k+1-itemset then the size of d(PX) can be larger than
the size of t(PX) (For example see figure 9). In such
cases the usage of diffsets should be delayed (in the
depth of the DFS traversal) to such k-itemset where
the support stops the rapid drop. Theoretically the

break even point is 50%: t(PX)
t(P) = 0.5, where the size

of d(PX) equals to t(PX), however experiments shows
small differences for any value between 10% to 50%.
For this algorithm we used 50%.
Diffsets and Projection : As d(PXY) in not

a subset of d(PX), Diffsets cannot be used directly
for projection. Instead, we notice that d(PXY) ⊆

4

Figure 8. Sparse Bit-Vector data structure

Figure 9. Diffset threshold

t(PX) and t(PX) = t(P) − d(PX). However d(PX)
is known, and t(P) can be calculated in the same
way. For example t(ABCD) = t(ABC) − d(ABCD),
t(ABC) = t(AB) − d(ABC), t(AB) = t(A) − d(AB)
thus t(ABCD) = t(A)−d(AB)−d(ABC)−d(ABCD).
Using this formula the t(PX) can be calculated using
the intermediate data along the DFS trail. As the DFS
goes deeper, the penalty of calculating the projection
is higher.

3.5 Pruning Techniques

3.5.1 Apriori

Proposed by [2] the Apriori pruning technique is
based on the monotonicity property of support:
support(P) ≥ support(PX) as PX is contained in less
transactions than P . Therefore if for an itemset P ,
support(P) < minsupport, the support of any exten-
sion of P will also be lower than minsupport, and the
subtree rooted at P can be pruned from the lexico-
graphic tree. See Figure 4 for pseudo code.

3.5.2 Parent Equivalence Pruning (PEP)

This is a pruning method based on the following prop-
erty : If support(n.head) = support(n.head

⋃

α) then
all the transactions that contain n.head also contain

n.head
⋃

α. Thus, X can be moved from the tail to
the head, thus saving traversal of P and skipping to
PX. This method was described by [4, 13]. Later when
the frequent items are generated the items which were
moved from head to tail should be taken into account
when listing all frequent itemsets. For example, if k
items were pruned using PEP during the DFS traver-
sal of frequent itemset X then the all 2k subsets of
those k items can be added to X without reducing the
support. This gives creating 2k new frequent itemsets.
See Figure 5 for pseudo code.

3.6 Dynamic Reordering

To increase the chance of early pruning, nodes are
traversed, not in lexicographic order, but in order de-
termined by support. This technique was introduced
by [6].

Instead of lexicographic order we reorder the chil-
dren of a node as follows. At node n, for all α in the
tail, we compute sα = support(t.head

⋃

α), and the
items are sorted in by sα in increasing order. Items α
in n.tail for which support(t.head

⋃

α) < minsupport
are trimmed away. This way, the rest of the sub-tree
will benefit from a shortened tail. Items with smaller
support, which are heuristically “likely” to be pruned
earlier, will be traversed first. See Figure 6 for pseudo
code.

3.7 Optimized Initialization

In sparse datasets computing frequent 2-itemsets
can be done more efficiently than than by perform-
ing

(

n

2

)

itemset intersections. We use a method similar
to the one described in [13]: as a preprocessing step,
for every transaction in the database, all 2-itemsets are
counted and stored in an upper-matrix of dimensions
n× n. This step may take up to O(n2) operations per
transaction. However, as this is done only for sparse
datasets, experimentally one sees that the number of
operations is small. After this initialization step, we
are left with frequent 2 item itemsets from which we
can start the DFS proceedure.

4. Experimental Results

The experiments were conducted on an Athlon
1.2Ghz with 256MB DDR RAM running Microsoft
Windows XP Professional. All algorithms where com-
piled on VC 7. In the experiments described herein, we
only count frequent itemsets, we don’t create output.

5

We used five datasets to evaluate the algorithms per-
formance. Those datasets where studied extensively in
[13].

1. connect — A database of game states in the game
connect 4.

2. chess — A database of game states in chess.

3. mushroom — A database with information about
various mushroom species.

4. pumsb* — This dataset was derived from the
pumsb dataset and describes census data.

5. T10I4D100K - Synthetic dataset.

The first 3 datasets were taken from
the UN Irvine ML Database Repository
(http://www.ics.uci.edu/ mlearn/MLRepository).
The synthetic dataset created by the IBM Almaden
synthetic data generator
(http://www.almaden.ibm.com/cs/quest/demos.html).

4.1 Comparing Data Representation

We compare the memory requirements of sparse ver-
tical bit vector (with the projection described earlier)
versus the standard tid-list. For every itemset length
the total memory requirements of all tid-sets is given
in figures 10, 11 and 12. We do not consider itemsets
removed by PEP.

Figure 10. Chess - support 2000 (65%)

As follows from the figures, our sparse vertical bit
vector representation requires less memory than tid-
list for the dense datasets (chess, connect). However
for the sparse dataset (T10I4D100K) the sparse ver-
tical bit vector representation requires up to twice

Figure 11. Connect - support 50000 (75%)

Figure 12. T10I4D100K - support 100 (0.1%)

as much memory as tid-list. Tests to dynamically
move from sparse vertical bit vector representation to
tid-lists showed no significant improvement in perfor-
mance, however, this should be carefully verified in fur-
ther experiments.

4.2 Comparing The Various Optimizations

We analyze the influence of the various optimiza-
tion techniques on the performance of the algorithm.
First run is the final algorithm on a given dataset, then
returning on the task, with a single change in the al-
gorithm. Thus trying to isolate the influence of every
optimization technique, as shown in figures 13 and 14.
As follows from the graphs, there is much difference

in the behavior between the datasets. In the dense
dataset, Connect, the various techniques had tremen-
dous effect on the performance. PEP, dynamic reorder-

6

Figure 13. In¤uence of the various optimiza-
tion on the Connect dataset mining

Figure 14. In¤uence of the various optimiza-
tion on the T10I4D100K dataset mining

ing and diffsets behaved in a similar manner, and the
performance improvement factor gained by of them in-
creased as the support dropped. From the other hand
the sparse bit vector gives a constant improvement fac-
tor over the tid-list for all the tested support values,
and projection gives only a minor improvement.
In the second figure, for the sparse dataset

T10I4D100K, the behavior is different. PEP gives no
improvement, as can expected in sparse dataset, as ev-
ery single item has a low support, and does not contain
existing itemsets. There is drop in the support from
k-itemset to k+1-itemset due to the low support there-
fore diffset also gives no impact, and the same goes for
projection. A large gain in performance is made by op-
timized initialization, however the performance gain is
constant, and not by a factor. Last is the dynamic re-
ordering which contributes to early pruning much like
in the dense dataset.

4.3 Comparing Mining Algorithms

For comparison, we used implementations of

1. Apriori [2] - horizontal database, BFS traversal of
the candidates tree.

2. FPgrowth [5] - tree projected database, searching
for frequent itemsets directly without candidate
generation, and

3. dEclat [13] - vertical database, DFS traversal using
diffsets.

All of the above algorithm implemen-
tations were provided by Bart Goethals
(http://www.cs.helsinki/u/goethals/) and used
for comparison with the AIM-F implementation.
Figures 15 to 19 gives experimental results on the

various algorithms and datasets. Not surprising, Apri-
ori [2] generally has the lowest performance amongst
the algorithms compared, and in some cases the run-
ning time could not be computed as it did not fin-
ish even at the highest level of support checked. For
these datasets and compared with the specific algo-
rithms and implementations described above, our al-
gorithm/implementation, AIM-F , seemingly outper-
forms all others.
In general, for the dense datasets (Chess, Connect,

Pumsb* and Mushroom, figures 15,16,17 and 18 re-
spectively), the sparse bit vector gives AIM-F an order
of magnitude improvement over dEclat. The diffsets
gives dEclat and AIM-F another order of magnitude
improvement over the rest of the algorithms.
For the sparse dataset T10I4D100K (Figure 19), the

optimized initialization gives AIM-F head start, which

7

Figure 15. Chess dataset

Figure 16. Connect dataset

is combined in the lower supports with the advantage
of the sparse vertical bit vector (See details in figure
14)

5. Afterword

This paper presents a new frequent itemset mining
algorithm, AIM-F . This algorithm is based upon a
mixture of previously used techniques combined dy-
namically. It seems to behave quite well experimen-
tally.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Min-
ing association rules between sets of items in large
databases. In SIGMOD, pages 207–216, 1993.

Figure 17. Pumsb* dataset

Figure 18. Mushroom dataset

Figure 19. T10I4D100K dataset

8

[2] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In J. B. Bocca, M. Jarke, and
C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large

Data Bases, VLDB, pages 487–499. Morgan Kauf-
mann, 12–15 1994.

[3] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dy-
namic itemset counting and implication rules for mar-
ket basket data. In SIGMOD, pages 255–264, 1997.

[4] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: a
maximal frequent itemset algorithm for transactional
databases. In ICDE, 2001.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD, pages 1–
12, 2000.

[6] R. J. B. Jr. Efficiently mining long patterns from
databases. In SIGMOD, pages 85–93, 1998.

[7] D.-I. Lin and Z. M. Kedem. Pincer search: A new al-
gorithm for discovering the maximum frequent set. In
EDBT’98, volume 1377 of Lecture Notes in Computer

Science, pages 105–119, 1998.
[8] R. Rymon. Search through systematic set enumera-
tion. In KR-92, pages 539–550, 1992.

[9] M. Seno and G. Karypis. Slpminer: An algorithm
for finding frequent sequential patterns using length
decreasing support constraint. In ICDE, 2002.

[10] P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalo-
tia, M. Bawa, and D. Shah. Turbo-charging vertical
mining of large databases. In SIGMOD, 2000.

[11] H. Toivonen. Sampling large databases for association
rules. In VLDB, pages 134–145, 1996.

[12] S. Yen and A. Chen. An efficient approach to discov-
ering knowledge from large databases. In 4th Interna-

tional Conference on Parallel and Distributed Infor-

mation Systems.
[13] M. J. Zaki. Scalable algorithms for association min-

ing. Knowledge and Data Engineering, 12(2):372–390,
2000.

[14] M. J. Zaki and K. Gouda. Fast vertical mining using
diffsets. Technical Report 01-1, RPI, 2001.

9

����� ���	��

����������������������� �"!$# %&���

'�)($#*���"+,�-�.�/�10/�"��23(/�4�5�6���.��78��9;:<�-��# =3�>�87

?,@BA<CD@BAFE�G3H-IKJ&L"?4@BMONQP8RS@UTVNW@<EYXDL[Z�P-\]I^G3_a`-EYb"@BXDL�cdEfeWIgAhEiTdeWEYjkP-eO@<X
Jmld@BMOEfIgH"@<npoqH-NQMWEfMOPKMOCrI<s4oqH8stIgeWju@BMWEY_vN

wyxOz]x.w c3EfMOIBMONWP8{"@<NW`8E|L�}5`-E~RgIFb"@ x AFP�L"?4IgASR<I-L z��8z]xq�<�S�g� L8�g@<�"@BH
�h�����8�g��� �h���g�B���h�,�����Xd�/Cv�-@<eQMWjuC]HhM)IBs,oqH8stI<eWju@BMOEf_vNvL-�$RFP-NQ`hP'GdH8Ef�gC]eWNQEfMqRgL�� xaz���xOz cV@<ABIg\D@BAFE�L��"P-AhP-IgA�@ �8zywyxq�g�S�<� L-�<T/��T/l

�h�����8�g���W �¡-�h�K¢g�-��£�¤8���p¥�¦p�y§8�¨£W�<©��v�iªB�-�,��«8¤g��¢�¦K�"���m�Q�K¥¨���<�

¬�­4®]¯�°y±"²<¯S³
´¶µ�·�¸y¹»º¨¼�½¾¼B¿QÀQÁSÂ�¿�¼�À�Ã]¼BÃvºÄ¿�·�¸yÀ|¿.¿�½&ÅÇÆ¾Ã]À�¹È·�¸yÉmº,Ê8Ë�Ì/Í

Î À�¿WÏBÁaÊ-Ë�ÌÐÁW½¾µ�ÑÒÊ-Ë�Ì$Ém½aÓ Î Ã¾À8É5¹Çµy¹ÇµyÆ4½¾ÅÈÅ Î À�¿WÏvÔy¿.µv·8º�¿�· º.Á
Î À�¿WÏ]Ô�¿.µv·pÕ�ÅÇÃ]º�¿QÑ5¹È·�¿QÉÖº�¿�· º.Áv½&µ�Ñ�Ém½aÓ�¹ÇÉm½&Å Î À|¿QÏvÔy¿Qµ]·�º�¿�· º.Á
À�¿WºÄ¼<¿QÕ�·�¹Ç×¾¿.ÅÇØ¾Á Î À�Ã]É6·|À|½¾µ�º�½]Õq·|¹ÈÃ]µkÑy½&·|½¾Ù�½¾º�¿QºQÚ)Ûi¸y¿mÉm½&¹Çµ
·�¸y¿QÃ¾À|¿�·�¹»Õ.½¾Å�Õ.Ã¾µv·�À|¹ÈÙ�Ô�·�¹ÇÃ¾µÜ¹»º$·|¸�½a·kÂp¿UÕ.Ã¾µ�ºÄ·�À|Ô�Õ�·r·�À|¿.¿.Í
ºÄ¸�½¾¼B¿WÑ)·|À|½¾µ�º�×¾¿.À º|½&Å�À|Ã¾Ôy·�¿Qº>Õ.Ã¾É�¼<Ã]º�¿QÑ)Ã Î Ã]µyÅÈØ Î À|¿QÏvÔy¿Qµv·
Õ�ÅÇÃ]º�¿QÑr¹È·�¿QÉ	º�¿�·|ºQÁhÂ>¸y¹»Õ ¸k¹Çº,¹Çµ�Ñ�Ô�Õ.¿QÑ�ÙvØ�½3¼�½¾À�¿Qµv·ÄÍ¶Õ ¸y¹ÈÅ»Ñ
À�¿QÅÇ½&·�¹ÇÃ¾µ�º�¸y¹Ç¼dÑ�¿.Ý�µy¿QÑ3Ã¾µ Î À�¿WÏ]Ô�¿.µv·iÕ.ÅÈÃvºÄ¿WÑm¹È·�¿.ÉÞºÄ¿.·|ºQÚ-ß�Ø
·�À ½O×¾¿.À º�¹ÈµyÆà·�¸y¿$À|Ã¾Ôy·�¿/¹Èµ[½áÑ�¿Q¼�·�¸�ÍYÝ�À ºt·mÉm½&µ�µy¿.ÀWÁ�Ê-Ë�Ì
Ý�µ�Ñyº�½&ÅÇÅ Î À|¿QÏvÔy¿Qµv·�Õ�ÅÇÃ]º�¿QÑ�¹È·�¿QÉâºÄ¿.·|ºp¹Èµ)¼<Ã¾ÅÇØDµyÃ¾É�¹»½&Å�·�¹ÇÉ5¿
¼B¿QÀk¹È·�¿QÉãº�¿�·QÁ�Â>¹È·�¸yÃ]Ô�·äºt·|Ã¾À|¹Èµ�Æ
¼yÀ|¿.×D¹ÇÃ¾Ô�º�ÅÈØ'Ã]Ù�·|½¾¹Èµy¿WÑ
Õ�ÅÇÃ]º�¿QÑV¹å·|¿.É�º�¿�·|º�¹Èµ$É�¿.É�Ã]À�Ø]Ú�Ì$Ã]À�¿QÃa×¾¿QÀQÁDÂ�¿�¹Èµv·�À|Ã�Ñ�Ô�Õ.¿
ºÄ¿Q×¾¿.À ½&Åp½&ÅÇÆ¾Ã¾À|¹È·�¸yÉ�¹»Õ5·�¿QÕ ¸�µy¹ÇÏvÔy¿WºÒÔ�º�¹ÇµyÆ$·�¸�¿3ºÄ¼B½&À ºÄ¿)½¾µ�Ñ
Ñ�¿.µ�º�¿mºt·|À�ÔBÕq·�Ô�À�¿Wº�Ã Î ¹Çµy¼yÔ�·ÒÑy½&·|½yÚ�æ�ÅÇÆ¾Ã¾À|¹È·�¸yÉmº Î Ã¾À¨¿.µDÔ�Í
É5¿QÀ|½&·�¹ÇµyÆ¨½&ÅÇÅ Î À�¿WÏ]Ô�¿.µv·"¹å·|¿.Éçº�¿�· º"½&µ�Ñ�Ém½aÓ�¹ÈÉm½¾Å Î À|¿QÏvÔy¿Qµv·
¹å·|¿.Éèº�¿�· º>½&À|¿�Ã¾Ùy·|½&¹Çµy¿WÑ Î À|Ã¾ÉéÊ-Ë�Ì	½¾º�¹È·|ºi×a½&À|¹»½&µv·|ºQÚ8ß�Ø
Õ�Ã¾É�¼yÔy·|½a·|¹ÈÃ]µ�½&Å4¿�Ó�¼<¿.À|¹ÈÉ�¿.µv· º)Ã¾µ[À|¿Q½¾Å�Â�Ã¾À|ÅÇÑ�½¾µ�Ñ[ºÄØDµ�Í
·�¸y¿.·�¹»Õ>Ñy½a· ½&Ù�½]ºÄ¿WºF·|Ã�Õ�Ã¾É�¼�½¾À�¿p·�¸�¿.¹ÇÀ"¼B¿QÀ Î Ã]À�Ém½&µBÕ�¿p·�Ã¨·�¸�¿
¼yÀ�¿Q×D¹ÈÃ]Ô�º)½&ÅÇÆ¾Ã]À�¹È·�¸�É�ºQÁ�Âp¿ Î Ã]Ôyµ�Ñ^·|¸�½a·3Ã]ÔyÀ3½¾ÅÈÆ]Ã¾À|¹å·|¸yÉmº
½&À|¿ Î ½¾ºÄ·�Ã¾µ�ÅÇ½¾À�Æ]¿iÀ�¿W½&Å�Â�Ã¾À|ÅÇÑ5Ñy½a· ½¾º�¿�· º"Â>¹å·|¸mµ�½a·|ÔyÀ ½&ÅyÑ�¹»ºtÍ
·�À|¹ÈÙyÔy·�¹ÇÃ¾µ�ºpºÄÔ�Õ ¸)½]º�ê�ë,ë�Í¶Õ�Ô�¼Bì&í]í¾í¨Ñy½a· ½¾º�¿�· º.Áv½&µ�ÑmÉm½¾µvØ
Ã&·�¸�¿.À�º�Øvµv·|¸y¿�·|¹ÇÕ�Ñy½&·|½¾Ù�½¾º�¿QºQÚ
î>ïÜð]ñ ¯�°yò>ó�ô4²<¯yõtò ñ
öyÀ|¿QÏvÔy¿.µv·V¹å·|¿.É*º�¿�·dÉ�¹Çµy¹ÇµyÆU¹»º3Ã]µy¿àÃ Î ·�¸y¿ Î Ôyµ�Ñ�½&É�¿.µ�Í
·|½&Å"¼�À�Ã]ÙyÅÈ¿QÉmº¨¹ÈµáÑy½a· ½VÉ5¹Çµy¹ÇµyÆ$½&µ�Ñk¸�½]º,É�½¾µDØà½&¼y¼�ÅÈ¹»Õ.½&Í
·�¹ÇÃ¾µ�º)º�Ô�Õ ¸�½¾ºm½]º�º�Ã�Õ�¹»½a·�¹ÇÃ¾µuÀ�Ô�ÅÈ¿/É�¹Èµ�¹ÈµyÆø÷ÈùqúûÁi¹Èµ�ÑyÔ�Õq·|¹È×]¿
Ñy½a· ½&Ù�½]ºÄ¿Wº,÷ üaúûÁ�½¾µ�ÑdÏvÔy¿QÀ�Ø3¿�Ó�¼�½&µBºÄ¹ÇÃ¾µá÷åùWíOúûÚ

ÊF¿�·>ýÜÙB¿4·�¸�¿�Ôyµy¹Ç×¾¿QÀ|º�¿�Ã Î�þ ÿ ����� ÁDÕ.Ã¾µ�º�¹»ºt·|¹ÈµyÆ�Ã Î ¹È·�¿QÉ�º
ù����	�	�
���"Ú�æçº�ÔyÙ�º�¿�·�
 Ã Î ýâ¹Çº,Õ.½¾ÅÈÅÇ¿QÑ$½¾µ þ ÿ ������� ÿ Ú��â¹Çº
½�º�¿�·iÃ Î�ÿ������ � ���.ÿfþ���� � Ãa×]¿.À�ýmÁ�¹fÚ ¿¾ÚÇÁD¿Q½]Õ ¸������ç¹ÇºiÕ�Ã]É5Í
¼BÃvºÄ¿WÑÐ¹Èµu¹å·|¿.Émº�Ã Î ýmÚáöyÃ]À�½&µU¹å·|¿.É º�¿�·
!�KÅÇ¿�·"��#$
&%
ÙB¿5·�¸�¿�º�¿�·�Ã Î ·�À ½&µ�º|½¾Õ�·�¹ÇÃ¾µ�º4¹Çµ�Õ�ÅÇÔ�Ñ�¹ÇµyÆ'
äÚ (p½¾Õ ¸$·|À|½¾µ�ºÄÍ
½¾Õq·|¹ÈÃ]µäÃ Î ��#$
)%Ò¹Çº�ÕQ½&ÅÇÅÈ¿WÑä½&µ �*�+�-,.�/� � �0� � Ã Î
!�-ö�Ã¾À5½

Æ¾¹Ç×¾¿Qµ�Õ.Ã¾µ�ºÄ·|½¾µ]·2143�íyÁ]½&µ�¹È·�¿QÉ º�¿�·5
 ¹Çº"ÕQ½&ÅÇÅÈ¿WÑ�6 � �+7 , � �Bÿ¹ Î98 ��#�
)% 8 3:1;�F´ Î ½ Î À|¿QÏvÔy¿Qµ]·�¹å·|¿.É ºÄ¿.·�¹Çº�¹ÈµBÕ�ÅÇÔ�Ñ�¿QÑá¹Çµ
µyÃVÃ&·|¸y¿.À Î À|¿QÏvÔy¿.µv·Òº�¿�·QÁF¹å·�¹»º�º�½¾¹ÇÑr·�Ã/ÙB¿ � ��<]þ � ��= ÚmöyÃ]À
½d·�À ½&µ�º|½¾Õ�·�¹ÇÃ¾µkºÄ¿.·?>:@A�"�hÅÇ¿�·9BC#D>E%GFIH JLK�M���Ú�´ Î ½&µ
¹È·�¿.Éâº�¿�·E
6º�½&·�¹»ºtÝ�¿WºNBC#��O#$
)%�%2FP
Q�]·�¸�¿.µ�
�¹»ºpÕQ½&ÅÇÅÈ¿WÑ)½
��=
� ���+R þ ÿ ���I��� ÿ Ú

´¶µ[·�¸y¹»ºV¼�½&¼<¿.ÀWÁ�Â�¿à¼�À�Ã]¼BÃvºÄ¿à½¾µ
¿�SmÕ.¹È¿Qµv·V½&ÅÇÆ¾Ã]À�¹È·�¸�É
Ê8Ë�Ì Î Ã]À�¿QµvÔ�É5¿QÀ|½&·�¹ÇµyÆà½¾ÅÈÅ Î À�¿WÏ]Ô�¿.µv·5Õ.ÅÈÃvºÄ¿WÑ�¹È·�¿QÉ ºÄ¿.·|ºQÚ
Ê8Ë�Ì ¹»º�½&µ�½¾ÙyÙyÀ|¿.×D¹»½a·�¹ÇÃ¾µ�Ã Î�T-þD� � ���5ÿYþ �"��U =
� ���+R þ ÿ ���
��� ÿLV$þD� � � Ú5(�ÓD¹»ºÄ·�¹ÇµyÆ�½&ÅÇÆ¾Ã¾À|¹È·�¸yÉmº Î Ã¾À-·�¸�¹Çº-· ½¾º�W�Ù�½¾º�¹»Õ.½&ÅÇÅÇØ
¿.µDÔyÉ�¿QÀ|½&·�¿ Î À|¿QÏvÔy¿Qµv·�¹È·�¿QÉéºÄ¿.·|º�Â>¹å·|¸dÕ.Ô�·Ä·|¹ÈµyÆ5Ã�X$Ôyµ�µy¿QÕ�Í
¿Qº|º|½&À|Ø Î À�¿WÏ]Ô�¿.µv·�¹å·|¿.É�º�¿�· º�ÙDØr¼yÀ|Ôyµy¹ÇµyÆ�Ú�Y�ÃaÂp¿Q×¾¿QÀQÁg·|¸y¿
¼yÀ|Ôyµy¹ÇµyÆ)¹»º�µ�Ã&·,Õ.Ã¾É�¼yÅÇ¿�·|¿¾Á<¸y¿.µ�Õ.¿Ò·|¸y¿�½¾ÅÈÆ]Ã¾À|¹å·|¸yÉmº>Ã¾¼<¿.À�Í
½a·|¿pÔ�µyµy¿QÕ.¿Qº|º�½¾À�Ø Î À|¿QÏvÔy¿.µv·"¹È·�¿.É º�¿�· º.Á]½&µ�Ñ�Ñ�Ã,º�Ã¾É�¿.·�¸y¹ÇµyÆ
É�Ã¾À|¿¾Ú�´¶µ'Ê8Ë�ÌÐÁiÂ�¿kÑ�¿.Ý�µy¿á½U¼B½&À|¿.µv·ÄÍ¶Õ ¸y¹ÇÅÇÑ[À|¿.Å»½a·|¹ÈÃ]µ�Í
º�¸y¹È¼mÙ<¿�·tÂ�¿.¿Qµ Î À�¿WÏ]Ô�¿.µv·pÕ�ÅÇÃ]º�¿QÑ5¹È·�¿QÉÖº�¿�· º.Ú"Ûi¸y¿�À|¿.Å»½a·|¹ÈÃ]µ�Í
º�¸y¹È¼�¹Çµ�Ñ�ÔBÕ�¿QºF·�À|¿.¿.Íûº�¸�½¾¼B¿WÑ,·�À ½&µ�º�×¾¿QÀ|º|½&ÅaÀ|Ã¾Ô�·|¿QºKÕ�Ã¾É�¼<Ã]º�¿QÑ
Ã¾µ�ÅÈØ�Ã Î ½&ÅÇÅ�·�¸�¿ Î À�¿WÏvÔy¿.µv·�Õ�ÅÇÃ]º�¿QÑk¹È·�¿QÉ º�¿�· º.ÚQZ4ÔyÀ�½¾ÅÈÆ]Ã&Í
À|¹å·|¸yÉ ·|À|½O×]¿.À ºÄ¿WºÒ·|¸y¿$À�Ã]Ô�·�¿Wº.Á�¸y¿Qµ�Õ�¿/· ½�W¾¿Wº�ÅÈ¹Çµy¿W½&À�·�¹ÇÉ�¿
Ã Î ·�¸y¿ÐµDÔyÉ�ÙB¿QÀrÃ Î5Î À|¿QÏvÔy¿.µv·rÕ�ÅÇÃ]º�¿QÑ ¹È·�¿.É�ºÄ¿.·|ºQÚ6Ûi¸y¹»º
½&ÅÇÆ¾Ã]À�¹È·�¸�É ¹Çº�Ã]Ù�·|½¾¹Èµy¿WÑ Î À|Ã¾É ·|¸y¿r½&ÅÇÆ¾Ã]À�¹È·�¸�É�º Î Ã¾Àm¿QµDÔ�Í
É�¿.À ½a·|¹ÈµyÆ�Ém½aÓ�¹ÈÉm½¾Å<Ù�¹È¼�½¾ÀÄ·|¹å·|¿�Õ�ÅÇ¹ÇÏvÔy¿Wº,÷ÈùWì�ÁSù\[OúûÁ�Â>¸y¹»Õ ¸3¹»º
Ñ�¿WºÄ¹ÇÆ¾µy¿WÑ3ÙB½¾º�¿QÑdÃ¾µVÀ�¿Q×¾¿.À º�¿,º�¿Q½¾À|Õ ¸3·�¿QÕ ¸�µy¹ÇÏvÔy¿)÷ [�Áhù\]aúûÚ

´¶µ/½]ÑyÑ�¹È·�¹ÇÃ¾µ/·|Ã�·�¸y¿�º�¿Q½¾À|Õ ¸d·�À|¿.¿¨·|¿QÕ ¸yµ�¹ÇÏvÔy¿ Î Ã]À�Õ�ÅÇÃ]º�¿QÑ
¹È·�¿.É�º�¿�· º.Á<Âp¿�Ô�ºÄ¿5ºÄ¿Q×¾¿QÀ|½¾Åg·�¿QÕ ¸�µy¹ÇÏvÔy¿Wº�·|Ã3º�¼B¿Q¿QÑDÍûÔy¼$·|¸y¿
Ôy¼gÑy½a·|¿�Ã Î ·|¸y¿�Ã�ÕQÕ�ÔyÀ|À�¿Qµ�Õ�¿WºgÃ Î ¹È·�¿QÉ º�¿�· º.Ú5Z4µy¿"·�¿WÕ ¸yµy¹»ÏvÔy¿
¹»º �\�+��,.�/� � �0� � R^� = þD_ � � ÁBÂ>¸y¹»Õ ¸$ºÄ¹ÇÉ�Ôy·|½&µ�¿.Ã¾ÔBºÄÅÇØ)Õ�Ã]É5¼�Ô�·�¿Wº
·�¸�¿)Ã�Õ.Õ�Ô�À�À|¿.µ�Õ.¿)ºÄ¿.·|º�Ã Î ½&ÅÇÅ�·|¸y¿dº�Ô�Õ.Õ.¿Qº|ºÄÃ]À|º¨Ã Î ·�¸y¿VÕ�ÔyÀ�Í
À|¿.µv·>¹å·|¿.É ºÄ¿.·�Ñ�ÔyÀ|¹ÈµyÆ)½mº�¹ÇµyÆ¾ÅÇ¿Òº�ÕQ½&µVÃ¾µV·�¸�¿�Õ�ÔyÀ|À|¿.µv·>ÃDÕ�Í
Õ�Ô�À�À|¿.µ�Õ.¿mºÄ¿.·QÚ)Ûi¸y¿mÃ¾·�¸y¿QÀÒ¹Çº R þ ` ��� ÿ � ¼yÀ�Ã]¼BÃvºÄ¿WÑà¹Çµ[÷åùbaWúûÚ
c ¹Çµ�Õ�¿4·�¸�¿.À|¿4¹»ºi½�·�À ½¾Ñy¿�ÍûÃ�X$ÙB¿.·tÂp¿Q¿.µ3·�¸y¿WºÄ¿4·tÂpÃ�É�¿�·�¸�ÃDÑ�º
·�¸B½a·-·�¸y¿ Î Ã]À�É�¿QÀ8¹»º Î ½¾ºÄ· Î Ã¾À�º�¼�½&À º�¿pÑy½&·|½,Â>¸y¹ÇÅÈ¿�·�¸�¿>ÅÇ½&·Ä·�¿QÀ
¹»º Î ½¾ºÄ· Î Ã]À4Ñ�¿Qµ�ºÄ¿�Ñy½a· ½yÁ�Â�¿�Ñ�¿Q×¾¿QÅÈÃ]¼B¿WÑV·�¸y¿ed.f�g �qþ R ��= hi��j�qþ ÿ d � Õ.Ã¾É�Ùy¹Èµ�¹ÈµyÆ)·�¸y¿QÉVÚ�´¶µrºÄÃ]É5¿�¹å·|¿.À ½a·�¹ÇÃ¾µBº.ÁBÂp¿ÒÉm½�W¾¿
½mÑ�¿WÕ�¹»ºÄ¹ÇÃ¾µ/Ù�½]ºÄ¿WÑdÃ Î ·�¸y¿Ò¿Wºt·|¹ÈÉm½&·�¹ÇÃ¾µ$Ã Î ·�¸�¿.¹ÇÀ4Õ�Ã]É�¼yÔ�·|½&Í
·�¹ÇÃ¾µá·|¹ÈÉ�¿]Á8¸�¿.µ�Õ.¿)Ã¾ÔyÀ�½&ÅÇÆ¾Ã¾À|¹È·�¸yÉ Õ.½&µáÔ�º�¿3½¾¼y¼yÀ|Ã¾¼yÀ|¹Ç½&·�¿

ù

k�lnm?o$k�p�q.m�lsr�mutsv�p�wxryv�lsqzr{tsv�pxr�mutsv�p�wxrEk�o|wx}nmG~
lstn�.w\�
� m"v���r{kz�-k�l�r{~�q.m�p?wx}nm�tnp�k^�n�	m��"r�k�o;m\li�s�em\pxv�w�~	ln�Ov��
�

o$p�m*�^�sm�liw�r{m�wxr\�nv�lsqz�"v��.~	�"v��0o$pxm\�i�nm�liw�r�m-w+r��nv�lsq'q.m�px~
�^m
w��;k!v��
�^k�px~�wx}n�"r9���E��o$p�m*�)v�lsq4���E���"v��)o$pxk������E�4�
���E���"v���~�r�k^�.wxv�~
lnm*q&o$p�k^�����E�����&v^qnq.~	ln��wx}nm�m��i�
tn�
~��-~
w��+}nm*�+�&k�o��"v��.~	�"v��	~�w��^� ���E��o$p�m*��~	r�lnk�we��m\p�m\�
�
v¡���E�¢�y~
w�}sk��.w)w�}nm£�+}sm\�+�¤k�o��-�	k^r�m\q.lsm\rxr��9�s�.w&v��	r�k
v��+}n~	��m*r|r��n�sr{wxv�l^wx~	v��.r{tCm�m*q����st �sr�~	ln�?���
kir{m*qG~
w�m��"r�m-w2q.~�r��
�-k���m\p���w�m\�+}sln~	�i�nm*r¥�Cm\�\v��sr�m2~
w|m�l��n��m\pxv�w�m\r¥k�ln�	��wx}nmNpxm�tn�
p�m*r{m\l^w+v�wx~
�^m\r2k�o¥��pxk��nt�r5k�o¦o$pxm\�i�nm\l^wE~�wxm��§r�m-wxr\�.v�lsq���m�ln�
m�p+v�w�mzk�wx}nm�p o$pxm\�i�nm�liw"~
w�m��¨r�m-w+r o$p�k^��w�}nm'pxm�tnpxm\r�m�liwxv��
w�~	��m\r\�
© p�k^�ª�-k^�ets�.w�m\pGm-�.t�m\p�~	��m�liwxruk^l)pxm\v��2v�lsq&v�p�w�~
«���~	v��

qnv�w+v�r�m-wxr��y~�wx}4w�}sm�tnpxm���~	k��sr v��	��k�px~
w�}n�"r\�|�Em�k^�sr{m\p��^m\q
w�}sv�w k��sp v��	��k^p�~
w�}s��r����E�'o$pxm\�C�5���E�4��v�lsq4���E���"v��
r{~	��ln~
«��\v�liw��	�)k^�.w�tCm�p�o$k�px�¬wx}nm�tsp�m\�i~	k���r9v��	��k^p�~
w�}n�"rGk^l
p�m*v��y�Ek�px�	q­qnv�w+v�r�m-w+r"�y~�wx}®lsv�wx�npxv���q.~�r�wxp�~	�n�.wx~
k^lsr�r��s�+}
v�ru¯°�!±i� � m\�.��²�~
m\�°�x³ev�lsq)¯°�!±i�µ´E¶u±Qqsv�wxv^r{m�wxr�~
l)w�}sm·G¸�¸ ���E¹�´»º�¼�¼�¼Pqsv�wxv^r{m�wxr)v�rQ�Em��	� v^rQ��v�px��m½r���l^wx}nm-�
r{~�rQqnv�wxv�r�m-w+rQr��s�+}¾v�r�¿�¯°�¢Àu³\¼ ·uÁ^¸ ³\¼^¼ · �°À°}nm4t�m\p{�
o$k�px��v�ls�-m�k�oEk^�npGv��	��k�px~
w�}n�"ru~�rGr{~	��~
��v�puwxk�k�w�}sm�p9v��	��k��
p�~
w�}n�"r�o$k�p�}sv�pxqzqnv�wxv�r�m-w+r�r��s�+}�v�r��;k^lnlnm\�-w�v�lsqQ�;}nm*r�r
qnv�w+v�r�m-wxr¥o$p�k^�¤¹u�;¿Â�Â�!v��+}n~	lnm2�¥m*v�pxln~	ln��Ãym�tCk^r�~
w�k�px���*�n�.w
�
m*r�r'r�~
�^ln~�«C��v�liwzw�}sv�l��QÄ © ¿�Ä9�y}nk��Em��^m�pO���E�Å�Ek�px�.r
�y~�wx}'r��"v��	�¥��m���k�px�"p+v�w�}sm�p°w�}�v�l'k�wx}nm�p�v��
�^k�px~�wx}n�"r��
À°}nmyk^p��iv�ln~	Æ\v�w�~	k�l k�oswx}nm�tsv�t�m\p5~	rNv�r�o$k��	�	k���r��|¿µl"±.m\�/�

w�~	k�l4º.�¥�Em m��.tn�	v�~
l&k��sp?m\l��n��m�p+v�w�~	k�l!w�pxm�me��m-w�}sk�q!o$k�p
o$p�m*�^�sm�liwE���
kir{m*q�~�wxm��§r{m�wxrEv�lsq�k^�np;v��
�^k�px~�wx}n�Ç���E�4�i¿µl
±�m\�-w�~	k�l�Ès�i�Em�q.m*r���p�~	�Cm�r�m���m\pxv��sv��	��k^p�~
w�}s�e~��°wxm\�+}nln~��i�nm\r
o$k�p�r�t�m\m\q.~	ln���nt4v�lsq�r�vb��~	ln�'�em\��k�px����À°}nm\l¥��±.m\�/wx~
k^lÁ v�lsq&É���~	��m�w�}nm���k.q.~
«���v�w�~	k�lsru���E�Q��v��!v�lsq)���E�'�
o$p�m*��o$k^p��"v��.~	�"v��¥o$pxm\�i�nm\liw?r�m-wxr?v�l�q�v��	�Lo$pxm\�i�nm\l^w�~�wxm��
r{m�wxr\�Lpxm\r�t�m*�/w�~	��m\�
�^�"ÀLm*�+}nln~��^�sm\r?o$k�pu~	��tn�
m\��m�liwxv�w�~	k�l�~	r
q.m\rx�-px~
�Cm\q�~	l£±�m*�/w�~	k�l4Ês��v�lsq&w�}nm�p�m*r{�n�
wxr9k�o��-k^�ets�.wxv��
w�~	k�lsv��nm-�.tCm�px~
��m�liw+r5v�pxmEpxm�tCk�p�w�m*q9~	l�±�m\�-w�~	k�l�Ë�� © ~
lsv��
�	���
�;mG�-k^ls�-�	�sq.mG~	lQ±�m\�-w�~	k�l'Ìn�

Í�ÎIÏ�Ð°Ñ�Ò:Ó¥ÔnÕ�Ön×{Ð�Ø§ÙyÔnÓLÚ°Ñ�Ó|ÐNÖ�Û&Ü{ÝNÞiÓLßáà�Ö.ÓLÒ
â Ó¥Ö.Þ

¿µl'w�}n~�r�r�m\�-w�~	k�l¥���;m9~	liw�pxk.q.�s�-m9v�tsv�pxm�liw{�µ�+}n~	�	qOpxm���v�w�~	k�ln�
r{}n~	t��Cm-w��Em�m�lzo$pxm\�i�nm\l^w����
kir{m*qz~�wxm���r{m�wxr\�sv�lsq'q.m*r���p�~	�Cm
k��np�v��
�^k�px~�wx}n�ã���E�ªo$k�p°o$pxm\�i�nm\liw��-�	k^r�m\qO~�wxm��är�m-w+r��
© ~	pxr{w\���Em°~
liwxp�k.q.�s��mEv?tsv�p�m\liw��+}n~	��q�pxm���v�wx~
k^lsr{}s~
t¥���¥m�wå ��m°wx}nm�r�m-w5k�o�w�}nm°o$pxm\�i�nm\l^w2���
kir{m*q�~
w�m\�ær�m-wxr\� © k�p5ç�èå�é �EmEqnm-«slnmEwx}nm;ênë�ì�í-î�ï�k�o�çä���9ð�ñóò�ñ$ç®ô?õ^³ é�ö	ö
ö	é{÷ ñ$ç&ø�ù

³�úbø�øO�y}nm�pxm ÷ ñ�ç)øO��m�wx}nm4�"v��.~	���n�û~
w�m\�ür��s�+}�w�}sv�w
ò�ñ$ç&ø�ýþ ò�ñ�çÿô�õi³ é\ö
ö	ö
é�÷ ñ$ç)ø2ù¡³�ú�ø ö Ä�l�~	�
�	�sr{w�p+v�w�~	k�l)~	r
��~	��m�l)~
l © ~
���5³�� ¿ÂoEç���~�r?w�}nm�tsv�p�m\liw?k�o;ç é �Em�rxvb��ç
~	r v������	��
�k�oyç � ö © k�pev�l��!ç è å v�lsq&~�w+r9tsv�p�m\liw9ç � é
ç��
�­çä}nk^�	qsr2r{~	ls��m�ò�ñ$ç ô õi³ é�ö	ö	ö
é�÷ ñ�ç)ø.ù�³�úbø��­ò�ñ�ç)ø ö

E

X parent of X

T

i(X)

occurrences of the parentoccurrences of X

© ~
�^�npxm�³��LÄ�lem-�nv���tn�	mEk�onwx}nm°tsv�pxm�liw�k�osç���À°}nmEtsv�pxm�liw
k�o;ç¨~	r?k^�.wxv�~
lnm*qQ����q.m��	m-wx~
ls�O~
w�m\��ru��v�px��m\p�wx}sv�l ÷ ñ�ç)ø
ñ$~	lzw�}nmG�^pxvb��v�p�m*v^ø;v�lsq�wxv���mGv��-�	k^r��npxm��

À°}��sr\��w�}n~�r5tsv�p�m\liw{�µ�+}n~
��q9pxm���v�wx~
k^lsr�}n~
te~�r5v��-�.���
~�����v�lsq ~�w+r
��p+v�ts}�p�m\tnpxm\r�m�liwxv�w�~	k�l"o$k^p��"ryv�w�pxm�m��5¯E�"wxpxvb�^m�p+r{~	ln�Gwx}nm
w�pxm�mN~
l�v�q.m�t.wx}.��«spxr{w|�"v�lnlnm�p*�b�;m;��v�l�m�l��n��m�p+v�wxmNv��	��wx}nm
o$pxm\�i�nm�liw��-�	k^r�m\qO~
w�m��ÿr{m�wxry~	l'�
~	lnm*v�p°w�~	��mGk�o�w�}nm9r�~	Æ�muk�o
w�}smOwxp�m\m��E�y}n~��+} ~�r�m\�i�sv��°w�k&w�}nm�l��n� ��m\p"k�o?o$p�m*�i�nm�liw
�-�	k^r�m\qO~
w�m��ÿr{m�wxr\�
ÀLk�wxpxvb�^m�p+r{m�w�}nmGwxp�m\m��n�EmGlnm\m\qzlnk�w�r{w�k^p�muwx}nmuw�pxm�mG~	l

��m���k�px���'¯E�Q«sl�q.~
ls�!�+}n~	�	q.pxm�l4k�o;wx}nmO���npxp�m\l^wx�
�)��~	r�~�w��
~	ln�z���
kir{m*q!~
w�m\�ªr�m-w\�L�;m"��v�l)r�m\v�px�+}&q.k��yl��Ev�pxq'o$k^pu~�w+r
q.m*r���m�lsqnv�liwxr\�
� mer�w+v�p�w�o$pxk��äw�}nmep�k�k�w�k�o5wx}nm�wxp�m\m�ñDwx}nmem���t.w���r{m�w� ø-�¥«sl�q&v'�+}n~	��q)ç���k�oEw�}nm"pxk�k�w\�|v�lsq&��kzwxkOwx}nm��+}n~	�	q¥�

¿µl�w�}sm�r�v���m"�Evb�^�|�Em"��k'wxk!vQ�+}n~	�	q�k�oyç�� ö � }nm�l½�Em
v�pxpx~
�^m�v�w"v!�	m\v�o�k�o�w�}nmzw�pxm�m^�2�EmO�sv^�+�iw�p+v��+�0�5v�lsq½«slsq
v�lsk�w�}sm�p;�+}s~
��q¦�5¿µl"wx}n~	rE�°vb���i�;m�«slsqOv��	�0qnm\rx�-m�l�qnv�liwxrNk�o
v o$p�m*�i�nm�liw��-�	k^r�m\qO~�wxm��ÿr{m�w\�
ÀLke«slsqzwx}nm9�+}n~	�	qnp�m\lOk�o|wx}nm9�-�npxpxm�liw°o$p�m*�^�sm�liw��-�	k^r�m\q

~
w�m��ær{m�w\���Em;��r{m;w�}nmEo$k^�
�	k��y~
ls���	m����"vn� © k^p�v�l�~
w�m\�Ar{m�w
ç v�lsq�v�l�~
l�q.m-� ÷+é �	m-w?ç�� ÷�� þ ç������y}nm�pxm���~�rywx}nm
r�m-wyk�o�w�}nmG~
w�m\�"r��"è'ð�ñóò�ñ�ç��!õ ÷ ú�ø{ø;r�v�w�~�r�o$��~	ln���! ÷ �
"�#%$�$�&(' ç��)�+*�ë,�-�%�	�.
�/10?ç è å32 ç��Nè å ë�î4
�ï	�sí
êsë�ì�í�îsï5/10yç����+*yç768� 0 ë�î4
9/�î:�<;!� 02 �-/�î4
�=-6Gç�� þ ç�� ÷>� 0?/�ì@*A/CB�í ÷�D ÷ ñ�ç)ø é2 �-/�î4
CE?6Gç�� þ ð�ñóò�ñ�ç��	ø�ø 2 ç����+* ëF�A��/G*�í-
H�DïµíABI*�í-ï�62 �-/�î4
KJL6Gç � �+*�0+ì�í-M?Nsí�îsï
O ìP/Q/10R��±.�ntntCk^r�m�w�}sv�w9ç�� þ ç�� ÷�� rxv�wx~	r{«sm\r?wx}nm��-k^lsq.~
�
w�~	k�l�r"ñ��-k^lsq¦³bø/�Nñó�-k�l�qsº�øuv�lsq ñó�-k^lsqnÈ^ø-�"À°}nm�l¥�|ç��;è å5ö
±�~	ls�-mPòOñ$ç ô¾õ^³ é�ö	ö
ö	é{÷ ùI³�úbø þ ò�ñ�ç)ø�v�lsq:ò�ñ�ç ô
õ^³ é�ö	ö
ö	é{÷ ù¾³�úS�­õ ÷ úbø þ ò�ñ$ç � øe}nk^�	qnr"w�}��sr ÷ ñ$ç � ø þ ÷
}nk^�	qnr\�UT�m\ls�-m^�nç��0~�r�v��+}n~
��qzk�o�ç ö
±��ntntCk^r�m'w�}sv�w�ç��y~�r�v4�+}s~
��q­k�oGç ö À°}nm\l¥�9ñ���k�lsq�º�ø

v�l�qäñó�-k�l�qnÈ^ø)}nk^�	q¦� © p�k^� w�}sm¡q.m-«sls~�wx~
k^l:k�o ÷ ñ$ç��	ø é
ò�ñ�ç�ô½õ^³ é�ö	ö
ö	é{÷ ñ$ç��
øEù ³�úV�4õ ÷ ñ�ç��
ø/úbø þ ò�ñ�ç��	ø9}nk���qnr\�
T�m\ls�-m^�¦ç�� þ çW� ÷ ñ$ç��
ø � }nk^�	qsr�� � m"v���r�k�}svb�^m ÷ ñ$ç���ø D÷ ñ$ç)ø;r�~
ls��mGò�ñ$ç���ô�õ^³ é�ö	ö
ö	é{÷ ñ$ç���ø�ù½³�ú�ø þ ò�ñ�ç)ø ö T�m�ls��m
ñ���k�lsq¥³*ø;}nk���qnr\�

º

XVYCZP[\ZP]_^CZa`bYIc-]bd.e+fhg�i,YKj(g k�^lZ�d.knm_[okpg�q r�s3t
g�q ruivs�wPryxtzr{i>w)knd.`_cA[�Z�]b[(|8d.`bd.|�}b|~d�ZP[o|�YCj�g�q r�s���g
^C`_f�gWq r i s
��g�^C��[Hr�^K`_f�r i w���[okP�:[QcLZ�d���[Ae.�K�,�VkPd.`b�,Z�]bd.k
e�[o|8|!^_����[!�b}bd.e+f(ZP]b[Hj�YKe.e�Yl�)d.`b�,^Ce.�KY��Pd�ZP]_|����)]bd+c-]��P[A�
c?[Ad.�K[Qk!^�c?e.Y�kP[ofWdvZ�[A|!kP[?ZFg�^C`_fWZ�]b[A`�[A`%}b|R[o��^CZP[ok!^Ke�e
f�[ok�c?[o`_fb^C`�Z-kFd.`pZ�]b[�kn[Q^C�-c-]�ZP��[A[,j�Y��7c?e.Y�kP[of�d�ZP[o|RkP[?Z-kA�
�{ZH�P[Qc?[Ad.�K[Qk�Z�]b[7[A|R��Z1�Wkn[AZo��^K`_fWYK}�Z��b}�Z�k!^Ke�e5j���[o��}b[o`�Z
c?e.Y�kP[of9dvZ�[A|�kP[?Z-kA�
�F� �4¡:¢G£ ¤o¥�¦�§�¨�©«ª g�¬ j��P[Q��}_[A`�Z­c?e.Y�kP[of9dvZ�[A|�kP[?Z�®
¯ � ¡4°±¤o²�°�¤ g
³ ��´ ¡:¢ [Q^Kc-]9r�µyr ª g�®�¶ ¡
· ��¸?¹�g�q r�sºd+k�j��P[Q��}b[A`�Zo�_g�q r�s4tp» ª » ª g�q r�s	®P® ¤o¥�¼�½

¨�¾b�>��§5¨�©Iª g�q r>s�®
¿_��À ½ ¶�¹ ¡_¢
Á ¥�¼%¡:¢l¼�¦ÃÂÅÄ�Æ Ç�ÈCÉLÊ	Ë	Ì�ÍÏÎ5Ð�Ñ ÒAÓ_Ô�Í!Ò?ÉPÕCË{Ò?Ö�×-ÉPÒ-Ø?Ô_ÒAÓ_Ë
Ù Æ�ÈlÖAÒ�Ú7Ê	Ë{ÒAÍÛÖAÒ?Ë>Ö�Ê	Ó�Æ<Ê	ÓÜÒ-ÕlÉ8Ë>Ê	Í!ÒHÈ1×�Ë�ÌbÒRÓ:Ô�ÍRÝ-ÒAÉ8È1×5×-ÉPÒAÞ
Ø?Ô_ÒAÓ_Ë Ù Æ�ÈlÖAÒ�ÚFÊ	ËuÒ?Í�ÖAÒ?Ë>ÖAß
à5]b[�[?á�d+k1Z�d�`b��[A`%}b|R[A�-^lZ�d�Y�`p^Ce.�KYK��d�ZP]b|âj�YK�Hj���[o��}b[o`�Z

c?e.Y�kP[ofWdvZ�[A|zkP[?Z-k!^C��[9�:^KkP[ofWYK`y�_^Kc-ã�ZP�-^Kc-ã�^Ke���YK��dvZ�]b|��
à5]b[okP[�^Ke���YK��dvZ�]b|!k�Z���^G��[A�-kn[�^�Z��P[o[�cAYK|R�:Y�kn[Qf!YCj�^Ce.e:j���[?�
��}_[A`�Z!dvZ�[A|zkP[?Z-kA��^C`_fykPã�d.��knY�|8[�d�ZP[o|zkP[?Z�k8�%���b��}b`��
d�`b�9ZP]_[�Z��P[o[K��ä­Yl��[A��[A�Q�_Z�]b[8�b�P}_`bd�`_�9d+k�`bYCZ@c?Y�|8�_e�[AZP[K�
]b[A`_cA[UZP]_[okP[�^Ce.�KY��Pd�ZP]b|!k
��[A`b[o��^CZP[U}b`_`b[ocA[ok�kP^K�P�)j���[o��}b[o`�Z
dvZ�[A|IkP[?Z�ko���u`!ZP]b[�YCZ�]b[A��]_^C`:f
��Y�}b��^Ke���YK��dvZ�]b|3ZP�-^G�K[A�-kP[ok
^(ZP��[A[�cAYK|R�4Y�kP[ofyYK`be.�yYCj�j��P[Q��}_[A`�Z9c?e.Y�kP[of�d�ZP[o|åkP[?Z-kA�
]b[A`_cA[�d�ZV�K[o`b[A�-^lZ�[ok5`bYH}_`b`b[ocA[ok�kP^K�P�Hj��P[Q��}_[A`�ZVd�ZP[A|hkP[?Zo�
à5]b[Hc?Y�|8�_}�Z�^CZPd.YK`æYCj5[o^Kc-]æd�ZP[A�-^lZ�d�Y�`�YKj�Y�}b��^Ce.�KY��Pd�ZP]b|
d.kV`bYCZV]_[o^G�%�9cAYK|R�_^C��[of9�)d�ZP]7Z�]b[�[?á�d+k1Z�d�`_�H^Ce.�KYK��d�ZP]b|!ko�
]b[A`_cA[FY�}b��^Ke���YK��dvZ�]b|ç]_^�k�^K`�^Kf��l^C`�Z-^C�K[Rj�Y����b�-^Kc?ZPd+cA^Ke
c?YK|R�b}bZ�^lZ�d�Y�`º�
�{j)��[Fc?Y�`_knd+f�[o�@YK}b��^Ke���YK��dvZ�]b|ç^�k�^7|RY�f�dvm4cA^lZ�d�Y�`(YCj

}_kn}:^Ce5�_^Kc-ã�Z���^�c-ã�d.`b��^Ke���YK��dvZ�]b|���[o^�c-]�d�ZP[o��^CZPd.YK`�YKj�YK}_�
^Ce.�KYK��d�ZP]b|è��[?�{YK�-f�[A�-k�ZP]b[�d�ZP[A|!k�e+^C���K[A��ZP]_^K`Hr ª g�® ª r ª gæ®
d.k�YCj	Z�[A`Wco^Ce.e�[Qf(ZP]_[ËuÕlÊ	Æ ®�kP}_c-]�ZP]:^lZ�Z�]b[�dvZ�[A|!k8`bYCZ8d�`��
c?e.}_f�[ofpd�`ag�j�YKe.e�Yl�éZP]_[�d�ZP[A|!k�d.`_c?e.}_f�[Qf�d�`Åg,ê�XVYCZ�[
ZP]_^CZ5d.`F[Q^Kc-]Hd�ZP[o��^CZPd.YK`9��[Skn[AZ�gëZPY8g�q r�sÜZPY8|!^Cã�[�^��P[A�
c?}b�-knd.�K[8cA^Ke�e��Ü]b[A`_cA[�gâ|R^G��d.`_c?e.}_f�[8d�ZP[A|!k�e+^C���K[A�VZP]_^K`
r ª g�®LêUà5]b[�c-]b[Qc-ã�YKj ª cAYK`_f ³ ®�co^C`��4[�c?YK`:knd+f�[A��[of�^Kk8^
�b�P}_`bd�`_�!YCj±Z�]bY�kP[S`bYCZ­�4[Ad.`b�HcAe�Y�kn[QfFd�ZP[o|�kP[?Z�ko�

ì�íïî�ð±ñVò�ó
ônõVöI÷�ø�ù3ú�ò)û�ü�ûbô1ø�õhýæônùþð
à5]b[�c?Y�|R�b}�Z�^CZPd.YK`SZ�d�|R[�YKj�ÿ�����f�[ok�c?��d.�:[Qf�d.`@Z�]b[��b��[A�%d��
YK}_k�kn[QcLZPd.YK`Sd+kºe.d�`_[o^C�±d�`�� ���<wo]bYl��[o�K[o�:Z�]bd+k�knZPd.e�eKZ�^KãK[okºe�Y�`b�
ZPd.|8[Rd�j���[�d.|R�be�[o|R[A`�Z@dvZ@d.`�^9`_^Cd.�K[���^G���@�u`,ZP]_d.k@kP[oc?�
ZPd.YK`º����[8d�`�Z��PY�f�}_cA[!knY�|8[8Z�[oc-]b`bd+��}b[okS�:^KkP[of,Y�`ækP�_^K��kP[
^C`_f�f�[o`_kn[@knZP��}_cLZ�}b��[ok5YCj�ZP]_[@d�`b�_}�ZVfb^lZ-^b�

��d.��knZo�@��[��P[Qf�}_cA[�Z�]b[�cAYK|R�b}�Z-^lZPd.YK` Z�d�|R[(j�YK��c?YK`b�
k1Z��P}_c?ZPd.`b�9» ª g�q r�s	®)t\» ª g
	��or�
G®?w_�)]bd+c-],d+k�`_[A[ofb[of�Z�Y
c-]b[oc-ã ª c?Y�`_f · ®L�F�u`�^�}:kn}_^Ke��5^G�K��» ª g�q r�s	®�d+k@Y���Z�^Kd�`b[Qf

T(X)

•••
jQ[|E|-2] jQ[|E|-1] jQ[|E|]

A
C
D
F
G

A
B
C
F

A
B
C
F
H

A
C
D
F
G

occurrences

jQ[i]
= T(X[i])

A
B
C
D
F
G
H

Right first sweep

• • •

��d���}b��[³ ¬���cAcA}b�P��[A`:c?[9fb[Ae.d���[A�R^C`_f��Pd.�K]�Z8m_��knZ!kn��[A[o�º¬
�bY��R[o^Kc-]�Y%coc?}b����[A`_cA[���YKjVg,wUY�cAcA}b���P[o`_c?[�f�[Ae.d���[A�8d�`b�
kP[A�PZ�k���Z�Y����!q r�sÜkn}_c-]RZ�]_^lZ�r����­ê���]_[A`!Z�]b[V^Ce.�KY��Pd�ZP]_|
�K[o`b[A�-^lZ�[okS^9�P[Qc?}b�-knd.�K[RcA^Ke�eU��[okP�4[ocLZSZ�Y�gWq�� ����� ³ s�wÜZ�]b[
��[oc?}_��kPd���[�co^Ce.e.k���[okP�:[QcLZ5ZPYRg�q � �!�"� ¯ s±^K`_fFgWq�� ��� sº]_^G�K[
�4[A[A`8Z�[A��|8d.`_^CZP[ofº�"���!q � ���#� ¯ s_^K`_f$���!q�� ��� s:^C��[)c?e.[o^K�P[Qf
�
à5]b[��P[Qc?}b�-knd.�K[�cA^Ce.e4YCj±g�q � ���%� ³ sÜ}_kP[ok�YK`be.�&���!q�� ���'� ¯ s
^C`:f&���Hq�� ��� s�w�]b[A`:c?[­Z�]b[�^Ke���YK��dvZ�]b| ��[?�{}_kP[ok�ZP]b[o|þd.`!Z�]b[
��[oc?}_��kPd���[�co^Ce.e>�
j���YK|h» ª gæ®)�%�9��[A|RYl�%d.`b�F^Ce.e�ZP�-^C`_k�^Kc?ZPd.YK`_k)`_YCZ�d.`_cAe�}_f��
d.`b��r ª ZP]_d.k�|R[?ZP]_Y%fRd+k�ã�`_Yl�)`R^�k Ú�È)(UÓ_Þ�*ÜÉPÈ,+AÒ Ù Ë ®��{Z�Z-^CãK[Qk� ª � » ª g�®-� ®�ZPd.|8[��U�u`_knZP[o^�fHYKj±ZP]_d.ko����[Sc?Y�`_knZP��}_cLZ5`b[ocA[okn�
k�^C����gWq r�s/. kS^lZ@Y�`_c?[8�%�7ZP�-^KcAd�`b�9ZP�-^C`:kP^�cLZPd.YK`:kVYKj�» ª g�®
ª Y�coc?}b���P[o`_c?[QkVYKj�g�®?�10%[o[2��d.�_� · �&�æ[!kn[AZ@^Ke�e3���!q r�s�Z�Y
�4[�[o|R��Z1�K�yà5]b[A`º��j�YK�![Q^Kc-]4�5� » ª gæ®Lw ��[�d.`_kP[A�PZ6�
ZPY7���Hq r�s�j�Y���[Q^Kc-]�r6�8�­wPr�µèr ª g�®?ê:9­j	ZP[o�8f�Y�d�`_�7ZP]bd+ko�
���!q r>s4tÅ» ª g�q r�s�®�]bYKe+fbk�j�YK�­^K`%�Hr�µWr ª g�®Lê:à5]bd.k5d+k­f�Y�`b[
d.`;� ª � » ª g�q r�s	®<� ®�ZPd.|R[@j�YK�)[Q^Kc-]9r�w_]b[A`_cA[�ZP]bd+k5ZP[Qc-]b`bd+��}b[
d+k5['=Hc?d.[A`�Z)d�`�Z�]b[�cA^�kn[�ZP]_^CZ1� » ª g�q r�s	®<��d.k5|�}_c-]�kP|!^Ce.e�[o�
ZP]:^C`>� » ª g�®-�vê���[�cA^Ke�e�ZP]bd+k�ZP[Qc-]b`bd+��}_[È Ù-Ù Ô�ÉLÉPÒAÓ Ù Ò7Ú�Ò?ÞÆ<Ê@?lÒ?É ��X­YKZP[SZP]:^lZV��[�f�YR`bYCZVc-]_[oc-ãFgWq r�sºd�j » ª g�q r�s	®�t>A
ª Z�]bd+k)ZP[Qc-]b`bd+��}b[�d+k­YKj	ZP[A`,co^Ce.e�[Qf Æ�ÈQÈ<B�ÕoÌbÒ-Õ�Ú q ¯ s�®L�DC���Y%c?�
c?}_�P��[A`_cA[�f�[oe�d.�K[o�o�ÜZ�]b[!c?Y�|8�_}�Z�^CZPd.YK`,Z�d�|R[Rj�Y��ECF�G0,d�`b�
knZ�^C`:c?[ok)^K�P[���[of�}_cA[of9}b��ZPY ¯)H%¯<I d.`�kPYK|R[@cA^�kn[QkA�

0%d�`:c?[6� ���!q r>sJ��KL� » ª �or�
l®-�Gj�Y���^K`%��rU^C`:f!g,w�ZP]b[�|8[o|8�
YK����j�Y��:���aj�YK��^Ce.e_r�d.k��4YK}b`_fb[ofR�%�8ZP]b[­d.`b�b}bZ5kPdNMo[K���u`F^
kPd�|R�be.[)��^G���l��[)^Ke�e.Y�cA^lZ�[����ad.`�[Q^Kc-]8dvZ�[A�-^lZ�d�Y�`º�C]bYl��[A��[A�
d�Z�Z-^Cã�[ok�|�}_c-]æ|R[A|RYK���K���u`æYK}_�S^Ke���YK��dvZ�]b|��Ü��[R�K[o`b[A�P�
^lZ�[�^!��[ocA}b��kPd.�K[�cA^Ke�e��P[Qkn�4[oc?Z­ZPY9g�q r>s�d�`7Z�]b[�fb[oc?��[o^�knd.`b�
YK�-f�[o��YKj�r-êO0%[A[P��d.�_� · �29)j	ZP[o�@ZP[o�P|Rd.`_^lZ�d�`_�FZ�]b[!�P[Qc?}b�P�
kPd���[�co^Ce.e��P[Qkn�4[oc?Z�Z�Y@g�q r>s{wG��[)kP[?ZO���!q r>s�Z�Y�ZP]b[)[o|8�bZ1��kn[AZ
ª `_YCZP[�ZP]_^CZºZP]_d.k±Z�^KãK[ok�c?Y�`_k1Z-^C`�ZºZ�d�|R[Q®?��0�}b�b�4Y�kP[�ZP]:^lZ���[
^C��[���YKd.`b�!Z�Y9��[A`b[o��^CZP[���[ocA}b�-knd.�K[�co^Ce.e���[okP�4[ocLZ�ZPY�g�q rui s{ê
0%d.`_c?[)��[­kP[?Z:���ÅZPY@[o|8�bZ1��kP[?Z�^Cj	ZP[A��ZP]b[5Z�[A��|8d.`_^CZPd.YK`RYCj
^!��[ocA}b��kPd.�K[�co^Ce.e>�Ü^Ce.eQ���!q r�s�wPr­µprui ^C��[�c?e.[o^K�P[Qf
�Ü^C`_f,co^C`
�4[!}_kn[Qf
�H�u`æZP]_[!�P[Qc?}b�-knd.�K[RcA^Ke�e��P[Qkn�4[oc?Z@ZPY�g�q r{ivs{wºdvZ�[A�P�
^lZ�d�Y�`_k��K[o`b[A�-^lZ�[of,d.`�ZP]b[R��[oc?}_��kPd���[�co^Ce.eU}_kn[8YK`_e��!���!q r�s
�)d�ZP],r­µarui êÜä­[o`_c?[��
��[�co^C`,��[?�{}_kP[����!q r>s{wnr)µarui�d.`7Z�]b[

·

RTS"U'VWR%X#Y�Z�S[U<\^]�]`_7abS!\^R�SPcWd�efYNcgchS-S<i�d�jD\^]�]NdkU-\^eTY�cWl�m�n
YNc7S<\oU%p�YNeTS-R%\)e�YNdoc[qWVkerph\sZoSte�d6\�]N]�dkU-\^eTStdocW]�uPd�cWSDm�nv\oX
\wlo]Ndoqh\^]�Z)\^R�Y�\�qW]�S�_yxFphS-R�S'jzd�R�S�{�eTpWS7eTd�e�\�]r|6S<|2d�R�ugRTS-}
~oVhYNR�S<i�jzdoR�m�n�Y Xtq�d�VWc�ikS<i�q�u7eTphSfY�cW�WVke$X#Y��-So_DabS1U-\�]N]
eTpWY XFeTS"U%pWcWY ~�VWSP�����"�k�����%���������%�/�Q_

� c$e�pWSFU-\�XTS�e�ph\)er� �[���4� �`�z�-�-Y X3cWS"\^R�]Nu�S<~�Vh\�]�e�d1� �!�z�w�<���
� SbVhXTS��^� F�-�'�$�WR�d���doXTS<i8YNc¡��¢s£"�/_¥¤tYN¦§X#S-e�¨sm�nP� �`��jzd�R
�;Y�X4�[�z�w�$©��[�z�«ªL¬"��­s��®[� �[�z�y� �¯�z�bY�X�doqke�\�YNcWS"i°q�u
� �!�z�w�<�§±²� ¨sm�nP� �`�J��®DawSyVW�QiW\)e�S4¨"m�nP� m��¯�/m
³«� � pWS<c
� S!l�S-chS-R%\)eTS!\;R�S<U'VhR�XTYNZoS[U-\�]N]�RTS"X#��S<U'efe�dG�4� �¯�¯� � S7X#S-e
¨"m�nP� m��´e�d�¨"m�nP� m��k©D¨"m�nP� �¯�¯®�¤tYN¦QXTS'e%X�\�RTSfcWS-S"ikS<i7jzdoRDjzd�R
d�cW]�ug�$X#VhU%p4eTph\^e6�y� �¯�FY�X1jzR�S<~�VWS-c�e"_baµphS-c � S!l�S-chS-RT}
\)eTS1\2RTS"U'VWR%X#Y�Z�S$U<\^]�]3RTS"X#��S<U'eDeTd��;�keTphS&VW�QiW\)e�SfY XDikd�chS
YNc6¶6�/·µ¸�¹�¸�ºN»F¼/½ »�¾ ¸�¿�¸ ÀJÁ"Â�ÃJÄ#Å)Ã,Æ)Ç<�T�T� �����w�-��±2� �P���4� �¯�z�-� ��eTY�|2S�_È uÉikYN¦QXTS'e%X-{�eTphSGU'do|6�hVke�\^eTY�d�cyeTY�|6S;jzd�R�XTu�coe�pWS<XTY X2YNck}
XJe%\^chU-S<X�XTVhU%p[\oX�U'docWcWS<U'e<{�U%pWS<X�X<{��WVW|PXTq�\^R�SrR�S<ikVhU-S<i6e�d
¢sÊ�¢"Ë�Ëh®

abSÌchS'Í�e´S-Í��h]�\�YNcf\Dj�\�X#e:U%pWS"U%ÎtjzdoR��`U'dochihÏ��'_:Ð�Y�chU-S�\�c�u
�4� �¯�OÑµ¨����!�z�4� �¯�@�T�F\^chi�\^c�u[YNeTS<|
d�j�¨����!�z�4� �¯�@�T�3©��4� �¯�
Y�X�]NS"XTXDeTph\�c��%�´��U-d�chi�Ï��DU<\^c�q�S1U%pWS"U%Î�S"i!q�u7dkU-U'VhRTR�S-chU-S
ikS-]�YNZoS-R$jzdoR&YNeTS-|PX$]�S<X�XEe�ph\^cg�%®OÒtd � S<Z�S-R"{§Y�cÓ\^]�|6d�XJe&YNe#}
S-R%\)eTY�d�c�X-{r�2Y X!U-]Nd�X#S"i�eTdL� Ô�����pWS-chU-S;e�pWY�X!e%\^Î�S"X[|1VhU%p
eTY�|6S�Y�c°�WR%\�U'eTY U'So_ � c°d�VhRb\�]Nlod�R�Y�e�pW|�{ � SÉU%phd�d�X#Sy\
|6Y�cWY�|fVW|ÕXTYN�<S�eTR%\^chX�\�U'eTY�d�c4ÖE×^���w�1jzRTdo|Ø�����GÙ ����\�chi
jzd�RPS<\oU%p�mÛÚÜÖ × ©E� Ù �<��m8ÝÞ�J��� � S�U%pWS<U%Î � pWS'e�pWS-Rfm
Y�X2Y�chU']�VhikS"iÉYNc�\^c�ugdkU-U-VWRTR�S-c�U'S7d^j��y� �¯�rd�R2cWd�e<_�xFpWY�X
U-\^c4q�S�ikd�chS�q�u�ßhchikY�cWlb\�eTR%\^c�XT\oU�eTY�d�cgd�j��[���GÙ��fcWd�e
YNchU-]NV�ikYNchl4m�®DàOS'eG�[���w�Óáâ¬"Ö´ã<�-®��-�<® Ö�ä å º�»�¼ ä�­�®DæWdoR�\�c
Y�e�S-|çm�� � S;ikS<cWd^e�S�q�u4è��z�;�/m��1e�pWS;|P\)ÍkY�|fVW|éYNc�ikS'Í
X#VhU%p6e�ph\)e�S"\�U%p2d^j§Ö´ã<�<®N®�®N�TÖ§ê º�»�½ ëT¼ Y�chU-]NVhiWS<X´mo®�xFpWS-c3{oeTphS
U'd�|2�WVWe�\)e�YNdoc�eTY�|2S&jzdoR�U%pWS"U%Î�Y�cWl;�`U'd�c�ihÏ��FY X � RTYNe#e�S-cG\oX
¶6�¯·�ë'ì�í§î'ºN»�¾ ¸�¿ï¼�è��z�4� �¯�¯�/m��#��®oxFpWY�X�Y X�|1VhU%p6XT|P\^]�]NS<R�eTph\�c
¶6�¯·�ë'ð�¸�� �[���GÙJªE¬�mW­<�@�<� �'�)pWS-c�U'S � SrU-\�c1ikd�e�pWY�X�Y�c2~oVhY�e�S
X#pWdoR#eFe�YN|2S$Y�c7�hR�\oU�eTY U'So_

� cµj�\oU�e"{DeTd4q�S�ikd�chS;YNc>X#phd�RTe[eTY�|2S�{re�pWSbU%phS<U%ÎÉRTS-}
~oVhYNR�S<X3eTpWS�\oisñ#\�U-S-chU-u�|P\^eTR�Y�Í2��XTd�|2S'e�YN|2SÌU<\^]�]NS"i[ò'�@�¯óPô��k�
RTS<�WRTS"X#S<c�eTY�cWlte�pWSDY�chU']�VhXTYNdoc1R�S-] \)e�YNdochXTpWYN�6q�S'e � S-S-c2YNeTS<|2X
\^chi[eTR%\^chX�\�U'eTY�d�chX<_´Òtd � S<Z�S-R"{oeTpWSE\�isñ#\oU'S<chU'u2|P\)e�RTYNÍPRTS-}
~oVhYNR�S<Xf¶6��� ����õÉ� Ô�� ��|2S-|2d�R�u�{ � phY�U%p�Y X$~oVhY�e�S6p�\^R%i;e�d
XJe�d�R�Srjzd�RÌ]�\�RTloSDYNc�XJe%\^chU-S<X<_:ÒtS-chU-S�{ � St|2\�Î�StU-d�]�VW|2chXÌd^j
\�isñ#\oU'S-c�U'u7|2\^eTR�Y�Í7jzd�R�d�cW]�u!eTR%\^chX�\�U'eTY�d�chXFd�j�X#Y��-S&] \^R�l�S<R
eTph\�cÉ� · íOì å � Ö6� ��Ê)ö)®QÒDS<RTS2öPY X�\7U'dochX#e�\^c�e"_&xFpWY�X�VhXTS<X
\)e�|2doX#e�¶6�`ö�õ · íOì å � Ö6� �'� � pWY�U%p6Y X´]�Y�cWS<\�R�YNc1eTpWSFY�cW�WVke
X#Y��-So_

� c$e�pWSFU-\�XTS�e�ph\)er� �[���4� �`�z�-�-Y X3cWS"\^R�]Nu�S<~�Vh\�]�e�d1� �!�z�w�<���
eTpWS�\^q�d)Z�S!U%pWS<U%Î�Y X1chd^ePikd�cWS7Y�cyXTpWd�RTe1e�YN|2So_ � c4e�pWY�X
U-\�XTS�{ � SgÎ�S<S-�ÜikYN¦QXTS'eb¨"m�nP� m��&jzd�RG\�]N]�m¥ÝÕ�%�#�ø÷Úù�
X#VhU%pveTph\^ew�4� �¯�fY�XGjzR�S<~�VWS-c�e"_ØxOdÛ|2\�YNc�e%\^Y�cv¨"m�néjzd�R
\^]�]��2Y X!\gphS<\sZ�u4e%\�XTÎQ{reTp�VhX � SwikY�X�U-\�R�i�VhcWcWS<U-S<X�XT\�RTu
¨"m�n2ú XD\�Xrjzd�]�]Nd � X<_ � j��[���¥ªG¬%mh­s�FY�chU-]NVhiWS<XD\�c�Y�e�S-|ûYNck}
U']�VhikS<i6Y�cPcWd$�����4� � Ù �@�'�#� Ù ³É�%���w���^eTpWS<c1jzdoR�\^c�ufikS"XTU-S-ck}
iW\^c�e$�GÙ:d^j��4{hmÓ÷ÚÓ���������GÙ¯� m�Ù��@�T�DjzdoR$\^c�u�m�Ù�³L���z�GÙ���®

ÒDS<chU'So{ � SGcWdy]NdocWl�S<R�ph\sZoS�eTdyÎ�S-S<�8¨"m�nP� m���jzdoR7XTVhU%p
mo®Oà3S-e1üGý2���w��q�S[eTpWS�XTS'e&d�j�YNeTS<|PX�m;XTVhU%pbeTp�\)ef�4� m��
Y X2jzRTS"~�VWS-c�e�\^c�iÉ\�c�uÓY�e�S-|þd^j$�[�z�b��©&�[�z�ÿª�¬%mh­s�1Y X
Y�chU']�VhikS"i°Y�c�XTd�|2Sµ�[���4� m�Ù��@�'�¯m�ÙÉ³ �%���w��®&xFphS-c3{2e�pWS
U'do|2�WVke�\^eTY�d�c°eTY�|6S�jzdoRgU%pWS<U%Î�Y�cWl��`U'dochihÏ��GY X � RTYNe#e�S-c
\�Xr¶6� · ë'ì ��� ºN»F¼/½ ë'ðQ¸�� �[�z�b��©����z��ª7¬%mh­s�<� �'® È u[U%pWS<U%Î�}
Y�cWl;��U-d�chihÏo�FY�c�eTpWS"X#S � \sukX-{ke�pWSfU-d�|2�WVke%\)eTY�d�c�e�YN|2S$jzdoR
U%pWS"U%Î�Y�cWl���U-d�chihÏo�ÌY�XrR�S<iWVhU'S"i[jzR�d�| ¢)Ê�¢"Ë&e�d�¢sÊ�¢"Ë�Ëh®

� cGd�VhR�\�]Nlod�R�Y�e�pW|�{ � Sf|P\�Î�S2\�ikS"U'Y X#Y�d�c � pWY�U%pGeTS"U%pk}
cWY ~�VWS � YN]�] � S�V�X#So{^dkU-U'VhRTR�S-chU-S�iWS-]�YNZoS-R�\^chi6ikYN¦QXTS'e%X-_�abS
U'do|2�h\^R�SEeTpWS2U'do|2�WVke�\^eTY�d�c�e�YN|2S6d^j�eTpWS<|�{ ·yë � ���z�
ª
¬%mh­)�-�)\�chi[·yëT½ »����,ë	�T¸�À#Á<Â%ÃJÄ#ÅsÃJÆ)Ç<��� �!�z�w�<�J±G� �[�z�>ª1¬%mh­s�<� �'®� j�e�pWS6jzd�R�|2S-REY�XEXT|P\^]�]NS<R<{Qe�pWS-c � S2VhXTS6d�U<U'VWR�R�S-chU-S6ikS-}
]�YNZoS-R"_ abS4U-\�]N]feTpWY X�e�S<U%pWcWY ~�VWSÉ��
�ò'�����^_ ÒDu�qWR�Y�iLS<ck}
\^qh]NS"XÌV�X�e�d1V�X#S$\^c7\^�W�hRTS"U'Y \)eTSteTS"U%pWcWY ~oVhS�q�\�XTS<i[doc[e�pWS
ikS<chX#YNeJu�d^j&e�pWSbYNcW�hVke;iW\)e%\W{�\�chiÛU<\^c8R�S<iWVhU'SweTpWSweTd�}
e�\�]tU'do|2�WVke�\^eTY�d�cÉeTY�|2S�_>æWd�R[XTd�|2S;U<\�XTS<X2d^j È�� ÐyYNcW}
X#e�\^c�U'S<X<{ � S[U-\�cwR�S<ikV�U'S2eTphS[U'd�|2�WVWe�\)e�YNdocbeTY�|6SPVh�we�d
¢sÊ�
W®�abS�|P\^ÎoS�eTpWY X´iWS<U'Y XTYNdoc�docW]�u�\)eOeTpWS�U%phYN] iEY�e�S-R%\)e�YNdochX
d^jÌeTpWS2R�d�d^eEY�e�S-R%\)eTY�d�cO{OX#Y�chU-S2U-d�|2�h\�RTY�cWl[e�pWS[U'do|2�WVke�\^}
eTY�d�c;eTY�|6S1e�\�Î�S"Xt|1VhU%p�eTY�|2Sfe�ph\^cGeTpWS6d^e�pWS-REU'do|2�WVke�\^}
eTY�d�cGd^jÌ\�cGYNeTS-R%\)e�YNdoc3_���\^RTeTY U'VW] \^R�]Nuo{�Y�cGdoVWR�YN|2�W]�S-|2S-c�e"{
� S8S<X#eTY�|P\)eTSøU'd�|2�WVWe�\)e�YNdoc¡eTY�|2SÛq�u ·�ë'¹�¸�� ���z�4� m��@�<�
\^c�i · ë'¹�¸�½ »�¾ ëJ¿�¸ ÀJÁ"Â�Ã#ÄJÅ)Ã,Æ)Çs�T� �����w�-�Q±²� �[�z�y� m��z�-� ��� � pWY U%p
\^R�S!U-d�|2�WVke�S<i4YNcÉX#pWdoR#e1eTY�|2S!jzR�d�|5e�pWS�RTS"X#VW]Ne�X1d^j�d�U'}
U'VhRTR�S-chU-S�iWS-]�YNZoS-R"_

xFpWS�|2S<|6doRTu[XT�h\oU'S�Y�XF\^] XTd1R�S<ikV�U'S<i�q�uPp�u�qWR�Y i§_�xFpWS
|2S-|2d�R�ugjzdoR�ikYN¦QXTS'e%X[Y X · ë'¹Q¸z½ »�¾ ëJ¿�¸�À#Á<Â%ÃJÄ#ÅsÃJÆ)Ç<��� �!�z�w�<�h±
� �[�z�4� m��@�<� �'®oxFpWY X�Y X�iWS<U'R�S<\oX#S"i � pWS-c � Srl�dEe�d$eTpWS�U%pWYN] i
d^j��;�$pWd � S-ZoS-RbeTphY�XgY XgcWd�eÓq�doVWchikS"i¡q�uÜeTpWSÛYNcW�hVke
XTYN�<S�_ÌÒtd � S<Z�S<R<{kYNjD�T� ���z�b�-�)±8� �[�z�y� m��z�-� �FY�Xt]�\�RTloS-R�eTp�\^c
· ë'¹Q¸�� �[���4� m��z�-� � pWY U%pbY�XEq�d�VWc�ikS<ibq�u�eTphSPYNcW�hVkefX#Y��-So{
� SrVhX#SDeTpWSDdkU<U'VWR�S-chU-SDikS-]�Y�Z�S-R"_�xFpWS-R�S'jzdoRTSo{)eTpWSt|6S<|2d�R�u
VhXTS<i�jzd�RDikYN¦§X#S-e�XrY XrcWS<Z�S-RFS-ÍkU-S-S"i�e�pWS$Y�cW�WVketXTYN�<S�_

awSFikS<X�U'R�Y�q�SÌeTpWSr\�]Nlod�R�Y�e�pW|LVhX#Y�cWl�dkU-U'VhRTR�S-chU-SÌikS<]NY�Z�S<R
\�X�jzdo]N]�d � X<_
��� dkU-U-VWR�RTS<chU'SEikS-]�Y�Z�S-R ���
������������� m�nP� � "!$# %'&)(+* ���G�T�[���w���T�%���w�F�
¢�_ ��, &.- , & �
Ïk_0/ � *1(��243 ÖøÚ������w�

/ � *1(��243 mPÚ7ÖD�/m2³y�����w���kY�chXTS-RTe65�eTdfm�nP� m��7 _0/ � * S<\�U%pPmo�¯m�nP� m���÷á986Y�c�e�pWS&ikS"U'R�S<\�XTY�cWl1doR�iWS-R
£k_ %;: � m�n[� m��J�+<>=Ó\�chi���U-d�chihÏo�ÌpWd�] iWX & 3 (@? �!A# %B&.(+* �����Nm�nP� m��@�'�¯m�nP� m��¯�/m[�C _ ¤�S-]�S'e�Stm�nP� m��D _0E ?GFH: � *��� ikYN¦§X#S-e ��� "!$# %'&)(+*�I ���;���[�z�w�'�#���z�b���T¨sm�n°�
¢�_ ��, &.- , & �
Ïk_0/ � * S<\�U%p7�%�#�4� �¯�§Y�X�jzR�S<~�VWS<coe

7

J�KMLBNPORQ SUTWVYX[ZY\]V�^`_.VbadcBe�f`g`h�ikj)lGm@n
o K pWq�rA_)X�c	sut�v�ORQ SUT+wyx	t`z{\|V�}�~Y_.�+��_.f�Z)�

� t+���dQ t�TW��� � t+��Q t�T@� � t@�uQ SUT
��K �"�$� LBj.m+r���a0��a]t@�uQ t�T�i'v�t+��Q t�T�vUt�v � t@� � i
��KM�{nG�H�dN
� K��{nG��N�q`r
�1��� q�r4��j.l��M�"�$��aUi
 �K0O¡���£¢
h�K�pWq�rASP���¤ �j.qR¥ ¦1¥
J�KMLBNPORQ SUTWVYX[ZY\]V�^`_.VbadcBe�f`g`h�i"X�f`g§adcBe�f`g�J�i"j)lGm@n

�$¨ �d� �"�$� L'j.m+r�a©ORQ SUTUvY��a�ORQ SUTªiBv�SPi"e�~
���$�¤� L'j)m+r��Wa©ORQ SUTUvY�ua�ORQ SUTªiBv�S	v � t@�«i
¬ X�V­_.g®e�f®Z­s�_�g�_)cB\|V�\]e�f¯cB~Y\°Z­_;~Y\|X

o K��{nG��N�q`r
±�lGm@q�r[m+�²�´³¶µ ·�¸�¹'ºª»ª¼�½ ¾�¿�À ÁBÂ�Ã�½ÄÁ;¹­Å[»ÆÁBÇ�Å�µªµ®È	¹­Á;É
Ê Ã`Á;Â`»�ËBµ°¸[Ç;ÁYÌÍºª»ÆÁB½ÎÇBÁ;»dÇÏºªÂÑÐ�a�ÒÔÓBÕ×Ö�Ø°Ù�ÚW¥ ��a�ORQ t�T�i;¥0Û
Ò>ÓBÕ×Ö�Ø°Ù�Ú�Ü Ù¶Ý ÓßÞàÖ]á�â.ã	äßå�æ4äßç[è�Ò�Ó­é�ê�ë�ìBØ°Ù�Ú+íîa�ORQ t�T�vUt � i­i »Uºª½ÄÁBï
¸[¹ðÐ�a�Ò9Ö�Õ�Ö�Ø°Ù�Ú�Ü Ù¶Ý ÖàÞàÖ|áßâ)ãYäßå�æ[äÆç[è.a­a­¥ �1a�O§i;¥�ñò¥ ��a�ORQ SUT�i;¥ iAÛ
Ò>ÓBê�ó�ô0Ø]Ù"ÚÆÜ ÓBõ�Ö�¥ ��a�O§iP�b�1a�OöwÔx	t`z[i;¥ i�i÷»Uºª½ÄÁbÈB¸�¹øÁYÅ�ËY¼
È	¹­Á Ê Ã`Á;Â`»�Ë;µ°¸4Ç;Á	Ì>ºª»�Á;½ùÇ;ÁB»bOyv{ú0ºª»�¼£½uÁB½u¸[¹'ûÔµàºªÂ�Á	Å[¹î»Æ¸
»ª¼`Á�ºªÂ�ü�Ã�»kÇ	º°ý)Á)þ

ÿ�� �������
	���
�����������
������

�������	! ���	!�"�
# 	��%$

& fuZ­s�\|V"V�_)c'Z­\]e�fW�('"_6_*),+�-]X�\°f1X�fu_;f@��.Ä_;~	X[ZY\°e�f�X/-10�e�~­\°Z­s�.
e�}2.uX/)@\1.uX/-{}�~Y_.�+��_;f+Z V�_;ZYV3'�\°Z­s£Z­s�_ �`V­_ e�}�}�~Y_.�+��_.f+Z
c4-]e�V­_.gø\°Z­_5.öV­_BZ�_;f@��.Ä_;~	X[ZY\°e�f�K�6�s�_7.ÄX�\°f§\]g�_.X®\]V98�_.~�:
V�\1.;+�-°_�K=<@\°f�cB_�X�f,:2.uX/)@\1.uX/-`}�~­_)���`_;f+Zk\°Z­_5.�V�_;Zk\|VkX�}�~Y_4>
���`_;f+Z{c*-°e+V�_)g¯\ ZY_*.òV�_;Z.�?'"_�_;f@��.Ä_;~	X[ZY_b}�~Y_.�+��_;f+Z�c4-]e�V­_.g
\ ZY_*.öV­_BZ	VbX�f`gye���Z@+���Zbe�f�-1:¯Z­s`e�V­_ ¬ _;\]f�0A.uXB)�\C.uXD-G}�~Y_4>
���`_;f+Z¶V­_BZYV.K�E�e�~ XÄ}�~Y_.�+��_.f�Z{c4-]e�V­_.g÷\ ZY_*.òV­_BZ Oøv�O \]V¶X
.ÄX/)�\C.uX/-G}�~Y_.�+��_;f+Z�V�_;Z{\°}kX�f�g e�f�-1:¯\ }kO wîx.SYzA\|V¶\°f�}�~Y_4>
���`_;f+Z¶}�e�~{X�f,:®SGFH OJI?KL: X�g�g�\]f�01Z­s�\|V�c	s�_.cNM÷Z­eAO�PLQ �
'k_�e ¬ ZYX�\]f�O�PLQ�.uX/)×K
6�s�\|VR.Äe�g�\°^�c;X�Z­\]e�fHg�e@_.V1f�e�Z�\]f`c;~­_)X�V­_¯Z­s�_J.Ä_5. e�~�:

cBeD.;+�-]_4)�\°ZS: ¬ ��ZW\]f`cB~Y_.X�V�_©ZYs�_PcBeT.;+���ZYX�Z­\]e�f�ZY\C.Ä_�K & fbZ­s`_
c;X�V­_Pe�}`e�c;c;��~­~Y_;f�cB_Pg�_5-°\18�_.~.�U'"_"0�_;f�_.~YX�Z­_P�1a�ORw¶x	t`z[i×}�e�~
X/-1-×t1\°føZ­s�_ V­XD. _G'"XU:¯X�V�ZYs�_Ae�c.cB��~Y~­_.f`cB_$g�_*-]\C8�_;~)��X�f`g
c	s�_.cNM$Z­s�_V.uXB)�\C.uXD-°\°ZS:�K�6�s�\|V�Z	X/M�_)V"W aUÒ�ÓBõ�Ö�Ø°Ù�Ú�¥ ��a�O w
x	t`z@¥ i{Z­\1.Ä_�K & f ZYs�_1c.X�V­_�e�}6g�\CX�_.~­_.f`cB_1��+�g`X[Z­_���'k_1g�e
f�e�Z�g�\|V­c.X�~	gRg�\CX V�_;ZYVÄ��f�f`_.cB_)V­VYX�~@:î}�e�~�c*-°e+V�_)g \°Z­_*.ÑV�_;Z
;f@��.Ä;~	X[ZY\°e�f�KZY§_[M�_._*+Ïg�\\X V­_BZYV � t@� }�e�~÷XD-C-6t�V­�`c	s
Z­s`X�Z O wRx	t`z1\|V�}�~Y_.�+��_.f+Z.K]6We§��+�g`X[Z­_¯X�f�g^.uX�\]f�Z	X�\]f
Z­s�\|V;�!'k_uV�+�_.f`g]W a�ÒÔÓYÜ Ù�_�`ÆÓNa­Ö|áßâ)ãYäßå�æ[äÆç[èG¥ �1a�O§i��6�1a�O w
x	t`z4i.¥ i{ZY\C.Ä_�KAb e�Z­_�Z­s`X�ZG'k_�X�~­_uf`e�Z�\]f f�_;_)g e�}6c	s�_.cNM
Z­s�_c.uXB)�\1.uX/-]\ ZS:�\°}©O s`X�V�XÄc	s�\C-|g K
±�lGm@q�r[m+�ed ³¶µ ·�¸�¹'ºª»ª¼�½ ¾�¿�À ½ÄÅ5f Á;Â`Ã�½uÁB¹YÅ[»ÆÁ'ÇÑÅ�µªµ
½ÄÅ5f�ºª½uÅ[µ�È	¹YÁ Ê Ã`Á;Â`»uºª»ÆÁB½ Ç;Á;»�Ç§ºªÂ Ð�a Ò Ö�¥ ��a�O w x)S­z[i;¥ i

000 ••• 0

111 ••• 1

closed item
set class01 lattice

E�\C0���~Y_$J���g�:,+�_.~Yc;� ¬ _Äg�_)cBeD.;+�e�V­\ ZY\°e�f��6�"�$�¤NUr[m,hRg�_*>
cBeT.;+�e+V�_)V6X�c4-]e�V­_.g¯\°Z­_5.òV�_;Z{c4-|X�VYV6\]f+Z­e1V­_*8�_;~	X/-WV­� ¬ -|X[Z�>
Z­\|cB_)Vbai0�~YXU:u~Y_.cBZYX�f�0D-]_.V	i'K

»Uºª½ÄÁBïÍ¸[¹ Ð�aUÒ Ö�Ü Ù�_�`­Öja­Ö]áßâ)ã	äßåßæ[äÆç�è;a�aY¥ �®a�O§i.¥ ñ ¥ ��a�O w
x.SYz[i;¥ i�i¶»dºª½uÁ0ÈB¸�¹bÁ	Å�ËY¼{È	¹­Á Ê Ã`ÁBÂ�»kË;µ°¸4Ç;Á	ÌÄºª»ÆÁB½ Ç;Á;» Oøv�ú0ºª»�¼
½uÁB½u¸[¹'ûuµàºªÂ×Á	Å[¹�ºªÂø»�¼�ÁAºªÂ[ü×Ã�»PÇ'º°ý)Á)þ

kV�l�������
	���
��������m����	! ���	!�"� # 	n��$
& f ZYs�\]VîV­_.c'ZY\°e�f���'"_Ôg�_)V­c;~­\ ¬ _RX�f _.f+��. _.~YX�Z­\]e�f¤XD-C0�e/>
~Y\ ZYs�. }�e�~u}�~Y_.�+��_;f+Z1\°Z­_5. V­_BZ	V;Kl6�s�_oM�_*:Ô\]g�_.X e�}be���~
X/-10�e�~­\°Z­s�.ö\|V�ZYs`X[Z7'k_÷c4-|X�VYV�\°}i:yZYs�_�}�~Y_.�+��_.f+Z$\°Z­_*. V­_BZ	V
\]f�ZYec0�~Ye���+�V0X�f`g _;f@��.Ä_.~YX�Z­_"Z­s�_ ~­_5+�~­_)V�_.f+ZYX[ZY\C8�_ke�}�_)X�c	s
0�~Ye���+�K�pkX�c	sq0�~­e���+u\]V"cBeT.;+�e+V�_)gue�}�}�~Y_.�+��_.f+Zk\°Z­_*.�V­_BZ	V
\]f`c4-]�`g�_)gø\]føZ­s`_ c*-]X�V­V¶e�}kX®c4-]e�V­_.g \°Z­_5. V�_;Z.K�6�s�\|V{\]g�_.X
\|V ¬ X�V­_.g®e�f÷Z­s`_�}�eD-1-°eB'�\]f�07-°_5.7.uX`K
�Pm@� �R¨y�lr�Ã)ü�ü`¸4Ç;ÁR»ª¼`Å[» È	¹­Á Ê Ã`ÁBÂ�»�ºª»ÆÁB½ ÇBÁ;»dÇ÷O Å[Â×Ì
sut O ÇBÅ�»dº|Ç�È	ûø��a�O§i®� ��a s ivIqw×¼�Á;Â�ï"ÈB¸�¹yÅ[Â�ûîºª»ÆÁ;½
Ç;ÁB»GO � ºªÂ×ËBµ Ã`Ì[ºªÂ+·$Oøv��1a�O � i�� ��a�O � w s ivI
x X�~­Z­\|cB��-|X�~@-C:�����a�O � i��ö�1azy�i$s�eT-]g`VA}�e�~�X�f,: O �c{

y { O � w s v4s�_;f`c;_"XD-C-,yHX�~Y_�\]f`c4-]�`g�_)gA\]f�ZYs�_�V­XD. _"c4-|X�VYV
e�}�X�c*-°e+V�_)gÄ\ ZY_*. V­_BZ.K|g _;f`c;_���X�f,:$}�~­_)���`_;f+ZP\°Z­_*. V­_BZ"O �
\|V�0�_;f`_;~	X[Z­_)gu}�~YeD.�O � �¶a s �kO§ivI%Yî_�c;XD-C- O � �¶a s �kO§i
¹­ÁÆü�¹­ÁBÇ;ÁBÂ�»�Å�»dºj}[Á;K
O�_BZÄ�`Vuc;e�f`V­\]g�_;~ÄX ¬ X�cNM+Z­~	X�cNM@\]f�0yX/-10�e�~­\°Z­s�. ^�f`g�\]f�0

}�~Y_.�+��_;f+ZW\°Z­_5.¤V�_;ZYV!'�s�\]c	s$X�g�g�VG\°Z­_*.uVGe�f�_ ¬ :¶e�f�_P\]f�-]_4),>
\|cBeD0�~YXD+�s�\|c;XD-+e�~Yg�_;~)K�<@��+�+�e+V�_�ZYs`X[Z"'k_6c;��~­~Y_;f+Z@-C:�s�XU8�_6X
}�~Y_.�+��_;f+Z \°Z­_5.òV�_;Z¶Oøv×X�f`g÷^�f`gyX�f�e�ZYs�_;~�}�~Y_.�+��_.f+Z¶\°Z­_*.
V­_BZ$O wÔx)S­z(I�OW_BZ s � ORQ SUT~I�6�s�_.f��PX�c.cBe�~Yg�\]f�0¯ZYeyZYs�_
X ¬ eB8�_7-]_*.;.uX��!'"_�c;X�f e ¬ V­_;~@8�_$Z­s`X�Zb}�e�~�X�f(:y}�~­_)�+��_;f+Z
\°Z­_*. V­_BZ O � \°f`c*-°��g�\°f�0�O X�f`g¯f�e�Z \]f�ZY_;~	V�_)c'ZY\°f�0 s ��Oøv
X�f,:®\ ZY_*.òV�_;Z¶\]f`c4-]�`g�\]f�0®O � X�f`g¯\°f�c4-]�`g�_.gø\°føO � w s \|V
X/-|V­e1}�~Y_.�+��_.f�Z)KqPke�f,8�_;~	V­_*-1:���X�f,:¯}�~Y_.�+��_.f�Zb\°Z­_5. V­_BZb\°f�>
c4-]�`g�\]f�06O \|V�0�_;f�_.~YX�Z­_)g{}�~­eT.£O � f�e�ZG\°f+Z­_.~YV­_.cBZ­\]f�0 s ��OJI
g6_.f`cB_���'"_ _.f@��.Ä_;~	X[Z­_Äe�f�-C:y~­_5+�~­_)V�_.f+ZYX[ZY\C8�_.V¶\°f�c4-]�`g�\]f�0
O X�f�gHf�e�Z¯\]f�ZY_;~	V�_)c'ZY\°f�0 s ��Oøv�X�f`g�0�_;f�_.~YX�Z­_øe�Z­s�_.~
}�~Y_.�+��_;f+Z \ ZY_*. V­_BZYV ¬ : X�g�g�\]f�0§_.X�c	sÔV�� ¬ V�_;Z$e�} s ��OJI

�

�����1�=�7�*�����%�7�*�D�2�����4�T�������%�5�����c�����B�=�L�7�@�%�5�*�D�;���T���5�
�4���D�@�����!�D���4�1�T���5�c�C���5�����*�@���1�T�@�V���*�T�*�N�/�,�������1�/�������4���"���,�T�
���5�@�*�������@ ��5�T�N�^�/�������T���R�q�B¡%�1�q�/�"�D���^�;�1���C�q�D�¢�*�1�4�
�7�5�(�@�G�D���¤£¥�D���]¦o§i¨����������5�4���1�D�5�C�©�����*�Rª��C«�¬3­T v¬3®[�
�*�/�1�?�����1���@�5�N�����1¯(���2°%±@²�³*´�µ*¶�·@³7¸D³NµN¹Bº�²�¹U»v¼j½z¼�¹/¾�¬
¿ �������(���À�����/�o�"�À�D���À�*���@���5�T�@�C�Á�D���*�N�B�@�C��«����@�*���

�������5�T�N�B�@�C�T�Á¦o§A�1���4�1���%�1��«Â¦J¨R�D���Ã«T�D�1��«��@�Â«D�*���*���
�B���Ä�������4���N���C�T�]�5�/�1�G�@�5�������v���@�Å¦o§�ÆÁÇvÈ�ÉTÊ������5��Ë��C�
�i¦o§~Ì Í~Î,Ï¢¦o§� �ÏL£ÑÐÒÅÓ ¨%¦Ô§n�/���3£3Æo��¦o§zÌ Í~Î(Ï"¦o§C ��@�B�@�1��Õ�����������*�D���%�C���1�D�A�/�|Ö��5�;�;�q×�¬�Ø��*���*�DË��L�c�D���Ù¦o§~Ì Í~Î,Ï¢¦o§
���¤£�Ê
®[���%�5�@�4�@�1����Ö�ÚLÛ3�i����¯R�D�L�i�T�C�1�B���5¬

Ü¤Ý�Þ�ß�àUá�â5ã�äæåLç2è�é~àBê,ë ��¦íì �@�*���@�5���*�(�N�B���1�D�TË
£�ì �\�@�*�Ã���4��Ë�ÍNì �C���5�u

î ¬"ïqð â*ñ ð â �/�1�n�\�@�*�ò���4�N��ó7¨�¦õô©óöôí¦÷Æ3£
×%¬=ø ß�à¤ê,ù�úUã ÈRûÄÍN¨~È�Ðü ¦÷ÆA£
ý ¬æþ é ¦ZÆoÇvÈ�Éÿ�����i����¯(���*�(� â5ã�ê��
ç2ù�Ý�ÝLåLç2è�é~àBê,ë ��¦÷ÆoÇNÈ�ÉT¨N£ÙÆ[��¦íÌ ÈDÎ,Ï9��¦÷ÆJÇvÈ�ÉU � 4¨~È,

��¬�� ��� é ß�à
ª��D�����T�;�]���,�(�����*�����o�1�����@�/���4�5�������N�Ñ�����/�A�i�@�5¯(���5�(�

�4�1�T���5�©�\�@�*� ���*�@�R�D���A�i�*�L�*�R�����D�Ä�i�@�5¯(���5�(�R�\�@�*� ���4�N�*Ë
�����¤�U�T�*�N�/«T�2�����5�7�D��£Á���c���[���o­�Ê
	 �[���������R�5�D���5�5Ë������
�/�1«D�D�@�C�����ÃÕ������9×��
�� Ò ý ×2�i����¯T���*�(���\�@�*� ���*�@�V�B���D���4�DË
���*���*�c�����G�4�T�7���%�@�/���1�D�3���1�;�������@�5�%���*�5�A�G���N���(�Ù�����
�C�;���@�B�D�5�7�5�(�5¬
���Ñ�N�������Ñ�@���À�i�@�5¯(���5���4�Á�/�¤�/�1�G¦ ÆÁÇvÈ�ÉT¨��L�í�*�D�

�����^�%�5�4���@���5���4�^�%�5�C�1�D�5�J�/��� �%���n���*�@�������5�Á�i�T�oÖ�ÚLÛ^¬
Ö�ÚLÛ3�i�@�5¯÷���(��� ���/���@�5¯(���1���Á�������N���5���Z�D�©���*�D����×D vË
���*���*�Á�����Á�4�D�;�����@�B�@�C�T�Â���1�;�Ñ�/�J���D�N�Â�C���*�N�B�@�C�T�Z�1�
� ��������������� � !R��¦íÌ È/Îi "� À���1�7�Á�i�D�©�%�*�*�����@�*���4�Á���*�1�C�T�*��Ë
�/��� � ���������������$# �&% �(')�+*(,.-�/(0(12/43256� !R��¦Ô cÏ7!¤�i¦íÌ ÈDÎj 8� o�i�D�
�%�9�n���4�@�5¬ ¿ �1���4� �@���Å�4�T�;���%�@�/���1�D�m���1�;�Å�N���/��«T�DË;�L�
�������D���/�@���*�[�5�����1�q�B���T�@�o�i�D�]�,�,���@�1�n¬:	 �m�/�1�;�T���]�D�C�
�*�D���5�5Ë(�\�!�T���4� � ���;�<�=�>�4# �?% �('@�+*(,.-A/(0B12/4325 � !¤��¦Ô �ÏC!R��¦íÌ È/Îi "�
�����4�D�;���Ô���q�/�1�C�5�������D� � ����������� � !R��¦íÌ È/Îi "�\¨V�����©�4�D���
�%�\�@�C�T� ���D�����;�1� �D�,�^�\�@�*�N�B���1�D�©«D�5���*�N�B�@�5�í�(�Ä�Ô�@�5�*�����
���1�D�R�5�/�1�z¬3Ø��5���4�TË��@���¤�D�C«T�D�@�\�@��� Õ��N���G�S�N�/���@�c���C���^�%�v�
�4���@���5���4�A�%�*�1�1�D�*��Ë¢�D���í�*�D�;���/�@�5�������5� �1�Ä���D�N�À�C���5�@�/�
���1�D��¬D	 � � ���;�<�=�>�4# �?% �('@�+*(,.-A/(0B12/43256� !R��¦Ô ¢ÏE!R��¦íÌ È/Îi "�����4�
�4�D�;���L���q�/�1�C�5�5Ë,�@���*�A�L�9�N���D��«D�V���q�%���n���*�@�5¬�F��/�@�9�����/�
���������L�5�����1�q�B���T�@���*�D�2�*�D�;���%�@�5���1�;�����T�������1�;�"�,�c�����C��«
�����c�@�5�����C���/���%�5�4���@���5���4�ÿ�%�5�C�1�D�5�5¬
G ã�ê,ß�àBê(äIHKJ�L6MON ´�³�P ³4¾�¶%º;³*´RQ/½ ³4» Q2STS N ´�³"U
P4¶�³*¾�½ »*³4½z» ¼j¾ V�� � ����������� � !Ù�i¦íÌ ÈDÎj 8� ½z¼jºq³ ¹/´
V�� � ���;�<�=�>�4# �?% �('@�+*(,.-A/(0B12/4325�� !¤��¦Ô �ÏW!¤�i¦íÌ ÈDÎj 8� ½~¼jº;³
N ¹B´Ù³�QDµN° N ´@³AP*¶�³*¾�½�»*³*½"¦o¨YX|¼j½i°,¼j¾ZV�� �\[^]`_ � ab� ;»z²cQDµN³.d

e|�D���@�1�*���1�D���1�DËBÖ�ÚLÛ3�i����¯ÿ����¯(���C�@�5���D���"�1�(���*«T�*���i�D�����D�N�
�\�@�*�l�/���/�,���@�@�D���@�D�v�@�C�T��ËU�������N���1���@�5¯(���1�����ÿ���9�S�@�D�@�=�����

�1�����%�"���B�@��¬ � �@���*�|�;�5�7�T���7Ö�ÚLÛ3�i�@�5¯G�����5�|���|���D�������5�
�,� � �R� !f�.gZ� hf� vÊ
i|¡%���5���1�;�*�(�@�D�C�1�DËu�/� �C���5�@�/���1�D� �D�ÃÖ�ÚLÛ3�i�@�5¯ �C���

���%�����1��«��i�@�5¯(���5�T�u���*�ò¦ �@�j�D�5� � �R� !R�i¦Ô 8�?gI� ¦D�
�D� � ���������5�c�/���%�9�n���4�4 Egk� ¦l�]�����5���^�1�÷�U�D�*�N�/«T�D¬m	 �
���D�;�^���5�����TË��@�������1�3�T�%���1�q�/�����C���4�^�L�[���U�D�Ô���©�@�j�D�
� �R� ¦D� �@�C�;�m���u�D�%�@���%�5ËÄ�/��� � �R� !R�i¦Ô 8� Å���1�;�m�T�
� ���z���=�*�ÿ�D���%���n���*�N � ¢�@�C�;�V���;�N���5���2�����9�i�@�5¯(���5���4�;�/��¦JÊ

nporqtsvu&w(x�syx�zY{}|6{�~(�Yz

	 �c�@���1�����5�4���1�D��ËU�L�¢�4¡%�����/�1�c�D�����1�;���C�5�;�*�(�@�/���1�D��¬�ª��1�N�S��Ë
�L�Ù�*¡,���1�D�C�í�����3���B�N�Ô�����@���4�����@�Ù�D���D���;�D�C«T�D�@�\�@���3¬��
���N�/�����T�v���1�D��aí�/���1�����%�|���/�@�V�1���S�@�D�@�5�c�,���D�G�/�@�@�U�9���C���
�1�*��«D����� a�� ¬�i"�D�N�Ù�*�*�1���/���������/�@�@�U�R�����T�����¢�@���c�1���%�4¡A�/�
�/�G�\�@�*�l�/��a�Ê�ª��D���4¡��/�;���1�DË2� Ò Ç.��¨N×%¨��,É=�1�������T�����c�C�7�/��/�@�N�U�����\�@� ý �*�*�1�1�5Ë�Ì ×%¨B��¨��UÎ~Ê4®[�����T�����@���¢�5�C�5�;�*�(�@���/�%�@���
�/�@�N�U�V���������B�|�"�L�*�D�c�@�j�D�VÇ5ÍN¨*Ê1ÊCÊ1¨.� hf� É��>a^�1�G�1�C���5�/�����1�;�
�/�VÇ5ÍN¨*Ê1Ê1ÊC¨�� hf� É���a�Ê�È��Ã�1�c�D�1�����S�@�D�@�5�J�1�^�/�@�@�U�%�V�C�[�@���
�@�/�;�����U�D¬�®Ô�7�/�@�c���/�9�C�o���*���3�/�¢�%�T�����1�Ù�1�C�c�D�5�3�1���S�N�
�D�����1���/�@�9���@�*�5�5ËU�������N�c�@�j�D�=�2���N�c���1�;�¢�@�����"�T���5�@�/�����n¬
�!�7�����%���*�������9���@�T�v�����*�D���*�D�;���%�N�B�@�C�T�R���1�;�DË%�L�9���D���

�����=���N�/�����T�v���1�D�����,�9�����5�C�|�����5�5�5ËU�D���c�C���5�;���,�9�����"�,���7�
���*�9�/�|���N�/�����T�v���1�D�����1���4�1���%�1��«Ù�����5�A¬Ei|¡%���*�@�C�;�5�T�N�/�1�C�TË
�����1���@�5�%���4�5� � ����������� � !¤�i¦�ÆÿÇNÈ�ÉB "�\Ê2	 �7���D�;���*�T�����*ËU�@���
�4�T�;���%�@�/���1�D�©���1�;�J���T�;���5�*���@�5�%���*�5�©�,�Ä�[���T�v���T�q�/�
î��/ý ¬

� ov���Ysvu&��{}|6{�~(�Yz?|�w�����u�x �c~Rsyx�zY{��

���9�*¡��/�;�C���"�@�������N�D�v�@�1�5�/�%�"�q�*�C�5���4�G�/���T���=�/�1«D�T���C�����;�5Ë
�L�Ô�@���Å�@���]�4¡%���*�@�C�;�*�(�N�Ù�T�Å�@���]�����/�ÿ�/���Á���,�(�����*�����
���/�@�D���4�N�*Ë?�������N�]�/�@�G�q�D�%�q�U�B�/�1���/���1�G�T�Ôª6	SÛ�	�� � ý ���C���T¬
	 �Ù�����ÿ�i�T�C�1�B���C��«�Ë,�"�ÿ���1�C�!���5���T���L�����c�@�5�����C�@���D�!�����c�4¡,�
���*�@�C�;�*�(�N�*¬

���B ¡ |6{}|��`x {}�¢|�z?£¥¤¦x
{�§?��£&�
®[�L�1�;���1�*�;�*�(�����G�T���|�/�1«D�T���C�����q���D�����@�����5���/�1«D�D�@�C�����q�
Ö�ÚLÛ��i����¯7�zÖ�ÚLÛ3�i�@�5¯% 4ËDÖ�ÚLÛ ��Ö�ÚLÛÔ vË/Ö�ÚLÛJ�;�/¡R��Ö�ÚLÛ��
�q�B¡� "�C�oÚÑ�/���A�4�T�;���C�1�5�A���C���3«T�5� ý ¬ ×�¬
�����9�D�C«T�D�@�\�@���q�L�"�5���V�����S�@�5�Ù�D�R�@���c���B�N�D���4�N�L�����B���

�1�]���/���C� î ¬¤�U�B�/�1�1�D���C�7�i�@�D� �����¤ª6	SÛ�	�� � ý ���T�;�*���D«D�2¨�Ë
�������N�ò�1���*�C�����Dì�� î �j	4�`© î �j�`ª;Ë7���t�«	 î �j© î �j�`ª �i���T�
	(¬�Û­���1�q�D�%�5�¯®V���5���Ä�@�5���5�D�@�N�Â«T���T��� °Ô�N���5�@�*Ë3�4�T�%�
�����v�5Ë��G�������@�,�D�3Ë!�����;����Ë������q��� �S�N�/�ÿ�i�@�D�²±9Ú�	ÿÛJÖ
�@�*���T���\�@�D�@��³í�/���yeY±�Û ¿ ¬p°E¬�Û ¿ �~®[�*��´V�C�5��� î Ëµ¬LÛ ¿ �
®[�*��´V�C�5��� ×�Ë�¬LÛ ¿ �$e �ÿ¿ �i�@�D�¶ª�©&©��SÚ>±&eÅ×«�`�j�j·U¬
¸4¹�º�º�»c¼�½�½R¾�¿�Àj¿jÁÃÂ�Ä`Á=¹"Å"Æ�Ä�¿4Ç�È2¿jÁ<¾�¿A½Rº"Å8ÄBº�É�Ê�º�Ê�Á=¹�ºAÀ2ÆË ¹�º�º�»c¼�½�½BÌ�Ì�ÌcÁ�¿�Â�Ä`Á=Í�Â�¿jÁTÅ�É�Í.½ÎÀ2ÆAÅ�Ê�Ï�Ç.½BÐ�Ñ�Ò"ÅA».Ó�Ä�¿(º8ÓRÏ�Ô�Á=¹�ºRÀ2ÆÕ ¹�º�º�»c¼�½�½BÌ�Ì�ÌcÁTÅ8Â(ÇcÁ=»�Í�Ï�É�Í"Å}ÁTÅ�É�Í.½RÖ�×�×"ØAÙ"Ú8½

Û

Ü6Ý«Þ�ß=àâájã�Ü�ä�à�å�Ý«æAÝ`çBà"æAç8èCé?ê}Ü^ë�ì�í�îâà8Ýjïcç>æRä�àOÝ�ê`à"ë�Ý«ð`à�æRë�Ý«ï�çRÝ`ñ�æRò=ójï�çBò=í"à
ô�õ"öBõ"÷4øAö ù&ú)ö(ø�û�÷ ùpü�ýBõ"þt÷ ÿ��jü�ý���� ù��	� ù��	
�� ù
���	� ��ú@þ`÷��������
�

��������� ø �!��">ú@ø #%$ &('*) +,'�- .,/*0 0�1 +2$ 3�1 ',465*7�ÿ 3�1 '84659$:0:&!$ 4 0�1;$ 4659$:08'�1 &(4 /�1;$�52/�1 /�$
��������� ø �!��">ú@ø #<0 3�- 3,&*/)()�- +2$:0 &!1 .(0 0:&(4652'(=('()84 0,38465�),+(+84 3�1 '84659$($>=,4 /�1;$�52/�1 /�$

�����2�@?�A%� $,- .*+() +2$:)�- 0,+(+ .�1 + $B0(0846523(38&*/(/84 $:0(0:465�02$B=(=(+84 3(/84652&208=(/84 /�1;$�52/�1 /�$
ü6$B/8�C&8ô�$B/,/,4 $,- /(/(/ $>/(/�- /,/(/ $B/�1 / $:+846523(3(+84 $>&,465�0,0,',4)�1 '84659$($ &(4 /�1;$:+B52/�1 /*0,+
üD&*/,�E$B/"ô�$B/,/,4 $,- /(/(/ $>/(/�- /,/(/ 3('�1 . � � � 0B52/�1 +

���`û�÷��)2-;$($:) &*'�- /8&*.)8&�1 / � � � '*+B52.(/
�!�tû�÷�� ÷$öBõ�ý)2-;$($:) &*'�- /8&*. +,/�1 / � � � +,/:5�$B/
û��t÷�FjýHG2G.û $B0,/ =�-;$B08& 0,3�1 / � � � 0,/B5�/�1;$

I G.þ`þtø I ö $>3(/ .*)�- +,)() &*3�1 / � � � '*+B5*&*/
I FtøA÷4÷),. 3�$B',. 3*)21 / � � � '(/:523(/

JLKNMPORQHS:J T*UVQ�S8S*W

X

XZY

XZY@Y

XZY@Y@Y

Y@[X�\ Y@[XZ] Y@[X Y@[Y@^ Y@[YC\ Y@[Y@] _2` a�b�c�d�e fCg

hi jk
l mk
no

pZqBr�s t uwvpZqBrpZqBr>x8y{zs |{}Zt ~Z�E� �s |�� uw��� y��s |�� y�|Zt � ~�t �x8y�s � y�� s �x8y�s � y�� s ���x8y�s � y�� xBs �

��ò=ð��cëRà���ã��%�cï�ï�ò=ï�ð æRò=îâà ó��pæAä�à Ýjß�ð`ójëAò9æAä�îµçµójï��H�����
é�ëRæRò���ñ�ò+Ý«ß^ÜEá(���������bá,���!�

�L�������: 8�{¡� *¢V¡� : 2£

¤

¤Z¥

¤Z¥@¥

¤Z¥@¥@¥

¦ ¤Z§ ¨ ¤ ¥@§ ¨ ©*ª «�¬@­�®!¯ °C±

²³ ´µ
¶ ·µ
¸¹

ºZ»>¼ ½ ¾ ¿wÀºZ»>¼ºZ»>¼BÁ8Â�Ã½ Ä{Å{¾ ÆwÇHÈ É½ Ä�Ê ¿wË@Ì Â�È½ Ä�Ê Â{ÄZ¾ Í Æw¾ ÍÁ8Â;½ Í Â�Ê ½ ÍÁ8Â;½ Í Â�Ê ½ Ë�ÍÁ8Â;½ Í Â�Ê ÁB½ Í

�6ò=ð���ëAà�Î}ãÏ�%��ï�ïcò�ï�ð¢æRò=îâà ó��EæRäcà Ý«ß=ðjó`ëRò�æRäcîâçâó`ï��H�����
é?ëBæAò���ñ"ò=Ýjß^Ü��!����á,�!��á(�����

Ð�à�ñ"ójî�ÑcÝ«ëAà�ó��cë�Ý«ß=ðjó`ëRò�æRäcîâçÓÒ�Ô6���<ëAà,ÕRÖ2Ò�Ô6�×Ö(Ò�Ô6���
îâÝ�ØÚÙ�ò9æAäOæRäcàÛ�<ójß=ß=ó2Ù�ò�ï�ðÜ�<ëRà(Õ!�cà"ïtæ�ò�æRà8îKçBà"æ�îâò�ïcò�ï�ðEÝ«ß=ðjó��
ëRò�æRä�îµç8ãÓ�4î�Ñ�ß=à"îâà"ïtæ�Ý2æRò=ójï�ç^ó�����ÑÝ��ð`ëRó2Ù�æAäßÞ à2áCÖ�â�ñ�ß+Ý2æ�Þ9á(à*áCÖ
éÜÑ�ëAò�ó`ëRò�Þ�á�Öäã*áµÞ9åæ��Ý«ëRæèçpó�à�æAäcÝ«ß+çÏé�êëÐ à Ý«ß+çRó ñ�ó`îì�
ÑcÝ«ëAàYæAä�à�Ò�Ô6� Ýjß�ð`ójëAò9æAä�îµçÓÙ�ò�æRäbæRäcà>ò=î�Ñ�ß=à"îâà"ïtæAÝ«æRò=ójïbó��
� Ý2��Ý�Þ Î(áíÖcÝä��Ý`ç(æ�îµÝ2Ø}ò=îµÝ«ß	�<ëAà,Õ���à"ïtæ�ÑcÝ2æRæRà8ëRï�îâò�ï�à8ë,Ö}Þ9å
î�ï�ò=êjà8ëAçRò9æHå�ó��%Ô�ó`ëRï�à8ß�ßCï çð�pÝ2æ�Ý«ÞcÝ`çBà�ðjëAó��ñÑ�òjè�Ü�ä�ò=çpê`à"ë��
çBò=ójïcç�ó���îâÝ���ÝÜÙ�ò�æRäó�<ëRà(Õ���à"ïtæ�ò�æRà8îKçBà"æAç,Ö*�<ëRà(Õ���à"ïtæ�ñ�ß=ó`çRà8å
ò9æAà"î çBà"æAç,Ö?Ý«ï�å�îâÝ�Ø}ò�îµÝ«ßô�<ëRà(Õ���à"ïtæfò�æRà8î çRà�æ�ç7ó!Ñ}æRò=ójïcç
Ý«ëAàOå}à"ï�ójæRà.åÎÞ9åÎîâÝ���Ý2�C�ÓÖ�îµÝ���Ý2�C��ñ�òCÖ�îµÝ2��Ý���îì�ÓÖcëRà.çEÑ�à8ñ:�
æRò=êjà"ß{åjèÎé�ß�æRä�ó!��ðjäèÙ>àµäcÝ�êjàµÝ«ß+çRóPÑ�ß+Ý«ïcï�à8å�æAó�îµÝ�õjàâæRäcà
Ñ�à8ëE�<ó`ëRîµÝ«ï�ñ�à ñ�ó`î�ÑcÝ«ëAò=çRójïöÙ�ò9æAä÷Ô�äcÝ«ëAî�Ö>æRä�à çBæAÝ«æRà8��ó��w�
æRä�à8�$ÝjëBæø�<ëRà(Õ!�cà"ïtæ�ñ�ß=ó`çRà8åOò9æAà"îrçBà"æ�îâò=ï�à"ë(Ö*Ù�à�ð`Ý�êjà��NÑOæRäcà
ñ�ójî�ÑcÝjëRò+çRójïfò=ï�æRä�ò+ç�æAò�îâàOåÝ��àEæAó�æRä�àEæAò�îâàOñ�ó`ïcçBæRë�Ý«ò=ï`æ.è
é?ß�ß>à:ØÝÑ�à"ëAò�îâà"ïtæ�çäÙ>à"ëAà7ë��cï ójï�Ý�ù�ÔæÙ�ò�æRä�æRä�à�ñ�ójïñ�

�cð���ë�Ý2æAò�ó`ï ó���ùCà"ïtæRò{��î��ëã�è ú�ç
û�í!Ö�á(ç
� îµÝ«ò=ï îâà"îâó`ë�å!Ö
Ý«ïcåÏ�Üù��ýü�ã����ÎäcÝ«ë�å å�ò=ç�õ ó��pá,ú!�!ç
�pèþ�<å æRä�àµà8Ø9Ñ�à"ëAò��
î�à8ïtæAç,Ö�ÒDÔ6���<ëRà(Õ��cçRà8ç�Ý2æOîâó`çBæ7á(ã�ÿ����rîâà8î�ó`ë�å!Ö�Ýjïcå
Ò�Ô6� Ýjïcå Ò�Ô6��îµÝ�Øë�cçRà�Ý«æ&îâó`çBæðÿ��!�����Zó���îâà"îâó`ë�å`è
���������
	
�
�������������

�������������� � � �!�"�#$!%�
&
'�#�(�)�*�($!,+-(.�0/1�0213.&����54
'�#���#�30+���
4�6�&
�708:91; <�������; �>=?��@BAC����9-�D���FEG�.�H��I-�����KJ�����L-MN�FO:;�PQ���R�D=
�SE
�.�H�
T ;�91;�9-JVUW�
�����0� ����������������(�X14
'.4�Y�4
Z0�53�3�'�#$!H#�3�/
61"0&�+1306�2
&W!%)
&��5�

[�ójæRàEæAäcÝ2æðÒDÔ6�¦Ý«ïcå�ÒDÔ6��îµÝ2Ø�ñ8Ý«ï�çAÝ�êjàpæRä�à�î�à8îâójë å
�cçRàEÞ�åÎå}à8ñ"ëRà.ÝjçRò�ï�ð]\�^

_a`�b cedgfihkjDlWf
�6ò�ð!��ëAà8ç�àfæAä�ëAó���ð`ä �6ò�ð!��ëRà�á8� çRä�ó2ÙræRäcà�ë ��ï�ïcò�ï�ðÎæRò=îâà
Ù�ò�æRäKê2Ý«ë å�ò�ïcð\îâò�ï�ò=îó�cî çE�ñÑNÑ�ó`ëBæ�ç �<ójë æRä�à�çRà"êjà8ïKÝ«ß��
ðjó`ëRò�æRäcîâç,Ö�ïcÝjî�à8ß�å Ò�Ô6� �<ëRà(Õ�Ö Ò�Ô6�×Ö
Ò�Ô6��îµÝ�Ø	Ö ��ùÛ�
ðjëAó2Ù�æRäÓÖjà8ñ"ß=Ý«æ,Ö�Ý�Ñ�ëAò=ójëAò@Ö`îâÝ���Ý2�$îì�fójïâæAä�àpï�ò�ïcà&å�Ý«æAÝjçRà�æ�ç
å}à.çRñ"ëRò=Þ�à.å ò=ï æRä�à�Ñ�ëAà"ê�ò=ó��cçEç���ÞcçRà8ñ�æRò=ójï è��4ï�æRä�àì�<ó`ß�ß=ó2Ù��
ò=ï�ðNÖ%Ù>à ñ"Ýjß�ßpÝ«ß=ß@Ö�îµÝ�Ø�ò=îµÝ«ßCÖ�ñ�ß=ó`çRà8å �<ëAà,Õ���à8ï`æÎò9æAà"î çBà"æ
îâò�ïcò�ï�ðµçRò�î�Ñ�ß{åfÞ9åfÝjß�ßCÖ�îµÝ2Ø}ò=îµÝ«ßCÖ�ñ�ß=ó`çRà8å
è

monip1q:r�s5putwvyx{z{vCs5|
nNs5}�~����Ws1�
�6ò�ð!��ëAàÜ��çRä�ó2Ù�ç�æAä�à?ë ��ï�ï�ò=ï�ð�æRò=î�àðÙ�ò9æAä7îâò�ïcò�î ��î çE�NÑÝ�
Ñ�ójëRæCë�Ý«ïcðjò=ï�ðÜ�<ëAójî ��^�á*Î$�ZæAó
��^ ��ã�ÎN� ójïì�H�6� �$é?ëBæAò���ñ"ò=Ýjß
ÜEá,�����!�bá,�!��� åcÝ2æAÝ`çBà"æAç8è ��ëAójî²æAä�ò=ç Ñ�ß=ó«æ(Ö�Ù�àfçRà"àfæRäcÝ«æ
îâó`çBæÎÝ«ß=ðjó`ëRò�æRäcîâçfë��cï Ù�ò9æAä�ò=ïZÝ«ëAó���ï�å Ý×�<à8Ù¦á(� îâò�ïñ�
�}æAà8çpÝ«ïcå æAä�à�Þ�à8äcÝ�ê�ò�ó`ëAç&Ý«ëAàóÕ���ò9æAà�çRò=î�ò=ß+Ý«ë�Ù�ä�à"ï îâò=ï�ò��
îó�cîKçE�ñÑNÑ�ó`ëBæ6ò�ïcñ"ëRà.ÝjçRà8ç8èV�4ï �6ò=ð���ëAà���Ö«é�ß=ß�ó���ÒDÔ6��îµÝ2ØþÖ
Ò�Ô6� ÖtÝjïcåßÒ�Ô6� �<ëRà(ÕbÝjëRà�æHÙ�ò+ñ�àô��ÝjçBæRà8ë�æRä�Ý«ï��Dù��$ðjëAó2Ù�æRä
ójï �H�6�IÜEá,�����!�bá,���!�¶åcÝ2æAÝ`çBà"æ8è��&ï�æAä�à�ó«æRäcà"ë�äcÝ«ïcåVÖ

ü

�w�:�������1�0��� �������

��� �
�
�,�
�,���
�,�����

��� ����� ������� �H����� ������� ������� �D� ��� ¢¡�£¢¤N¥ ¦�§

¨© ª«
¬ ­«
®¯ °,±�²0³ ´ µ>¶°,±�²°,±�²�·
¸%¹³ º%»,´ ¼,½�¾ ¿³ ºÁÀ µ>Â�Ã ¸Ä¾³ ºÁÀ ¸Áº,´ Å ¼¢´ Å·
¸Ä³ Å ¸ÄÀ ³ Å·
¸Ä³ Å ¸ÄÀ ·�³ Å

Æ:Ç%È�É�Ê0Ë�ÌÎÍ�ÏÐÉ�ÑÎÑÎÇ%ÑÎÈÓÒ0Ç%ÔuË�Õ�ÖkÒ.×ÎËÙØÛÚ%È�Õ$Ê0ÇÁÒ0×ÎÔÝÜuÕ�ÑeÞàßSáNâ
ãäË5åÎækÇ%Ë
çàâ�è

é�ê
ë�ì�íïî
ð.ñ�ò î�ó�ì5ô

õ�ö ÷
÷
÷,õ
÷,õ�õ
÷,õ�õ�õ

õ�ö ÷ õ�ö õ�ø õ�ö õHù õ�ö õ�ú õ�ö õ�û õ�ö õD÷ ü-ý þ¢ÿ������ ���

	
 �
�
 �
���

������� � �����������������! � "$#$� %�&(')� "!* ��+�, �-'� "!* �$"�� . %�� .���/� . �-* � .���/� . �-* ��� .

Æ
Ç%È�ÉÎÊ.Ë10iÍ�ÏÐÉÎÑÎÑ�ÇÁÑÎÈÓÒ.ÇÁÔ]Ë�ÕÛÖFÒ0×ÎËÙØ�ÚÁÈ$Õ�Ê.ÇÄÒ.×ÎÔÝÜuÕ�ÑeÞVßäáNâ
ãÓË
åÎæFÇÁË5çàâ32

46587:9<;>=?7

@

@�A

@�A�A

@�A�A�A

@�A�A�ABA

A�C @ A�C A�D ABC AFE A�C A�G A�C A�H A�C A(@ IKJ L�MBN�OQP R�S

TU VW
X YW
Z[

\�]�^`_ a b�c\�]�^\�]�^�d�e$f_ g$h�a i�jlk m_ g!n b�oBp e-k_ g!n e!g�a q i�a qd�e-_ q e-n _ qd�e-_ q e-n d�_ q

Æ:Ç%È�É�Ê0ËsrÎÍ�ÏÐÉ�ÑÎÑÎÇ%ÑÎÈÓÒ0Ç%ÔuË�Õ�ÖkÒ.×ÎËÙØÛÚ%È�Õ$Ê0ÇÁÒ0×ÎÔÝÜuÕ�ÑeÞàßSáNâ
tvu á

wyx�zy{:|�{Kw

}

}�~

}�~�~

}�~�~�~

~�� � ~�� �F� ~�� � ~�� }�� ~�� } �<� ��������� ���

�� ��
� ��
�� ������� � �����������������!�� �$�$� �¡(¢ £� �!¤ ��¥�¦ �-¢� �!¤ �$��� § �� §

Æ
Ç%È�ÉÎÊ.Ë©¨ÎÍ�ÏÐÉÎÑ�ÑÎÇÁÑ�È]Ò0Ç%ÔuËBÕ�Ö:Ò.×ÎË ØÛÚ%È�Õ$Ê0ÇÁÒ0×�Ô]ÜVÕ$Ñ«ª$Õ$Ü.ØÛÊ�Ø:ª

ßÙØK¬wØÛâ�Ô­¬?®NßÙØK¬�Ø�â�ÖB¯�Ç�®$ØÛÑ±°ÝßÙØK¬wØÛâ�¬ Ø�Ê0ËQÜ0ÚÁÕ�çVË
ÊGÒ.×�ØÛÑ]Ëy²$â
Ë
Ê�³ Õ�Ò0×ÎË5Ê
Ø�ÚÁÈ$Õ�Ê.ÇÄÒ.×ÎÔÝÜ�´?µ�Ñ Æ
ÇÁÈ$ÉÎÊ.Ë·¶>®ÛßÙØ:¬wØ�âHÔ­¬ Ç,Ü{Ö�Ø$ÜDÒ.Ë5Ü�Ò
Ö¢Õ�ÊÐÔÝØK¸WÇ%Ô]Ø�Ú�®WØ�Ñ6°«¹»ºVßKÖ¢Ê.Ëy¼]Ç,ÜVÖ�Ø�Ü�Ò0Ë5Ü�ÒVÖ¢Õ�ÊQØÛÚ%Ú�®iÖ¢Õ�ÊàÔ]ÇÁÑWâ
ÇÁÔ ÉÎÔ�Ü0É¾½¾½�Õ�Ê0Ò�ÚÁË1Ü0Ü Ò0×wØÛÑ è<¿ Õ$ÑÀµDÞàßÂÁ èyÃ:µ3ÄQÅ èÆÃÇÃ�È
°ÎØ�Ò�Ø�Ü0Ë�Òy´

ÉËÊÍÌyÎ8Ï�ÐÆÌÒÑÔÓÖÕs×Ø×ÚÙÜÛÞÝØßáàãâ>ÐÆâ¾ÌÆÊ�ÐÆÌ
Æ:Ç%È�É�Ê0Ë1ÜuÌSÒ0×�Ê0Õ$ÉÎÈ�×eÆ
ÇÁÈ$ÉÎÊ0ËärÓÜ�×ÎÕ�ç Ò0×ÎËKÊ.ÉÎÑÎÑÎÇ%ÑÎÈäÒ0Ç%ÔuË
çÐÇÄÒ.×SÊ�ØÛÑÎÈ$ËBÕÛÖ Ô]ÇÁÑ�ÇÁÔ ÉÎÔ Ü�É¾½6½wÕ$Ê�Ò�ÜQÖ¢Ê.Õ�Ô Ê.Ø�ÑÎÈ�Ç%ÑÎÈ]Ö¢Ê.Õ�Ô
Ã¾å%è<¿ Ò0ÕæÃ¾å ÃÎè<¿ Õ�Ñ Ò0×ÎÊ.Ë
ËäÊ0Ë1ØÛÚFçaÕ$Ê0Ú�°ç°ÎØÛÒ.Ø�Ü0Ë�Ò�ÜoÞàßSáNâ
ãäË5åÎækÇ%Ë
çàâ�èÇ®kÞàßSáiâ�ãÓË
åÎæFÇÁË5çàâ32¾®kÞàßSáNâ3tvu áè°ÎØÛÒ.Ø$Ü�Ë
Ò.Üy´
µ�Ñ Ò0×ÎËË¬�È�ÉÎÊ.ËÇ®:çaË«¯
ØÛÑ Õ$å�Ü�Ë5Ê`²$ËuÒ0×�ØÛÒÒ¹8ºVß Ø�ÚÁÈ$Õ�Ê.ÇÄÒ.×ÎÔÝÜ
Õ�ÉWÒ�½wË5Ê�Ö¢Õ$Ê0Ô Õ�Ò0×ÎË5Ê.Ü ÇÁÑ ØÛÚ%Ô]Õ$Ü�Òè¯5Ø�Ü0Ë5Üy®KË5Ü`½wËÆ¯�Ç,ØÛÚ%Ú!³ Ö¢Õ�Ê
ÚÁÕ�çVË
Ê�Ô]ÇÁÑÎÇ%Ô É�Ô�Ü0É¾½¾½�Õ�Ê0Òy´éµ�ÑÀ½�ØÛÊ0Ò0Ç�¯�É�Ú%Ø�Êy®ê¹8ºVß çVØ$Ü
åwË1ÜDÒÐØÛÔ]Õ�Ñ�È Ü�Ëy²�Ë5Ñ ØÛÚ%È�Õ�Ê.ÇÁÒ0×ÎÔÝÜ�Ç%Ñ ØBçÐÇ�°WËFÊ.Ø�ÑÎÈ�ËQÕ�Ö{Ô]ÇÁÑWâ
ÇÁÔ ÉÎÔ Ü0É¾½¾½�Õ�Ê0ÒÐÖ¢Ê0Õ$ÔéÃ¾´%è<¿ Ò0ÕëÃ¾´ ÃÎèK¿ Õ�ÑKØÛÚ%Úì°ÎØ�Ò�Ø�Ü0Ë�Ò�Ü�´
Æ�Õ�Ê�×ÎÇ%È�×ÎË5Ê�Ô]ÇÁÑÎÇ%Ô É�Ô Ü0É¾½¾½�Õ�Ê0ÒGÊ�ØÛÑ�È�Ç%ÑÎÈkÖ¢Ê.Õ�ÔíÃ¾´%è<¿ Ò.Õ

Ã¾´ Ã�ÌQ¿Ë®1Ò0×�Ëv½�Ë
Ê0Ö¢Õ�Ê.ÔÝØÛÑ6¯
Ë5ÜgÕÛÖwØ�ÚÁÚWØÛÚ%È�Õ$Ê0ÇÁÒ0×�Ô]Ü
ØÛÊ.ËaÜ0Ç%ÔuÇ%Ú,ØÛÊÆ®
ØÛÑ6°î¹8ºVß Ö�ØÛÔ]ÇÁÚ%Ç%Ë5Ü ×�Ø<²�ËuÜ�Ú%Ç%È�×NÒ0Ú$³KåwË
Ò�Ò0Ë5Ê©½wË5Ê�Ö¢Õ$Ê0ÔÝØ�Ñ6¯�Ë�´
ÆÎÕ�Ê ÚÁÕ�çVË
ÊBÔ]Ç%ÑÎÇÁÔ ÉÎÔ Ü�É6½¾½wÕ$Ê�Ò Ê�ØÛÑ�È�Ç%ÑÎÈ�Ö¢Ê0Õ$ÔïÃ6´ ÃÇÄÍ¿ Ò.Õ
Ã¾´ ÃÎè<¿Ë®Qðñ¯�Ú,Ø�ÒïØ�Ñ6°ëòó½�Ê0Ç%Õ�Ê.Ç�ØÛÊ.ËÐÔ É±¯�×]Ü0Ú%Õ�çaË5ÊGÒ0×�Ø�ÑÝË�²�Ë5Ê`³
ÕÛÒ0×�Ë
ÊÝØÛÚ%È�Õ$Ê0ÇÁÒ0×ÎÔÝÜy´ô¹»ºVß Õ�ÉÎÒ`½�Ë
Ê0Ö¢Õ�Ê.Ô]ÜuÕ�Ò0×ÎË5Ê.Üy´ áiÕ$Ô]Ë
Ö¢Ê0ËÆ¼$É�Ë
ÑNÒaÇÁÒ0Ë5Ô Ü0Ë�ÒaÔuÇ%ÑÎË5Ê.ÜaÜ�É6¯�× Ø$ÜïßÙØ:¬wØ�â�¬?®iØÛÑ6°ÝßSØK¬wØÛâ

ÖB¯�Ç:Ê0É�Ñ�ÜQÕ$ÉWÒkÕÛÖQè<õ ÞyÕ�Ö Ô]Ø�ÇÁÑ�Ô]Ë5ÔuÕ$Ê`³oÖ¢Õ�ÊkÒ0×ÎË1Ü�Ë Ô]Ç%ÑÎÇÁâ
Ô É�Ô Ü0É¾½¾½�Õ�Ê0Ò.Ü�Õ$Ñ]ÞàßSáiâ�ãÓË
åÎæFÇÁË5çàâ.è�®$ÞàßSáNâHãÓË
åÎæFÇÁË5çàâ
2>®FÞVßäáNâFtöu áÖ°ÎØÛÒ.Ø�Ü0Ë�Ò�Ü�´÷¹»ºVßKÖ¢Ê0ËÆ¼ çaÕ$Ê`ªWÜØ¼$É�ÇÄÒ.ËäçVË
Ú%Ú
Ö¢Õ�Êï×ÎÇÁÈ$×ÎË
ÊïÔuÇ%ÑÎÇ%Ô ÉÎÔ Ü0É¾½¾½�Õ�Ê0Òy®NåÎÉWÒ Ò�Ø:ª�Ë1Ü�Ô]Õ�Ê.ËVÒ0×�Ø�ÑÚøÇÃ
Ô]ÇÁÑiÉWÒ.Ë5ÜïÖ¢Õ�ÊaÔuÇ%ÑÎÇ%Ô ÉÎÔ Ü0É¾½¾½�Õ�Ê0ÒVØ�åwÕK²$ËóÃ¾´ Ã:ÄÍ¿ Õ�Ñ ÞVßäáNâ
ãÓË
åWâHækÇ%Ë
çàâ�èÇ´öµ�Ñ�Ò.×ÎË5Ü0ËÞ¯
Ø$Ü�Ë1Ü�®�Ò0×ÎË ÑNÉ�Ô å�Ë
ÊkÕ�Ö�Ö¢Ê0ËÆ¼NÉÎË
ÑNÒ
ÇÁÒ0Ë
Ô Ü0Ë�Ò�ÜkÇ,Üù¼NÉÎÇÁÒ0Ë Ú%Ø�Ê0È$ËÇ®wÕK²�Ë
Ê èyÃ�Ã¾® ÃÇÃÇÃ6® Ã�ÃÇÃ6® Ã�ÃÇÃ¾´ñµ�Ñ$Ò.Ë
Ê0â
Ë5Ü�Ò0Ç%ÑÎÈ$Ú!³�®�ßÙØ:¬wØ�âHÔ­¬?ú Üû½wË5Ê�Ö¢Õ$Ê0ÔÝØ�Ñ6¯�Ë Ç,Ü ÜDÒ�ØÛåÎÚ%Ë Ç%ÑSØÝçÐÇ�°WË
Ê�ØÛÑÎÈ$ËFÕ�Ö:Ô]ÇÁÑ�ÇÁÔ ÉÎÔ Ü0É¾½¾½�Õ�Ê0ÒàÖ¢Ê0Õ$ÔéÃ¾´%è<¿ Ò0ÕÚÃ¾´ ÃÎèK¿Ë´
µ�ÑÓÜ0ÉÎÔ]ÔÝØÛÊ�³Ç®ì¹8ºVß Ö�ØÛÔ]Ç%Ú!³SØ�ÚÁÈ$Õ�Ê.ÇÄÒ.×ÎÔÝÜFÜ0Ç%È�ÑÎÇ!¬±¯
Ø�ÑNÒ0Ú$³

½�Ë
Ê0Ö¢Õ�Ê.Ô çVË
Ú%ÚgÕ�Ñ�Ê.Ë5Ø�ÚgçVÕ�Ê.Ú$°ä°ÎØÛÒ.Ø$Ü�Ë
Ò.ÜQÞàßSáNâHãÓË
åÎæFÇÁË5çàâ
èÇ®ÎÞàßSáiâ�ãÓË
åÎæFÇÁË5çàâ32¾®ÎÞàßSáNâ3tvu á«°ÎØ�Ò�Ø�Ü0Ë�Ò.Üy´

ÉËÊÍÌÆÎãÏBÐyÌîÑ±Ó÷ÝsÛÒü�Ù�ýÿþ��KÊ��ñÑ±Ì���ÐÆÑ���� â6Óãà÷ß©ÝØý
	��
à8â>Ðyâ¾ÌÆÊQÐyÌ
Æ
ÇÁÈ$ÉÎÊ.Ë5ÜFèyÃ Ò0×ÎÊ.Õ�ÉÎÈ$×oÆ
ÇÁÈ$ÉÎÊ.Ë èyÄuÜ0×ÎÕ�çeÒ0×�Ë Ê.ÉÎÑÎÑ�ÇÁÑÎÈ Ò0Ç%Ô]Ë
Õ�Ñ�ÔuÇ�°¾°WÚ%ËKÜ�Ç�

ËÆ° °ÎØ�Ò�ØÙÜ0Ë�Ò.Ü­½ÎÉ�Ô]Ü0å�Ø�Ñ6° ½ÎÉÎÔÝÜ0å��Í®aØÛÑ6°
Ü0Ô]Ø�ÚÁÚ Ü0Ç�

Ëy° °ÎØÛÒ.Ø�Ü0Ë�Ò�Ü©¯�Õ$ÑÎÑÎËy¯�Òy®8¯�×ÎË5Ü.Ü�®:ØÛÑ6°äÔ É�Ü0×ÎÊ.ÕiÕ�Ôä´
Áà×ÎË1Ü�Ëû°ÎØÛÒ.Ø�Ü0Ë�Ò�Ü
Ò.ØÇª�Ë
Ñ Ö¢Ê.Õ�Ô ÔÝØ�¯�×ÎÇÁÑ�ËVÚ%Ë5Ø�Ê0Ñ�ÇÁÑÎÈ©°WÕ$ÔÝØÛÇ%Ñ�Ü
ØÛÊ.ËÐÜ�ÔÝØ�ÚÁÚWåÎÉÎÒ ×�ØÛÊ�° °ÎØ�Ò�Ø�Ü0Ë�Ò.Ü
Ö¢Õ$ÊGÖ¢Ê0ËÆ¼NÉÎË
ÑNÒ ½�ØÛÒ�Ò0Ë5Ê0ÑuÔ]ÇÁÑÎâ
Ç%ÑÎÈ Ò.Ø�Ü`ª Ü0Ç%Ñ6¯�ËVÒ0×�Ë�³u×�Ø<²�ËVÔÝØÛÑÍ³ Ö¢Ê.Ëy¼NÉÎË5Ñ$Ò ½�ØÛÒ�Ò.Ë
Ê.Ñ�Ü�Ë�²$Ë
Ñ
çÐÇÁÒ0×]×ÎÇ%È�×]Ô]ÇÁÑÎÇ%Ô É�Ô Ü0É¾½¾½�Õ�Ê0Ò.Üy®ÛËÇ´ È6´$®ÛÖ¢Ê.Õ�Ô ¶:ÃÍ¿ Ò0Õ ¨�ÃQ¿Ë´
Áà×ÎË1Ü�ËÚ°ÎØÛÒ.Ø$Ü�Ë
Ò.Ü Ø�Ê0Ë]Õ�Ê.Ç%È�Ç%Ñ�ØÛÚ%Ú!³SåÎÉÎÇ%Ú$°ÓÖ¢Õ$ÊÞ¯�Ú,Ø�Ü.Ü�Ç!¬±¯5Ø�Ò0Ç%Õ�Ñ

r

���������

��� �

�

���

�����

�������

�� �!� "# "�� $� $!� %� %!� &�' (!)�*!+-, .0/

12 34
5 64
78

9�:<;>= ? @!A
9�:<;
9�:<;<B�C�D
= E�F�? G�HJI K
= EML @ON�P CQI
= EML CME�?SR GO? R
B�CQ= R CQL = R
B�CQ= R CQL B�= R

TVUMW-XZY>[]\�^Z_a`bXZc�cZUMc�WedfU�g][ihkjld>mZ[onqp�Wkh-YfUMdfm�gersh-cutZX�gerfv

w�x�y�z>{f|Oz~}����

��� �

�

���

�����

�������

���������

� � � � ��� � � ��� � � ��� �!���!�-� �0�

�� ��
� ��
��

�����>� � �!�
�����
�����<�� �¡
� ¢�£�� ¤O¥§¦ ¨
� ¢M© �Oª�« ¬¦
� ¢M© �¢�� ­ ¤O� ­
�� Q� ­ ¬© � ­
�� Q� ­ ¬© ��� ­

TVU�WkXZY>[o\k\-_l`bX�cZcZU�cZWidfU�ge[®hkj¯d>mZ[°nkpMW-hkY>UQd>mZg±r²hkc±tZXZg±rfv�³

´�µ�¶�¶<·�´f¸

¹�º »

»

»�¹

»�¹�¹

»�¹�¹�¹

¼�½ ¼!¹ ¾�¹ ¿!¹ À!¹ ½!¹ Á�¹ Â�¹ Ã�Ä Å!Æ�Ç!È-É Ê0Ë

ÌÍ ÎÏ
Ð ÑÏ
ÒÓ

Ô�Õ<Ö>× Ø Ù!Ú
Ô�Õ<Ö
Ô�Õ<Ö<Û�Ü�Ý
× Þ�ß�Ø àOá§â ã
× ÞMä ÙOå�æ ÜQâ
× ÞMä Ü�Þ�Ø ç àOØ ç
Û�ÜQ× ç ÜQä × ç
Û�ÜQ× ç ÜQä × å�ç
Û�ÜQ× ç ÜQä Û�× ç

TlU�WkX�Yf[o\�èé_²`bXZcZc�UMcZWêdfU�ge[®hqjëd>mZ[°nkpMW-hkY>UQd>mZg±rahkcíì�hkcZc�[îì<d

ï�ð�ñ�ò>ò

ó�ô ó�ó§õ
ó�ô ó§õ
ó�ô õ
õ
õ�ó
õ�ó�ó
õ�ó�ó�ó

ö!ó ÷�ó ø!ó ù!ó ú!ó û�ó ü�ó
ýÿþ ��������� �
	

��
�
� ���
�

������� � ���������������! #"� $#%�� &�')(+*� $-, ��.�/ 0(� $-, #$�� 1 &�� 1�! 0� 1 0, � 1�! 0� 1 0, � .�1�! 0� 1 0, ��� 1

TVU�WkXZY>[e\32�_²` XZcZcZU�cZWedfU�ge[ihqjVdfmZ[onkpMW-hkY>UQd>mZg±rshkc ì�mZ[îr>r

d>nkr�4 nqc65 m¯n87k[rfpMU�Wkm�dfp#9:5éU-;�[îYf[îc-d]ì�m�nqY�nkì�df[�Y>U�r§d>U�ìîr dfm�nkc
p�nkYfW-[ivZX�rfUMcZ[�rfr<5Znÿd�nkrf[�d�r®rfX�ì�m nkr>=@?BADC
E [�vFCHG®U�[!I@C�\oh-Y
=J?KALCHM@NOAQP
R~c dfmZ[�rJ[TS�W-XZY>[îr3UVIs[±rJ[î[êd>m�nÿdW? nXS¯nYC#gTS ì�hkc�rJd>nkc-d>p-9

hkXéd>t¯[îYJj!h-Yfg±r [37k[îY�9uhqdfm�[�Y®g±nXZ U�g±nqp j!Y>[3[�XZ[îc�d®UQd>[�g rf[�d>r
g]U�cZU�cZW nkpMW-hkY>UQd>mZg±r j!hkY\IbU#5Z[Y>nkcZWk[íhqjbgeUMcZU�gêX�g rfXZtFC
t¯h-YJd�r []ZZì�[�tédshkc±tZXZg±rfv�³DP^N°c±d>mZ[®hkdfmZ[îY m�nkc65_UD` tZY>U�hkY>U
U�r g X�ì�m rfp�hYI [îY d>m�nqc hqd>mZ[�Ybnqp�Wkh-YfUMdfm�gaP^N°cídfmZ[igeU�cZUMc�W
hqj nqp�p j!Y>[3[�XZ[îc�d®UQd>[�g rf[�d>r3UcbedJ? j!Y>[3[uU�r j�nkrJdf[�Y®dfm�nkc dfm�[
hqdfm�[�Y�r nqp�Wkh-YfUMdfmZg±r3PfN°c d>mZ[êgeU�cZU�cZW hqj²j!Y>[3[�XZ[îc-d ì�p�h-rf[35
UQd>[�g rf[�d�r!U dfmZ[îYf[±rf[�[�g±r d>h v�[ecZh ì�h-c�rJU�rJdf[�c�d df[îc65é[îc�ì]9
hkc d>mZ[t¯[îYJj!h-Yfg±nkc�ì�[°Yf[�rJXZpMd>r3Peg hYIs[!7k[îY3UDbhdJ?i5éh [îrscZhkd
r§d>hkY>[d>mZ[hkvéd�nqU�cZ[35]rfhkp�XédfU�hkc�rVU�c]dfmZ[bge[�geh-Y�9�UYIbmZUMp�[dfm�[
hqdfm�[�Y nqp�WkhkY>UMdfmZg±r>5éhcP<j m X�r3U¯U�c d>mZ[]rf[�c¯rJ[ohkj ge[�gehkYk9LC
rfn87 U�cZW6UFbhdJ? m�n-rbnqc nl5F7ÿnkc-d�nqW-[lP

m npoTqsr>t!usvew]oTq
R~c±dfmZU�rst�nqt�[�YxULI [°tZYf[�rJ[îc�d nqc [!y ì�U�[�c�dsnkpMW-hkY>UQd>mZgpbedJ?
j!hkY geU�cZUMc�Wij!Yf[x[�XZ[�c�d ì�pMh�rJ[x5 UMdf[îg rf[�d�rav�n-rJ[x5ehkcet�nqY>[�c�d�C
ì�mZUMp�5
Yf[îp�nqdfU�hkc�rfmZU�tz5é[!S�cZ[35
hkc
j!Y>[3[�XZ[�c�d ì�p�h-rf[35 UQd>[�g
rJ[�d>r3Pzj mZU�r d>[îì�mZc�U#[�XZ[U�ríd>nl4k[�c j!Y>hkg d>mZ[nkpMW-hkY>UQd>mZg±r
j!hkY [�c XZge[�Y�nÿd>UMc�W g±nYZéU�g±nqp vZU�t�nqYfdfUMdf[ì�p�U#[�XZ[�r|{Q\�èDUi\328}
v�nkrf[35 hkc Y>[!7-[�Y�rJ[rJ[�nqY�ì�m~{ 2Y}HP�R~c dfm�[�hkYk9lUJIs[s5Z[�gehkcFC
r§d>Y>nqdf[±d>m�nÿd�bhdJ? [!Zén-ì<d>p-9 [�c XZge[îY>nqdf[îridfmZ[rJ[�d hkjsj!Y>[]C

[�XZ[�c�duì�pMh�rJ[x5 UQd>[�g rJ[�d>r�IbUQd>mZUMc t�hkp#9 cZhkgeU�nqp®dfU�g][t¯[îY
ì�p�h-rf[35 UMdf[�g rJ[�daUMc]dfm�[dfhqd�nqpéU�cZtZXéd rfU#��[lPhR~cetZY�nkì<d>U�ì�[lUXIs[
rfmZhYI vL9][]Zét�[�Y>UMge[îc-d�r d>m�nÿdshkXZYsnqp�Wkh-YfUMdfmZg±raY>XZc±j�n-r§dshkc
rf[!7k[îY>nkpéYf[�nqpcI h-Yfp�5�5Znÿd�nkrf[�d>r rJX¯ì�m nkr^=@?BADC
E [�v�G°UM[3I@C>\�P
E [nqp�rJh rfmZhYI [x5B7ÿnkYfU�nqc�d>r�bedJ? j!Y>[3[nkc65|bhdJ? g±nXZ hqj
bhdJ? j!h-Yêì�h-getZXédfU�cZW genXZéUMg±nqp nqc65 nkpMp j!Yf[x[-X�[�c�dêUMdf[�g
rf[�d>r3PWbhdJ? j!Yf[x[uX¯rJ[�r°c�[!I r>ì�mZ[�ge[�r°mD9 vZY>U#5 nqc65 mL9 t�[�Y�C
ì�X�v¯[�5Z[îì�h-get¯h�rJUMdfU�hkc�UVnqc65 d>mZ[ír>ì�mZ[�ge[�rOI h-Y�4KI [îpMpaj!h-Y
g±nqcD9 tZY>hkv�pM[îger3P

� r^��qso���t]�>���\�����<qT�
E [oWkY�nÿd>[�j!XZp�p-9ídfm�nkc�4udfh�M Yfhkj)PJ� [îc�AZnÿdfh-m hqj��®nqdfU�hkc�nkp
R~c�rJdfUMdfXéd>[hqj_R~céj!h-Yfg±nqdfU�ì�r3Phj mZU�raY>[îrf[înkY>ì�m]m�nl5]v�[�[îcírJX�tFC
t�hkYfdf[35 vD9 WkY>hkXZt Yf[�rJ[�nqY�ì�m j!XZc65 hqjJ�°nÿd>UMh-c�nqphR~c�rJdfUMdfXéd>[
hqjhR~céj!hkY>g±nÿd>U�ìîr!U��L`�M_`<�WP

� �>�X������qsrf�>v
{M\]}o`�PX`®WkY�n8Isnkp-nqcc5ê`�PXA Y>U-4ÿnkc-dxU��fT¯nkrJdh`®pMW-hkY>UQd>mZg±r�j!h-Y

? U�cZU�cZWa`°rfrfhéì�U�nÿd>UMh-c `bXZp�[îr UMcKb�nqY>Wk[\�°nqd>nqv¯nkrf[îr3U �
���� J¡k¢3£�¤�¤�¥Y¦��L§X¨©¢«ª�¬_­�®O¯±° ²!³F´�tZt�P�µ�¶L·x¸LµL¹l¹�Ué\x¹l¹lµ6P

{ è8}o`�P8` W-Y>n8I nqp
U!gWP8? nkcZcZU�p�n6U�`�PYA Y>U-4ÿnkc-dxUxgºP3jlhkU#7kh-cZ[�c
nqcc5»`WPcR�PcGa[îY�4ÿnqgehcU^�fT¯nkrJd<�°U�r>ì�hY7-[�Yk9 hqj^`°rfrfhéì�U�nYC

¹

¼h½�¾�¿]À�Á!Áx¼

ÂÄÃ Â)Å
ÂÄÃ Å
Å
Å�Â
Å�ÂÄÂ
Å�ÂÄÂÄÂ

ÆÄÂ Å�Â Ç Å ÂÄÃ Å ÈYÉ Ê�Ë�Ì�ÍLÎ Ï
Ð

ÑÒ ÓÔ
Õ ÖÔ×
Ø

Ù�Ú�Û�Ü Ý Þ�ßÙ�Ú�ÛÙ�Ú�Û�à!á#âÜ ã#ä�Ý å�æ«ç èÜ ã-é Þ�ê�ë á0çÜ ã-é á-ã�Ý ì å�Ý ìà!á0Ü ì á0é Ü ìà!á0Ü ì á0é Ü ê�ìà!á0Ü ì á0é à�Ü ì

íhî#ïlð�ñkò�ó!ôcõeö>ð�÷�÷�î#÷�ï�ø�î#ù�ò�úXûhø�ü�òWýlþ-ï�úlñkî0økü�ù�ÿJúl÷aùºð6ÿ�ü�ñkúLú�ù

ø�î#úl÷Bö>ð�þ-òxÿ�� �������
	���
���������������������� ��	�!"�$#%�&�������('
��)�*�
���	+#�
�,-
/.����0���1!�243�57698�ñkò3ÿkÿ:�<;=;?>�@BA"C:DE@BFHG=�
ó:IBIHJ=>

K @�L%M�>ONQPDî�ÿBýX÷<RTS+><í�ð=UDð0R�ý0��V�ö>ò�Plò3ñkÿ�òXWDò3ýlñZY�ü~û�úlñ
[�÷Dð�ù�ò!ñ�ýYøkî-ú�÷\� �]#��&����)^��,-�X�`_H_��a�b��	T.c
�,ed=��f+
�,g�b����2
h�úlþi>0JBj=�1;=;\><F�ó�DLô"J=�Qó:IBIHJ0>

K ô�L%[Q>XkJúlñkú�ÿ:�Th�>ml©ð6ñ^PDî&Y�ü\�9no>pSOü6ýBY�ü�îrq�ýX÷?� ýl÷0R
S+>O3Bý�UDî-÷6ú0�cV�s<÷ ø�ü6òut ú�ùv;6þ-ò�wDî-ø7q úXûxl©ò3÷�ò!ñ�ýYø^y
î-÷6ïc3»ý�wFî#ù�ýXþ í6ñ�ò(zLð�ò!÷Lø\ýl÷0R{3�î#÷�î-ù�ýlþ|5 ÷Fû�ñkò:zLð�ò3÷Lø
WDò]ø�ÿ�� ��}4~"����}c�"�B���H��;=;\> ó:@H@�ykó3ô6óB�"F�ABABF=>

K j�L%M�>�kJð�ñ�RFî&Y�U���3{>?tJýXþ#î#ùTþ#î#ùx���<>�l©ò3ü�ñZUlòH�`V^3cN�í�57NWõ
N�3»ý�wFî#ù�ýXþ í�ñkò:zLð�ò3÷Lø�5Hø�ò!ù�ÿ�ò]ø�N�þ-ï�úlñkî0økü�ù û�úlñ
6 ñ�ýX÷cÿ�ýBY�ø�î#úl÷cýXþ<M©ýYø�ý��6ý�ÿ«òxÿ�� �����\#O���1�H�H���0;=;?>FôlôB@�y
ô"jBFE�=F�ABA�óH>

K J�L%�0>���ýl÷\���<>�8eò3îg����>?�<î#÷\��V^3�î#÷�î#÷�ïBí6ñ�ò(z�ð6ò!÷Lø�8�ýYø^y
ø�ò3ñ�÷6ÿ��fî-ø�ü�ú�ðFø|tJýX÷0RFî&R�ýXø�ò`l©ò3÷�ò!ñ�ýYøkî-ú�÷\� �%}E���`.{�4#
�o���:����)^���������"�B�H���<;=;\>�ó�ykó�FE�=F�ABAHA

K C(LWö$>QSOúlücý�PLîi�Ot
>Q[�>�kJñkúERFþ-ò:qH��kO>@í6ñký�ÿ^Y3ý=�Ono>Q3»ý�y
ÿ«ú�÷aýl÷0R���>��Vü6ò!÷�ï<�oV^S$MOMQy�t ð=;�F�ABAHA�s<ñ�ïLýX÷�îr�!ò3ñkÿ:�
öfò�;Vúlñ�ø3õX8eò3ò!þ#î-÷6ï ø�ü6ò{s<÷�î#úl÷?� �T}E���o��#
#��4��_�� ��'
)^
�,i�b���0��2�F0�gFH���=;=;\><GHJ�y�IHG0�1FHAHABA=>

K G�L%�%>+3»ýX÷6÷�î-þ�ý=�x�%>+6 ú�î P�úl÷�ò3÷\�XVZ3�ð�þ-ø�îr;�þ-òT �ÿ�ò3ÿ úXû
í�ñkò:zLð�ò3÷�ø�WDò]ø�ÿ^ýX÷<R�t ú�÷0RFò3÷6ÿ«ò(R�öfò�;6ñ�òxÿ«ò3÷�ø�ýYøkî-ú�÷6ÿ�� �
��#
#¢¡ £"¤��=;=;\>�ó(GHI�DVó:Ilô0�có:IHIBJ=>

K I�L%�0>E8eò3îg�E�<>1�<ýX÷\��ö%>13BýXú0�¥V�t`n�s�WE[|6Oõ"N�÷x[o¦�Y!î-ò3÷Lø
N>þ#ïlú�ñ�î-ø�ü�ù û�úlñm3�î#÷�î-÷6ïzí�ñkò:zLð�ò3÷Lø§t þ-úLÿ«ò(R¨5Hø�ò3ù�y
ÿ«ò!økÿ:� �$����.©}1���`.ª�o#¬«���)^­��^d=��_®���%¯�������
�)^��d�����'
��°0���+���±#v
�,�
®.����0���1!¢
���	x��������� ��	:!B�+#��&����������)�*
�"�B�H���<;=;\><F�ó�y�@HA0�EFHAHABA=>

K ó(A�L%kO>²8eú�ÿkÿ�ý�ÿ�� ³�>´�VîrPDî#ýl÷�îg� µ9>²3�ò3î-ñ�ý �lñ(>r�
kO>¶N%> öfî �Vò!î#ñkú�y�³>ò]økú0�·V�WDò]ø^yi�cýlÿ�ò:R ùTúERFò3þÄõ ý
÷�ò�� ý�;0;�ñ�úLýHY�ü û�úlñ î#÷Fû�ú�ñ�ù�ýYøkî-ú�÷ ñkò]økñ�î#ò�PYýlþg� �
}1���4�^¯�¡ ���B�=;=;\>�F�@HA�y�FH@"CE�1FHAHABF=>

K óló�L%W�>46fÿ�ð=UDî qLýXù�ý=�¥3{>¥57RFòH�o��>4N>ñkî q�ú�ÿ�ü�î ýl÷0R{5�>4WDü�î y
ñ�ý�UYý��Jý0�
VZN¸³�ò��©N>þ#ïlú�ñ�î-ø�ü6ù û�ú�ñ+l©ò3÷�ò!ñ�ýYøkî-÷�ï¢N>þ#þ
ø�ü6ò�3»ý�wDî#ùºð6ù¹5 ÷<RFò�;Vò!÷0R�ò!÷Lø+WDò!økÿ:� �p}1�Z�O.²ºE��°E)�'
��
������»�o��f�_�°E,i���"!�2�h�ú�þg><J=�E;=;\>�j�ABj�DEj�ó�C1�có:I1CHC1>

K ó(F�L$6hý�Ulòxý�UDî¼ >÷�ú<��VZN½8^ñkýBY�økîrY3ýXþ@í6ýlÿ«ø�N>þ#ïlúlñkî-ø�ü�ù û�ú�ñ
[�÷Dð�ù�ò3ñkýXø�î#÷�ïxt þ#îrzLð�òxÿ>î#÷c�>ð�ï�ò�kJîr;6ýXñ�ø�î-ø�ò�l©ñ�ý�;6ü6ÿ
ýX÷<Rª5Høkÿ%5 ù+;�þ#ò!ù�ò3÷�ø�ýYøkî-ú�÷\� �¢GHIXø�üXW1;Vò:Y]î�ýXþ|5 ÷Lø�ò!ñkò3ÿ«ø
l©ñkúlð=;púXû®N>þ#ïlúlñkî-ø�ü�ù�ÿ:�v5 ÷�û�úlñkù�ýXø�î#úl÷¾8�ñkú1Y!ò3ÿkÿ«î#÷�ï
WDúEY]î#ò]ø7qx��ýH;6ýX÷?�EFHAHAB@=�

K ó:@�L$6hý�Ulòxý�UDî¼ >÷�ú<�+V�í6ý�ÿ)ø¿N�þ-ï�úlñkî0økü�ù�ÿTû�úlñ¿[�÷Dð�ù�ò3ñkýXø�y
î#÷�ï$t þ#î&z�ð6ò3ÿhî-÷v�>ð�ï�ò�l©ñ�ý�;6ü6ÿ�� �©öfò3ÿ�ò3ýlñZY�ü�l©ñkúlð0;WúXû
t úlù+;�ð�økýYøkî-ú�÷\��57[o5^t`[Q�\S�q�úXøkú® �÷�îrPlò!ñ�ÿ�î0ø7qB�?;=;\>ÀjHj�y
JBF=�0F�ABAH@

K ó!ô�L$6hý�Ulòxý�UDî� >÷�ú<�¶VZN´³�ò��ÁNQ;=;6ñ�úLýHY�ü û�ú�ñ¶W1;Vò!ò:REy
î#÷�ï� �;][�÷Dð�ù�ò3ñkýXø�î#úl÷�N>þ#ïlú�ñ�î-ø�ü6ù�ÿ:� �95�WEN�N�t
� IHG0�
;=;\>�F�G"C(DEFHIHJ=�Vó:IBIHG0>

K ó(j�L$3{>��0>¼�Qý�UDîi�
t
>`�<ÿ«î�ýXú<��V�t`�
N�öQ3:õ�N>÷�[4¦¿Y]î#ò!÷Lø
N>þ#ïlú�ñ�î-ø�ü6ù û�úlñ]t þ#ú�ÿ�ò:RÂ5Hø�ò3ù�ÿ«ò!ø]3�î#÷�î-÷6ï0� �Ã�H��	
}1�Z�O.©���<,-��)���
�,g�b����
��?�4���:����)^�������
����#v
�,�
O.����0���"!Ä }1#%.Å¡ ����Æ��<;=;\>�ô1jBC(yHô1C�@=�EF�ABABFE>

K ó:J�L$3{>%�<>��Qý�UDîi�±V�WEY!ýlþ#ýH��þ#ò ýXþ#ïlú�ñ�î-ø�ü6ù�ÿBû�úlñ:ý�ÿ�ÿ�úEY]î�ý�y
ø�î#úl÷�ù�î#÷�î#÷�ï0� ����������� ��	�!"�$
���	�#v
�,�
O���"!H��������)����1!��
ó(F0�gFB���E;=;\><@"C�F�D1@BIHA=�1F�ABAHA=>

K ó�C(L���>B�Vü6ò!÷�ï<�Xö$>�SOúlü6ý�PDîLýX÷0Rvno>�3»ý�ÿ«ú�÷\��V�öfòxýXþ1µ úlñkþrR
8eò!ñ�û�úlñkù�ýX÷0Y!ò�úXû%N�ÿkÿ�ú1Y!î#ýXø�î#úl÷�öfð6þ-òcN�þ-ï�úlñkî0økü�ù�ÿ�� �
��#
#©�"�B�H����;=;\>6ôBA�ó�y
ô"AHJ0�"F�ABAHA0>

ó:A

MAFIA: A Performance Study of Mining Maximal Frequent Itemsets

Doug Burdick Ç
University of Wisconsin-Madison

who0ps99@cs.wisc.edu

Manuel Calimlim
Cornell University

calimlim@cs.cornell.edu

Jason Flannick È
Stanford University

flannick@cs.stanford.edu

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Tomi Yiu
Cornell University
ty42@cornell.edu

Abstract

We present a performance study of the MAFIA algorithm
for mining maximal frequent itemsets from a transactional
database. In a thorough experimental analysis, we isolate
the effects of individual components of MAFIA, including
search space pruning techniques and adaptive compression.
We also compare our performance with previous work by
running tests on very different types of datasets. Our exper-
iments show that MAFIA performs best when mining long
itemsets and outperforms other algorithms on dense data
by a factor of three to thirty.

1 Introduction

MAFIA uses a vertical bitmap representation for support
counting and effective pruning mechanisms for searching
the itemset lattice [6]. The algorithm is designed to mine
maximal frequent itemsets (MFI), but by changing some
of the pruning tools, MAFIA can also generate all frequent
itemsets (FI) and closed frequent itemsets (FCI).

MAFIA assumes that the entire database (and all data
structures used for the algorithm) completely fit into main
memory. Since all algorithms for finding association
rules, including algorithms that work with disk-resident
databases, are CPU-bound, we believe that our study sheds
light on some important performance bottlenecks.

In a thorough experimental evaluation, we first quantify
the effect of each individual pruning component on the per-
formance of MAFIA. Because of our strong pruning mecha-
nisms, MAFIA performs best on dense datasets where large
subtrees can be removed from the search space. On shal-
low datasets, MAFIA is competitive though not always the
fastest algorithm. On dense datasets, our results indicateÉ

Research for this paper done while at Cornell UniversityÊ
Research for this paper done while at Cornell University

that MAFIA outperforms other algorithms by a factor of
three to thirty.

2 Search Space Pruning

MAFIA uses the lexicographic subset tree originally pre-
sented by Rymon [9] and adopted by both Agarwal [3] and
Bayardo [4]. The itemset identifying each node will be re-
ferred to as the node’s head, while possible extensions of
the node are called the tail. In a pure depth-first traversal of
the tree, the tail contains all items lexicographically larger
than any element of the head. With a dynamic reordering
scheme, the tail contains only the frequent extensions of
the current node. Notice that all items that can appear in
a subtree are contained in the subtree root’s head union tail
(Ë±ÌOÍ), a set formed by combining all elements of the head
and tail.

In the simplest itemset traversal, we traverse the lexico-
graphic tree in pure depth-first order. At each node Î , each
element in the node’s tail is generated and counted as a Ï -
extension. If the support of Ð n’s head Ñ¼Ò{ÐBÏ -extension Ñ is
less than ÓxÔ-Î?Õ¥Ö"× , then we can stop by the Apriori princi-
ple, since any itemset from that possible Ï -extension would
have an infrequent subset.

For each candidate itemset, we need to check if a su-
perset of the candidate itemset is already in the MFI. If
no superset exists, then we add the candidate itemset to the
MFI. It is important to note that with the depth-first traver-
sal, itemsets already inserted into the MFI will be lexico-
graphically ordered earlier.

2.1 Parent Equivalence Pruning (PEP)

One method of pruning involves comparing the transac-
tion sets of each parent/child pair. Let Ø be a node Î ’s head
and Ù be an element in Î ’s tail. If Ú�ÛbØ�ÜxÝ¸Ú�ÛbÙ=Ü , then any
transaction containing Ø also contains Ù . Since we only

want the maximal frequent itemsets, it is not necessary to
count itemsets containing Þ and not ß . Therefore, we can
move item ß from the node’s tail to the node’s head.

2.2 FHUT

Another type of pruning is superset pruning. We observe
that at node à , the largest possible frequent itemset con-
tained in the subtree rooted at à is à ’s HUT (head union
tail) as observed by Bayardo [4]. If à ’s HUT is discov-
ered to be frequent, we never have to explore any subsets
of the HUT and thus can prune out the entire subtree rooted
at node à . We refer to this method of pruning as FHUT
(Frequent Head Union Tail) pruning.

2.3 HUTMFI

There are two methods for determining whether an item-
set Þ is frequent: direct counting of the support of Þ , and
checking if a superset of Þ has already been declared fre-
quent; FHUT uses the former method. The latter approach
determines if a superset of the HUT is in the MFI. If a su-
perset does exist, then the HUT must be frequent and the
subtree rooted at the node corresponding to Þ can be pruned
away. We call this type of superset pruning HUTMFI.

2.4 Dynamic Reordering

The benefit of dynamically reordering the children of
each node based on support instead of following the lexi-
cographic order is significant. An algorithm that trims the
tail to only frequent extensions at a higher level will save
a lot of computation. The order of the tail elements is also
an important consideration. Ordering the tail elements by
increasing support will keep the search space as small as
possible. This heuristic was first used by Bayardo [4].

In Section 5.3.1, we quantify the effects of the algo-
rithmic components by analyzing different combinations of
pruning mechanisms.

3 MAFIA Extensions

MAFIA is designed and optimized for mining maximal
frequent itemsets, but the general framework can be used to
mine all frequent itemsets and closed frequent itemsets.

The algorithm can easily be extended to mine all fre-
quent itemsets. The main changes required are suppressing
any pruning tools (PEP, FHUT, HUTMFI) and adding all
frequent nodes in the itemset lattice to the set FI without
any superset checking. Itemsets are counted using the same
techniques as for the regular MAFIA algorithm.

MAFIA can also be used to mine closed frequent item-
sets. An itemset is closed if there are no supersets with the

same support. PEP is the only type of pruning used when
mining for frequent closed itemsets (FCI). Recall from Sec-
tion 2.1 that PEP moves all extensions with the same sup-
port from the tail to the head of each node. Any items re-
maining in the tail must have a lower support and thus are
different closed itemsets. Note that we must still check for
supersets in the previously discovered FCI.

4 Optimizations

4.1 Effective MFI Superset Checking

In order to enumerate the exact set of maximally fre-
quent itemsets, before adding any itemset to the MFI we
must check the entire MFI to ensure that no superset of the
itemset has already been found. This check is done often,
and significant performance improvements can be realized
if it is done efficiently. To ensure this, we adopt the pro-
gressive focusing technique introduced by Gouda and Zaki
[7].

The basic idea is that while the entire MFI may be large,
at any given node only a fraction of the MFI are possible
supersets of the itemset at the node. We therefore maintain
for each node a LMFI (Local MFI), which is the subset of
the MFI that contains supersets of the current node’s item-
set. For more details on the LMFI concept, please see the
paper by Gouda and Zaki [7].

4.2 Support Counting and Bitmap Compression

MAFIA uses a vertical bitmap representation for the
database [6]. In a vertical bitmap, there is one bit for each
transaction in the database. If item á appears in transac-
tion â , then bit â of the bitmap for item á is set to one;
otherwise, the bit is set to zero. This naturally extends
to itemsets. Generation of new itemset bitmaps involves
bitwise-ANDing bitmap(ã) with a bitmap for 1-itemset ä
and storing the result in bitmap (ãæå�ä). For each byte in
bitmap(ã9åvä), the number of 1’s in the byte is determined
using a pre-computed table. Summing these lookups gives
the support of çbã©å�ä�è .
4.3 Compression and Projected Bitmaps

The weakness of a vertical representation is the sparse-
ness of the bitmaps especially at the lower support levels.
Since every transaction has a bit in vertical bitmaps, there
are many zeros because both the absence and presence of
the itemset in a transaction need to be represented. How-
ever, note that we only need information about transactions
containing the itemset ã to count the support of the subtree
rooted at node é . So, conceptually we can remove the bit
for transaction ê from ã if ê does not contain ã . This is

Dataset T I ATL
T10I4D100K 100,000 1,000 10
T40I10D100K 100,000 1,000 40
BMS-POS 515,597 1,657 6.53
BMS-WebView-1 59,602 497 2.51
BMS-WebView-2 3,340 161 4.62
chess 3196 76 37
connect4 67,557 130 43
pumsb 49,046 7,117 74
pumsb-star 49,046 7,117 50

T = Numbers of transactions
I = Numbers of items
ATL = Average transaction length

Figure 1. Dataset Statistics

a form of lossless compression on the vertical bitmaps to
speed up calculations.

4.3.1 Adaptive Compression

Determining when to compress the bitmaps is not as simple
as it first appears. Each 1-extension bitmap in the tail of the
node ë must be projected relative to the itemset ì , and the
cost for projection may outweigh the benefits of using the
compressed bitmaps. The best approach is to compress only
when we know that the savings from using the compressed
bitmaps outweigh the cost of projection.

We use an adaptive approach to determine when to ap-
ply compression. At each node, we estimate both the cost
of compression and the benefits of using the compressed
bitmaps instead of the full bitmaps. When the benefits out-
weight the costs, compression is chosen for that node and
the subtree rooted at that node.

5 Experimental Results

5.1 Datasets

To test MAFIA, we used three different types of data.
The first group of datasets is sparse; the frequent itemset
patterns are short and thus nodes in the itemset tree will
have small tails and few branches. We first used artificial
datasets that were created using the data generator from
IBM Almaden [1]. Stats for these datasets can be found in
Figure 1 under T10I4D100K and T40I10D100K. The distri-
bution of maximal frequent itemsets is displayed in Figure
2. For all datasets, the minimum support was chosen to
yield around 100,000 elements in the MFI. Note that both
T10I4 and T40I10 have very high concentrations of item-
sets around two and three items long with T40I10 having
another smaller peak around eight to nine items.

MFI Itemset Distribution

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

Itemset Length

F
re

q
u

e
n

c
y
 (

%
)

T10I4D100K

T40I10D100K

Figure 2. Itemset Lengths for shallow, artifi-
cial datasets

MFI Itemset Distribution

0

5

10

15

20

25

30

0 5 10 15 20 25

Itemset Length

F
re

q
u

e
n

c
y
 (

%
)

BMS-POS

BMS-WebView-1

BMS-WebView-2

Figure 3. Itemset Lengths for shallow, real
datasets

MFI Itemset Distribution

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40

Itemset Length

F
re

q
u

e
n

c
y
 (

%
)

chess

connect4

pumsb

pumsb_star

Figure 4. Itemset Lengths for dense, real
datasets

The second dataset type is click stream data from two
different e-commerce websites (BMS-WebView-1 and BMS-
WebView-2) where each transaction is a web session and
each item is a product page view; this data was provided
by Blue Martini [8]. BMS-POS contains point-of-sale data
from an electronics retailer with the item-ids corresponding
to product categories. Figure 3 shows that BMS-POS and
BMS-WebView-1 have very similar normal curve itemset
distributions with the average length of a maximal frequent
itemset around five to six items long. On the other hand,
BMS-WebView-2 has a right skewed distribution; there’s
a sharp incline until three items and then a more gradual
decline on the right tail.

Finally, the last datasets used for analysis are the dense
datasets. They are characterized by very long itemset pat-
terns that peak around 10-25 items (see Figure 4). Chess
and Connect4 are gathered from game state information and
are available from the UCI Machine Learning Repository
[5]. The Pumsb dataset is census data from PUMS (Public
Use Microdata Sample). Pumsb-star is the same dataset as
Pumsb except all items of 80% support or more have been
removed, making it less dense and easier to mine. Figure
4 shows that Chess and Pumsb have nearly identical item-
set distributions that are normal around 10-12 items long.
Connect4 and Pumsb-star are somewhat left-skewed with
a slower incline that peaks around 20-23 items and then a
sharp decline in the length of the frequent itemsets.

5.2 Other Algorithms

5.2.1 DepthProject

DepthProject demonstrated an order of magnitude improve-
ment over previous algorithms for mining maximal frequent
itemsets [2]. MAFIA was originally designed with Depth-
Project as the primary benchmark for comparison and we
have implemented our own version of the DepthProject al-
gorithm for testing.

The primary differences between MAFIA and Depth-
Project are the database representation (and consequently
the support counting) and the application of pruning
tools. DepthProject uses a horizontal database layout while
MAFIA uses a vertical bitmap format, and supports of item-
sets are counted very differently. Both algorithms use some
form of compression when the bitmaps become sparse.
However, DepthProject also utilizes a specialized counting
technique called bucketing for the lower levels of the item-
set lattice. When the tail of a node is small enough, bucket-
ing will count the entire subtree with one pass over the data.
Since bucketing counts all of the nodes in a subtree, many
itemsets that MAFIA will prune out will be counted with
DepthProject. For more details on the DepthProject algo-
rithm, please refer to the paper by Agarwal and Aggarwal
[2].

5.2.2 GenMax

GenMax is a new algorithm by Gouda and Zaki for finding
maximal itemset patterns [7]. GenMax introduced a novel
concept for finding supersets in the MFI called progessive
focusing. The newest version of MAFIA has incorporated
this technique with the LMFI update. GenMax also uses
diffset propagation for fast support counting. Both algo-
rithms use similar methods for itemset lattice exploration
and pruning of the search space.

5.3 Experimental Analysis

We performed three types of experiments to analyze the
performance of MAFIA. First, we analyze the effect of each
pruning component of the MAFIA algorithm to demon-
strate how the algorithm works to trim the search space of
the itemset lattice. The second set of experiments exam-
ines the savings generated by using compression to speed
support counting. Finally, we compare the performance of
MAFIA against other current algorithms on all three types
of data (see Section 5.1). In general, MAFIA works best on
dense data with long itemsets, though the algorithm is still
competitive on even very shallow data.

These experiments were conducted on a 1500 Mhz Pen-
tium with 1GB of memory running Redhat Linux 9.0. All
code was written in C++ and compiled using gcc version
3.2 with all optimizations enabled.

5.3.1 Algorithmic Component Analysis

First, we present a full analysis of each pruning component
of the MAFIA algorithm (see Section 2 for algorithmic de-
tails). There are three types of pruning used to trim the
tree: FHUT, HUTMFI, and PEP. FHUT and HUTMFI are
both forms of superset pruning and thus will tend to “over-
lap” in their efficacy for reducing the search space. In ad-
dition, dynamic reordering can significantly reduce the size
of the search space by removing infrequent items from each
node’s tail.

Figures 5 and 6 show the effects of each component of
the MAFIA algorithm on the Connect4 dataset at 40% min-
imum support. The components of the algorithm are repre-
sented in a cube format with the running times (in seconds)
and the number of itemsets counted during the MAFIA
search. The top of the cube shows the time for a simple
traversal where the full search space is explored, while the
bottom of the cube corresponds to all three pruning meth-
ods being used. Two separate cubes (with and without dy-
namic reordering) rather than one giant cube are presented
for readability.

Note that all of the pruning components yield great sav-
ings in running time compared to using no pruning. Apply-
ing a single pruning mechanism runs two to three orders of

NONE
8,423.85s

341,515,395c

FHUT
173.62s

7,523,948c

HUTMFI
101.54s

4,471,023c

PEP
20.56s

847,439c

FH+HM
101.25s

4,429,998c

FH+PEP
9.84s

409,741c

HM+PEP
2.67s

102,759c

ALL
2.48s

96,871c

Figure 5. Pruning Components for Connect4
at 40% support without reordering

magnitude faster while using all of the pruning tools is four
orders of magnitude faster than no pruning.

Several of the pruning components seem to overlap in
trimming the search space. In particular, HUTMFI and
FHUT yield very similar results, since they use the same
type of superset pruning but with different methods of im-
plementation. It is interesting to see that adding FHUT
when HUTMFI is already performed yields very little sav-
ings, i.e. from HUTMFI to FH+HM or from HM+PEP
to ALL, the running times do not significantly change.
HUTMFI first checks for the frequency of a node’s HUT
by looking for a frequent superset in the MFI, while FHUT
will explore the leftmost branch of the subtree rooted at that
node. Apparently, there are very few cases where a superset
of a node’s HUT is not in the MFI, but the HUT is frequent.

PEP has the largest impact of the three pruning meth-
ods. Most of the running time of the algorithm occurs at the
lower levels of the tree where the border between frequent
and infrequent itemsets exists. Near this border, many of the
itemsets have the same exact support right above the mini-
mum support and thus, PEP is more likely to trim out large
sections of the tree at the lower levels.

Dynamically reordering the tail also has dramatic sav-
ings (cf. Figure 5 with Figure 6). At the top of each cube, it
is interesting to note that without any pruning mechanisms,
dynamic reordering will actually run slower than static or-
dering. Fewer itemsets get counted, but the cost of reorder-

NONE
12,158.15s

339,923,486c

FHUT
15.56s

609,993c

HUTMFI
14.98s

609,100c

PEP
9.89s

296,685c

FH+HM
14.78s

608,222c

FH+PEP
1.82s

63,027c

HM+PEP
1.74s

62,307c

ALL
1.72s

62,244c

Figure 6. Pruning Components for Connect4
at 40% support with reordering

ing so many nodes outweighs the savings of counting fewer
nodes.

However, once pruning is applied, dynamic reordering
runs nearly an order of magnitude faster than the static or-
dering. PEP is more effective since the tail is trimmed as
early in the tree as possible; all of the extensions with the
same support are moved from the tail to the head in one step
at the start of the subtree. Also, FHUT and HUTMFI have
much more impact. With dynamic reordering, subtrees gen-
erated from the end of tail have the itemsets with the highest
supports and thus the HUT is more likely to be frequent.

5.3.2 Effects of Compression in MAFIA

Adaptive compression uses cost estimation to determine
when it is appropriate to compress the bitmaps. Since the
cost estimate adapts to each dataset, adaptive compression
is always better than using no compression. Results on dif-
ferent types of data show that adaptive compression is at
least 25% faster as higher supports and at lower supports up
to an order of magnitude faster.

Figures 7 and 8 display the effect of compression on
sparse data. First, we analyze the sparse, artificial datasets
T10I4 and T40I10 that are characterized by very short item-
sets, where the average length of maximally frequent item-
sets is only 2-6 items. Because these datasets are so sparse
with small subtrees, at higher supports compression is not

Compression on T10I4D100K

10

100

1000

10000

00.020.040.060.080.10.12

Min Sup (%)

T
im

e
 (

s
)

NONE

ADAPTIVE

Figure 7. Compression on sparse datasets

often used and thus has a negligible effect. But as the sup-
port drops and the subtrees grow larger, the effect of com-
pression is enhanced and the running times for adaptive
compression increase to nearly 3-10 times faster.

Next are the results on the sparse, real datasets: BMS-
POS, BMS-WebView-1, and BMS-WebView-2 in Figure
8. Note that for BMS-POS, adaptive compression follows
the exact same pattern as the synthetic datasets with the
difference growing from negligible to over 10 times bet-
ter. BMS-WebView-1 follows the same general pattern ex-
cept for an anomalous spike in the running times without
compression around .05%. However, for BMS-WebView-2
compression has a very small impact and is only really ef-
fective at the lowest supports. Recall from Figure 3 that
BMS-WebView-2 has a right-skewed distribution of fre-
quent itemsets, which may help explain the different com-
pression effect.

The final group of datasets is found in Figure 9 and
shows the results of compression on dense, real data. The
results on Chess and Pumsb indicate that very few com-
pressed bitmaps were used; apparently, the adaptive com-
pression algorithm determined compression to be too ex-
pensive. As a result, adaptive compression is only around
15-30% better than using no compression at all. On the
other hand, the Connect4 and Pumsb-star datasets use a
much higher ratio of compressed bitmaps and adaptive com-
pression is more than three times faster than no compres-
sion.

It is interesting to note that Chess and Pumsb both have
left-skewed distributions (see Figure 4) while Connect4 and
Pumsb-star follow a more normal distribution of itemsets.
The results indicate that when the data is skewed (left or
right), adaptive compression is not as effective. Still, even
in the worst case adaptive compression will use the cost es-
timate to determine that compression should not be chosen
and thus is at least as fast as never compressing at all. In the
best case, compression can significantly speed up support

Compression on T40I10D100K

10

100

1000

10000

00.511.52

Min Sup (%)

T
im

e
 (

s
)

NONE

ADAPTIVE

Compression on BMS-POS

10

100

1000

10000

00.10.20.30.40.5

Min Sup (%)

T
im

e
 (

s
)

NONE

ADAPTIVE

Compression on BMS-WebView-1

1

10

100

1000

10000

00.020.040.060.080.10.12

Min Sup (%)
T

im
e
 (

s
)

NONE

ADAPTIVE

Compression on BMS-WebView-2

10

100

1000

10000

00.010.020.030.040.050.06

Min Sup (%)

T
im

e
 (

s
)

NONE

ADAPTIVE

Figure 8. Compression on more sparse
datasets

Compression on Chess

1

10

100

1000

05101520253035

Min Sup (%)

T
im

e
 (

s
)

NONE

ADAPTIVE

Compression on Pumsb

10

100

1000

10000

010203040506070

Min Sup (%)

T
im

e
 (

s
)

NONE

ADAPTIVE

Compression on Connect4

1

10

100

1000

10000

05101520253035

Min Sup (%)

T
im

e
 (

s
)

NONE

ADAPTIVE

Compression on Pumsb-star

10

100

1000

10000

0123456

Min Sup (%)

T
im

e
 (

s
)

NONE

ADAPTIVE

Figure 9. Compression on dense datasets

Time Comparison on T10I4D100K

1

10

100

1000

10000

00.010.020.030.040.050.06

Min Sup (%)

T
im

e
 (

s
)

MAFIA

DP

GENMAX

Figure 10. Performance on sparse datasets

counting by over an order of magnitude.

5.3.3 Performance Comparisons

Figures 10 and 11 show the results of comparing MAFIA
with DepthProject and GenMax on sparse data. MAFIA
is always faster than DepthProject and grows from twice
as fast at the higher supports to more than 20 times faster
at the lowest supports tested. GenMax demonstrates the
best performance of the three algorithms for higher supports
and is around two to three times faster than MAFIA. How-
ever, note that as the support drops and the itemsets become
longer, MAFIA passes Genmax in performance to become
the fastest algorithm.

The performances for sparse, real datasets are found in
Figure 11. MAFIA has the worst performance on BMS-
WebView-2 for higher supports, though it eventually passes
DepthProject as the support lowers. BMS-POS and BMS-
WebView-1 follow a similar pattern to the synthetic datasets
where MAFIA is always better than DepthProject, and Gen-
Max is better than MAFIA until the lower supports where
they cross over. In fact, at the lowest supports for BMS-
WebView-1, MAFIA is an order of magnitude better than
GenMax and over 50 times faster than DepthProject. It
is clear that MAFIA performs best when the itemsets are
longer, though even for sparse data MAFIA is within two to
three times the running times of DepthProject and GenMax.

The dense datasets in Figure 12 support the idea that
MAFIA runs the fastest on longer itemsets. For all supports
on the dense datasets, MAFIA has the best performance.
MAFIA runs around two to five times faster than GenMax
on Connect4, Pumsb, and Pumsb-star and over five to ten
times faster on Chess. DepthProject is by far the slowest al-
gorithm on all of the dense datasets and runs between ten to
thirty times worse than MAFIA on all of the datasets across
all supports.

Time Comparison on T40I10D100K

1

10

100

1000

10000

00.511.522.53

Min Sup (%)

T
im

e
 (

s
)

MAFIA

DP

GENMAX

Time Comparison on BMS-POS

1

10

100

1000

10000

00.050.10.150.20.250.30.35

Min Sup (%)

T
im

e
 (

s
)

MAFIA

DP

GENMAX

Time Comparison on BMS-WebView-1

1

10

100

1000

10000

00.0050.010.0150.020.0250.03

Min Sup (%)

T
im

e
 (

s
)

MAFIA

DP

GENMAX

Time Comparison on BMS-WebView-2

1

10

100

1000

10000

00.0050.010.0150.020.0250.030.035

Min Sup (%)

T
im

e
 (

s
)

MAFIA

DP

GENMAX

Figure 11. Performance on more sparse
datasets

Time Comparison on Chess

1

10

100

1000

10000

01020304050

Min Sup (%)

T
im

e
 (

s
)

MAFIA

DP

GEMAX

Time Comparison on Pumsb

1

10

100

1000

10000

304050607080

Min Sup (%)

T
im

e
 (

s
)

MAFIA

DP

GENMAX

Time Comparison on Connect4

1

10

100

1000

10000

01020304050

Min Sup (%)
T

im
e
 (

s
)

MAFIA

DP

GENMAX

Time Comparison on Pumsb_star

1

10

100

1000

10000

05101520253035

Min Sup (%)

T
im

e
 (

s
)

MAFIA

DP

GENMAX

Figure 12. Performance on dense datasets

6 Conclusion

In this paper we present a detailed performance analy-
sis of MAFIA. The breakdown of the algorithmic compo-
nents show that powerful pruning techniques such as parent-
equivalence pruning and superset checking are very benefi-
cial in reducing the search space. We also show that adap-
tive compression/projection of the vertical bitmaps dramat-
ically cuts the cost of counting supports of itemsets. Our
experimental results demonstrate that MAFIA is highly op-
timized for mining long itemsets and on dense data consis-
tently outperforms GenMax by two to ten and DepthProject
by ten to thirty.

Acknowledgements: We would like to thank Ramesh
Agarwal and Charu Aggarwal for discussing DepthProject
and giving us advice on its implementation. We also thank
Jayant Haritsa for his insightful comments on the MAFIA
algorithm, Jiawei Han for helping in our understanding of
CLOSET and providing us the executable of the FP-Tree
algorithm, and Mohammed Zaki for making the source code
of GenMax available.

References

[1] Data generator available at
http://www.almaden.ibm.com/software/quest/Resources/.

[2] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth
first generation of long patterns. In Knowledge Discovery and
Data Mining, pages 108–118, 2000.

[3] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A
tree projection algorithm for generation of frequent item sets.
Journal of Parallel and Distributed Computing, 61(3):350–
371, 2001.

[4] R. J. Bayardo. Efficiently mining long patterns from
databases. In SIGMOD, pages 85–93, 1998.

[5] C. Blake and C. Merz. UCI repository of machine learning
databases, 1998.

[6] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maxi-
mal frequent itemset algorithm for transactional databases. In
ICDE 2001, Heidelberg, Germany, 2001.

[7] K. Gouda and M. J. Zaki. Efficiently mining maximal fre-
quent itemsets. In ICDM, pages 163–170, 2001.

[8] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and
Z. Zheng. KDD-Cup 2000 organizers’ report: Peel-
ing the onion. SIGKDD Explorations, 2(2):86–98, 2000.
http://www.ecn.purdue.edu/KDDCUP.

[9] R.Rymon. Search through systematic set enumeration. In
International Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 539–550, 1992.

kDCI: a Multi-Strategy Algorithm for Mining Frequent Sets

Claudio Lucchese1, Salvatore Orlando1, Paolo Palmerini1,2,
Raffaele Perego2, Fabrizio Silvestri2,3

1Dipartimento di Informatica
Università Ca’ Foscari di Venezia
Venezia, Italy
{orlando,clucches}@dsi.unive.it

2ISTI-CNR
Consiglio Nazionale delle
Ricerche
Pisa, Italy
{r.perego,p.palmerini}@isti.cnr.it

3Dipartimento di Informatica
Università di Pisa
Pisa, Italy
silvestri@di.unipi.it

Abstract

This paper presents the implementation of kDCI, an
enhancement of DCI [10], a scalable algorithm for dis-
covering frequent sets in large databases.

The main contribution of kDCI resides on a novel
counting inference strategy, inspired by previously
known results by Basted et al. [3]. Moreover, multiple
heuristics and efficient data structures are used in or-
der to adapt the algorithm behavior to the features of
the specific dataset mined and of the computing platform
used.

kDCI turns out to be effective in mining both short
and long patterns from a variety of datasets. We con-
ducted a wide range of experiments on synthetic and
real-world datasets, both in-core and out-of-core. The
results obtained allow us to state that kDCI perfor-
mances are not over-fitted to a special case, and its
high performance is maintained on datasets with differ-
ent characteristics.

1 Introduction

Despite the considerable amount of algorithms pro-
posed in the last decade for solving the problem of find-
ing frequent patterns in transactional databases (among
the many we mention [1] [11] [6] [13] [14] [4] [3] [7]),
a single best approach still has to be found.

The Frequent Set Counting (FSC) problem consists
in finding all the set of items (itemsets) which occur in
at least s% (s is called support) of the transactions of a
database D, where each transaction is a variable length
collection of items from a set I . Itemsets which verify

the minimum support threshold are said to be frequent.

The complexity of the FSC problem relies mainly
in the potentially explosive growth of its full search
space, whose dimension d is, in the worst case, d =
∑|tmax|

k=1

(

|I|
k

)

, where tmax is the maximum transac-
tion length. Taking into account the minimum support
threshold, it is possible to reduce the search space, using
the well known downward closure relation, which states
that an itemset can only be frequent if all its subsets
are frequent as well. The exploitation of this property,
originally introduced in the Apriori algorithm [1], has
transformed a potentially exponentially complex prob-
lem, into a more tractable one.

Nevertheless, the Apriori property alone is not suf-
ficient to permit to solve the FSC problem in a rea-
sonable time, in all cases, i.e. on all possible datasets
and for all possible interesting values of s. Indeed, an-
other source of complexity in the FSC problem resides
in the dataset internal correlation and statistical proper-
ties, which remain unknown until the mining is com-
pleted. Such diversity in the dataset properties is re-
flected in measurable quantities, like the total number
of transactions, or the total number of distinct items |I|
appearing in the database, but also in some other more
fuzzy properties which, although commonly recognized
as important, still lack a formal and univocal definition.
It is the case, for example, of the notion of how dense a
dataset is, i.e. how much its transactions tend to resem-
ble among one another.

Several important results have been achieved for spe-
cific cases. Dense datasets are effectively mined with
compressed data structure [14], explosion in the candi-
dates can be avoided using effective projections of the
dataset [7], the support of itemsets in compact datasets

can be inferred, without counting, using an equivalence
class based partition of the dataset [3].

In order to take advantage of all these, and more spe-
cific results, hybrid approaches have been proposed [5].
Critical to this point is when and how to adopt a given
solution instead of another. In lack of a complete theo-
retical understanding of the FSC problem, the only so-
lution is to adopt a heuristic approach, where theoretical
reasoning is supported by direct experience leading to a
strategy that tries to cover a variety of cases as wide as
possible.

Starting from the previous DCI (Direct Count & In-
tersect) algorithm [10] we propose here kDCI, an en-
hanced version of DCI that extends its adaptability to the
dataset specific features and the hardware characteristics
of the computing platform used for running the FSC al-
gorithm. Moreover, in kDCI we introduce a novel count-
ing inference strategy, based on a new result inspired by
the work of Bastide et al. in [3].

kDCI is a multiple heuristics hybrid algorithm, able
to adapt its behavior during the execution. Since it ori-
gins from the already published DCI algorithm, we only
outline in this paper how kDCI differs from DCI. A de-
tailed description of the DCI algorithm can be found
in [10].

2 The kDCI algorithm

Several considerations concerning the features of real
datasets, the characteristics of modern hw/sw system, as
well as scalability issues of FSC algorithms have moti-
vated the design of kDCI. As already pointed out, trans-
actional databases may have different characteristics in
terms of correlations among the items inside transac-
tions and of transactions among themselves [9]. A de-
sirable feature of an FSC algorithm should be the ability
to adapt its behavior to these characteristics.

Modern hw/sw systems need high locality for ex-
ploiting memory hierarchies effectively and achieving
high performance. Algorithms have to favor the ex-
ploitation of spatial and temporal locality in accessing
in-core and out-core data.

Scalability is the main concern in designing algo-
rithms that aim to mine large databases efficiently.
Therefore, it is important to be able to handle datasets
bigger than the available memory.

We designed and implemented our algorithm kDCI
keeping in mind such performance issues. The pseudo
code of kDCI is given in Algorithm 1.

kDCI inherits from DCI the level-wise behavior and
the hybrid horizontal-vertical dataset representation. As
computation is started, kDCI maintains the database in
horizontal format and applies an effective pruning tech-

Algorithm 1 kDCI
Require: D, min supp

// During first scan get optimization figures
F1 = first scan(D, min supp)
// second and following scans on a temporary db D′

F2 = second scan(D′, min supp)
k = 2
while (D′.vertical size() > memory available()) do

k + +
// count-based iteration
Fk = DCP(D’, min supp, k)

end while
k + +
// count-based iteration + create vertical database VD
Fk = DCP(D’, VD, min supp, k)
dense = V D.is dense())
while (Fk 6= ∅) do

k + +
if (use key patterns()) then

if (dense) then
Fk = DCI dense keyp(VD, min supp, k)

else
Fk = DCI sparse keyp(VD, min supp, k)

end if
else

if (dense) then
Fk = DCI dense(VD, min supp, k)

else
Fk = DCI sparse(VD, min supp, k)

end if
end if

end while

nique to remove infrequent items and short transactions.
A temporary dataset is therefore written to disk at every
iteration. The first steps of the algorithm are described
in [8] and [10] and remain unchanged in kDCI. In kDCI
we only improved memory management by exploiting
compressed and optimized data structures (see Section
2.1 and 2.2).

The effectiveness of pruning is related to the possi-
bility of storing the dataset in main memory in vertical
format, due to the dataset size reduction. This normally
occurs at the first iterations, depending on the dataset,
the support threshold and the memory available on the
machine, which is determined at run time.

Once the dataset can be stored in main memory, kDCI
switches to the vertical representation, and applies sev-
eral heuristics in order to determine the most effective
strategy for frequent itemset counting.

The most important innovation introduced in kDCI
regards a novel technique to determine the itemset sup-
ports, inspired by the work of Bastide et al. [3]. As we
will discuss in Section 2.4, in some cases the support of
candidate itemsets can be determined without actually

counting transactions, but by a faster inference reason-
ing.

Moreover, kDCI maintains the different strategies
implemented in DCI for sparse and dense datasets. The
result is a multiple strategy approach: during the execu-
tion kDCI collects statistical information on the dataset
that allows to determine which is the best approach for
the particular case.

In the following we detail such optimizations and im-
provements and the heuristics used to decide which op-
timization to use.

2.1 Dynamic data type selection

The first optimization is concerned with the amount
of memory used to represent itemsets and their counters.
Since such structures are extensively accessed during the
execution of the algorithm, is it profitable to have such
data occupying as little memory as possible. This not
only allows to reduce the spatial complexity of the algo-
rithm, but also permits low level processor optimizations
to be effective at run time.

During the first scan of the dataset, global properties
are collected like the total number of distinct frequent
items (m1), the maximum transaction size, and the sup-
port of the most frequent item.

Once this information is available, we remap the sur-
vived (frequent) items to contiguous integer identifiers.
This allows us to decide the best data type to represent
such identifiers and their counters. For example if the
maximum support of any item is less than 65536, we can
use an unsigned short int to represent the item-
set counters. The same holds for the remapped identi-
fiers of the items. The decision of which is the most
appropriate type to use for items and counters is taken at
run time, by means of a C++ template-based implemen-
tation of all the kDCI code.

Before remapping item identifiers, we also reorder
them in increasingly support ordering: more frequent
items are thus assigned larger identifiers. This also sim-
plifies the intersection-based technique used for dense
datasets (see Section 2.3).

2.2 Compressed data structures

Itemsets are often organized in collections in many
FSC algorithms. Efficient representation of such collec-
tions can lead to important performance improvements.
In [8] we pointed out the advantages of storing candi-
dates in directly accessible data structures for the first
passes of our algorithm. In kDCI we introduce a com-
pressed representation of an itemset collection, used to
store in the main memory collections of candidate and

prefix

a b d
a b c

b d f

suffixindex

3
7
9

d
e
f
g
h
i
l
m
i
n

0
1
2
3
4
5
6
7
8
9

a b c d
a b c e
a b c f
a b c g
a b d h
a b d i
a b d l
a b d m
b d f i
b d f n

Memory = 4 x 10 = 40

Memory = 9 + 3 + 10 = 21

Compressed

Non−Compressed

Figure 1. Compressed data structure used
for itemset collection can reduce the
amount of memory needed to store the
itemsets.

frequent itemsets. This representation take advantage
of prefix sharing among the lexicographically ordered
itemsets of the collection.

The compressed data structure is based on three ar-
rays (Figure 1). At each iteration k, the first array (pre-
fix) stores the different prefixes of length k − 1. In the
third array (suffix) all the length-1 suffixes are stored.
Finally, in the element i of the second array (index),
we store the position in the suffix array of the section
of suffixes that share the same prefix. Therefore, when
the itemsets in the collection have to be enumerated, we
first access the prefix array. Then, from the corre-
sponding entry in the index array we get the section
of suffixes stored in suffix, needed to complete the
itemsets.

From our tests we can say that, in all the interesting
cases – i.e., when the number of candidate (or frequent)
iemsets explodes – this data structure works well and
achieves up to 30% as compression ratio. For example,
see the results reported in Figure 2.

2.3 Heuristics

One of the most important features of kDCI is its abil-
ity to adapt its behavior to the dataset specific character-
istics. It is well known that being able to distinguish be-
tween sparse and dense datasets, for example, allows to
adopt specific and effective optimizations. Moreover, as
we will explain the Section 2.4, if the number of frequent
itemsets is much greater than the number of closed item-
sets, it is possible to apply a counting inference proce-
dure that allows to dramatically reduce the time needed
to determine itemset supports.

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10 11

K
B

yt
es

k

BMS_View, min_supp=0.06%

compressed
non-compressed

(a)

0

100

200

300

400

500

600

700

2 4 6 8 10 12 14

K
B

yt
es

k

connect, min_supp=80%

compressed
non-compressed

(b)

Figure 2. Memory usage with compressed
itemsets collection representation for BMS
with min sup=0.06% (a) and connect with
min sup=80% (b)

In kDCI we devised two main heuristics that allow to
distinguish between dense and sparse datasets and to de-
cide whether to apply the counting inference procedure
or not.

The first heuristic is simply based on the measure of
the dataset density. Namely, we measure the correlation
among the tidlists corresponding to the most frequent
items. We require that the maximum number of frequent
items for which such correlation is significant, weighted
by the correlation degree itself, is above a given thresh-
old.

As an example, consider the two dataset in Figure 3,
where tidlists are placed horizontally, i.e. rows corre-
spond to items and columns to transactions. Suppose
to choose a density threshold δ = 0.2. If we order the
items according to their support, we have the most dense
region of the dataset at the bottom of each figure. Start-
ing from the bottom, we find the maximum number of
items whose tidlists have a significant intersection. In
the case of dataset (a), for example, a fraction f = 1/4
of the items share p = 90% of the transactions, leading

d > δ DENSE

í¥í�í¥í¥í¥í�íí¥í�í¥í¥í¥í�íí¥í�í¥í¥í¥í�íí¥í�í¥í¥í¥í�íí¥í�í¥í¥í¥í�íí¥í�í¥í¥í¥í�íí¥í�í¥í¥í¥í�íí¥í�í¥í¥í¥í�í
î¥î�î¥î¥î¥î�îî¥î�î¥î¥î¥î�îî¥î�î¥î¥î¥î�îî¥î�î¥î¥î¥î�îî¥î�î¥î¥î¥î�îî¥î�î¥î¥î¥î�îî¥î�î¥î¥î¥î�îî¥î�î¥î¥î¥î�î

ï¥ï¥ï¥ï¥ï�ï¥ï¥ï¥ï�ï¥ï¥ïï¥ï¥ï¥ï¥ï�ï¥ï¥ï¥ï�ï¥ï¥ïï¥ï¥ï¥ï¥ï�ï¥ï¥ï¥ï�ï¥ï¥ïï¥ï¥ï¥ï¥ï�ï¥ï¥ï¥ï�ï¥ï¥ïï¥ï¥ï¥ï¥ï�ï¥ï¥ï¥ï�ï¥ï¥ï
ð¥ð¥ð¥ð¥ð�ð¥ð¥ð¥ð�ð¥ð¥ðð¥ð¥ð¥ð¥ð�ð¥ð¥ð¥ð�ð¥ð¥ðð¥ð¥ð¥ð¥ð�ð¥ð¥ð¥ð�ð¥ð¥ðð¥ð¥ð¥ð¥ð�ð¥ð¥ð¥ð�ð¥ð¥ðð¥ð¥ð¥ð¥ð�ð¥ð¥ð¥ð�ð¥ð¥ð

t=0..N

i=0..M

f=M/3

t=0..N

i=0..M

f=M/4

d=pf/M=0.9 x 0.25 = 0.23 d=pf/M=0.5 x 0.3 = 0.15

p=50%

δ = 0.2

SPARSEδd <

(a) (b)

p=90%

Figure 3. Heuristic to establish a dataset
density or sparsity

to a density of d = fp = 0.25 × 0.9 = 0.23 which is
above the density threshold. For dataset (b) on the other
hand, to a smaller intersection of p = 50% is common
to f = 1/3 of the items. In this last case the density
d = fp = 0.3 × 0.5 = 0.15 is lower than the threshold
and the dataset is considered as sparse. It is worth to no-
tice that since this notion of density depends on the min-
imum support threshold, the same dataset can exhibits
different behaviors when mined with different support
thresholds.

Once the dataset density is determined, we adopted
the same optimizations described in [10] for sparse and
dense datasets. We review them briefly for complete-
ness.

Sparse datasets. The main techniques used for
sparse datasets can be summarized as follows:

– projection. Tidlists in sparse datasets are
characterized by long runs of 0’s. When in-
tersecting the tidlists associated with the 2-
prefix items belonging to a given candidate
itemset, we keep track of such empty ele-
ments (words), in order to perform the follow-
ing intersections faster. This can be consid-
ered as a sort of raw projection of the verti-
cal dataset, since some transactions, i.e. those
corresponding to zero words, are not consid-
ered at all during the following tidlist inter-
sections.

– pruning. We remove infrequent items from
the dataset. This can result in some transac-
tion remaining empty or with too few items.
We therefore remove such transactions (i.e.
columns in the our bitvector vertical repre-
sentation) from the dataset. Since this bitwise

pruning may be expensive, we only perform
it when the benefits introduced are expected
to balance its cost.

Dense datasets.
If the dataset is dense, we expect to deal with
strong correlations among the most frequent items.
This not only means that the tidlists associated
with these most frequent items contain long runs
of 1’s, but also that they turn out to be very similar.
The heuristic technique adopted by DCI and con-
sequently by kDCI for dense dataset thus works as
follows:

– we reorder the columns of the vertical dataset
by moving identical segments of the tidlists
associated with the most frequent items to the
first consecutive positions;

– since each candidate is likely to include sev-
eral of these most frequent items, we avoid
repeated intersections of identical segments.

The heuristic for density evaluation is applied only
once, as soon as the vertical dataset is built. After this
decision is taken, we further check if the counting infer-
ence strategy (see Section 2.4) can be profitable or not.
The effectiveness of the inference strategy depends on
the ratio between the total number of frequent itemsets
and how many of them are key-patterns. The closer to 1
this ratio is, the less advantage is introduced by the in-
ference strategy. Since this ratio is not known until the
computation is finished, we found that the same infor-
mation can be derived from the average support of the
frequent singletons (items), after the first scan. The idea
behind this is that if the average support of the single
items that survived the first scan is high enough, then
longer patterns can be expected to be frequent and more
likely the number of key-patterns itemsets will be lower
than that of frequent itemsets. We experimentally veri-
fied that this simple heuristic gives the correct output for
all datasets - both real and synthetic.

To resume the rationale behind kDCI multiple strat-
egy approach, if the key-patterns optimization can be
adopted, we use the counting inference method that al-
lows to avoid many intersections. For the intersections
that cannot be avoided and in the cases where the key-
patterns inference method cannot be applied, we further
distinguish between sparse and dense datasets, and ap-
ply the two strategies explained above.

2.4 Pattern Counting Inference

In this section we describe the count inference
method, which constitute the most important innovation

Figure 4. Example lattice of frequent items.

introduced in kDCI. We exploit a technique inspired by
the theoretical results presented in [3], where the PAS-
CAL algorithm was introduced. PASCAL is able to infers
the support of an itemset without actually count its oc-
currences in the database. In this seminal work, the au-
thors introduced the concept of key pattern (or key item-
set). Given a generic pattern Q, it is possible to deter-
mine an equivalence class [Q], which contains the set of
patterns that have the same support and are included in
the same set of database transactions. Moreover, if we
define min[P] as the set of the smallest itemsets in [P],
a pattern P is a key pattern if P ∈ min[P], i.e. no proper
subset of P is in the same equivalence class. Note that
we can have several key patterns for each equivalence
class. Figure 4 shows an example of a lattice of frequent
itemsets, taken from [3], where equivalence classes and
key patterns are highlighted.

Given an equivalence class [P], we can also define a
corresponding closed set [12]: the closed set c of [P] is
equal to max[P], so that no proper supersets of c can
belong to the same equivalence class [P].

Among the results illustrated in [3] we have the fol-
lowing important theorems:

Theorem 1 Q is a key pattern iff supp(Q) 6=
minp∈Q(supp(Q \ {p})).

Theorem 2 If P is not a key pattern, and P ⊆ Q, then
Q is a non-key pattern as well.

From Theorem 1 it is straightforward to observe that
if Q is a non-key pattern, then:

supp(Q) = min
p∈Q

(supp(Q \ {p})). (1)

Moreover, Theorem 1 says that we can check
whether Q is a key pattern by comparing its support
with the minimum support of its proper subsets, i.e.
minp∈Q(supp(Q\{p})). We will show in the following
how to use this property to make faster candidate support
counting.

Theorems 1 and 2 give the theoretical foundations
for the PASCAL algorithm, which finds the support of
a non-key k-candidate Q by simply searching the mini-
mum supports of all its k − 1 subsets. Note that such
search can be performed during the pruning phase of
the Apriori candidate generation. DCI does not perform
candidate pruning because its intersection technique is
comparably faster. For this reason we will not adopt the
PASCAL counting inference in kDCI.

The following theorem, partially inspired by the
proof of Theorem 2, suggests a faster way to compute
the support of a non-key k-candidate Q.

Before introducing the theorem, we need to define
the function f , which assigns to each pattern P the set
of all the transactions that include this pattern. We can
define the support of a pattern in terms of f : supp(P) =
|f(P)|. Note that f is a monotonically decreasing func-
tion, i.e. if P1 ⊆ P2 ⇒ f(P2) ⊆ f(P1). This is obvi-
ous, because every transaction containing P2 surely con-
tains all the subsets of P2.

Theorem 3 If P is a non-key pattern and P ⊆ Q, the
following holds:

f(Q) = f(Q \ (P \ P ′)).

where P ′ ⊂ P , and P and P ′ belong to the same equiv-
alence class, i.e. P, P ′ ∈ [P].

PROOF. Note that, since P is a non-key pattern, it is
surely possible to find a pattern P ′, P ′ ⊂ P , belonging
to the same equivalence class [P].

In order to demonstrate the Theorem we first show
that f(Q) ⊆ f(Q \ (P \ P ′)) and then that also
f(Q) ⊇ f(Q \ (P \ P ′)) holds, thus proving the Theo-
rem hypotheses.

The first assertion f(Q) ⊆ f(Q \ (P \ P ′)) holds
because (Q \ (P \P ′)) ⊆ Q, and f is a monotonically
decreasing function.

To prove the second assertion, f(Q) ⊇ f(Q \ (P \
P ′)), we can rewrite f(Q) as f(Q\(P \P ′)∪(P \P ′)),
which is equivalent to f(Q \ (P \ P ′)) ∩ f(P \ P ′).

Since f is decreasing, f(P) ⊆ f(P \ P ′). But, since
P, P ′ ∈ [P], then we can write f(P) = f(P ′) ⊆ f(P \
P ′). Therefore f(Q) = f(Q \ (P \P ′))∩ f(P \P ′) ⊇
f(Q\(P \P ′))∩f(P ′). The last inequality is equivalent

to f(Q) ⊇ f(Q \ (P \P ′)∪P ′). Since P ′ ⊆ (Q \ (P \
P ′)) clearly holds, it follows that f(Q\(P \P ′)∪P ′) =
f(Q\(P \P ′)). So we can conclude that f(Q) ⊇ f(Q\
(P \ P ′)), which completes the proof.
2

The following corollary is trivial, since we defined
supp(Q) = |f(Q)|.

Corollary 1 If P is a non-key pattern, and P ⊆ Q, the
support of Q can be computed as follows:

supp(Q) = supp(Q \ (P \ P ′))

where P ′ and P , P ′ ⊂ P , belong to the same equiva-
lence class, i.e. P, P ′ ∈ [P].

Finally, we can introduce Corollary 2, which is a par-
ticular case of the previous one.

Corollary 2 If Q is k-candidate (i.e. Q ∈ Ck) and
P , P ⊂ Q, is a frequent non-key (k-1)-pattern (i.e.
P ∈ Fk−1), there must exist P ′ ∈ Fk−2, P ′ ⊂ P , such
that P and P ′ belong to the same equivalence class,
i.e. P, P ′ ∈ [P] and P and P ′ differ for a single item:
{pdiff} = P \ P ′. The support of Q can thus be com-
puted as:

supp(Q) = supp(Q \ (P \ P ′)) = supp(Q \ {pdiff})

Corollary 2 says that to find the support of a non-
key candidate pattern Q, we can simply check whether
Q \ {pdiff} belongs to Fk−1, or not. If Q \ {pdiff} ∈

Fk−1, then Q inherits the same support as Q \ {pdiff}
and is therefore frequent. Otherwise we can conclude
that Q \ {pdiff} is not frequent.

Using the theoretical result of Corollary 2, we
adopted the following strategy in order to determine the
support of a candidate Q at step k.

In kDCI, we store with each itemset P ∈ Fk−1 the
following information:

• supp(P);

• a flag indicating if P is a key pattern or not;

• if P is non-key pattern, also the item pdiff such that
P \ {pdiff } = P ′ ∈ [P].

Note that pdiff must be one of the items that we can re-
move from P to obtain a proper subset P ′ of P , belong-
ing to the same equivalence class.

During the generation of a generic candidate Q ∈ Ck,
as soon as kDCI discovers that one of the subsets of Q,

1

10

100

1000

10000

50 55 60 65 70 75 80 85 90

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = connect

ECLATd
FP
OP

kDCI

0.1

1

10

100

1000

10000

30 35 40 45 50 55 60 65 70

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = chess

ECLATd
FP
OP

kDCI

0.1

1

10

100

1000

65 70 75 80 85 90 95

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = pumsb

ECLATd
FP
OP

kDCI

0.1

1

10

100

25 30 35 40 45 50

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = pumsb_star

ECLATd
FP
OP

kDCI

Figure 5. Total execution time of OP, FP, Eclatd, and kDCI on various datasets as a function of
the support threshold.

say P , is a non-key pattern, kDCI searches in Fk−1 the
pattern Q \ {pdiff }, where pdiff is stored with P .

If Q \ {pdiff } is found, then Q is a frequent non-
key pattern (see Theorem 2), its support is supp(Q \
{pdiff }), and the item to store with Q is exactly pdiff.
In fact, Q′ = Q \ {pdiff } ∈ [Q], i.e. pdiff is one of the
items that we can remove from Q to obtain a subset Q′

belonging to the same equivalence class.

The worst case is when all the subsets of Q in Fk−1

are key patterns and the support of Q cannot be inferred
from its subsets. In this case kDCI counts the support
of Q as usual, and applies Theorem 1 to determine if
Q is a non-key-pattern. If Q is a non-key-pattern, its
support becomes supp(Q) = minp∈Q(supp(Q \ {p}))
(see Theorem 1), while the item to be stored with Q is
pdiff, i.e. the item to be subtracted from Q to obtain the
pattern with the minimum support.

The impact of this counting inference technique on
the performance of an FSC algorithm becomes evident if
you consider the Apriori-like candidate generation strat-
egy adopted by kDCI. From the combination of every
pair of itemsets Pa and Pb ∈ Fk−1, that share the same

(k-2)-prefix (we called them generators), kDCI gener-
ates a candidate k-itemset Q. For very dense datasets,
most of the frequent patterns belonging to Fk−1 are non-
key patterns. Therefore one or both patterns Pa and Pb

used to generate Q ∈ Ck are likely to be non-key pat-
terns. In such cases, in order to find a non-key pattern
and then apply Corollary 2, it is not necessary to check
the existence of further subsets of Q. For most of the
candidates, a single binary search in Fk−1, to look for
the pattern Q \ {pdiff }, is thus sufficient to compute
supp(Q). Moreover, often Q \ {pdiff } is exactly equal
to one of the two k-1-itemsets belonging to the gener-
ating pair (Pa, Pb): in this case kDCI does not need to
perform any search at all to compute supp(Q).

We conclude this section with some examples of how
the counting inference technique works. Let us con-
sider Figure 4. Itemset Q = {A,B, E} is a non-key
pattern because P = {B,E} is a non-key pattern as
well. So, if P ′ = {B}, kDCI will store pdiff =

E with P . We have that the supp({A,B,E}) =
supp({A,B,E}\({B,E}\{B})) = supp({A,B,E}\
{pdiff } = supp({A,B}). From the Figure you can
see that {A,B,E} and {A,B} both belong to the same

0.1

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = mushroom

ECLATd
FP
OP

kDCI

0.1

1

10

100

1000

0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = BMS_View_1

ECLATd
FP
OP

kDCI

0.1

1

10

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = T25I10D10K

ECLATd
FP
OP

kDCI

10

100

1000

0.4 0.6 0.8 1 1.2 1.4 1.6

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = T30I16D400K

ECLATd
FP
OP

kDCI

Figure 6. Total execution time of OP, FP, Eclatd, and kDCI on various datasets as a function of
the support threshold.

equivalence class.
Another example is itemset Q = {A,B,C, E}, that
is generated by the two non-key patterns {A,B, C}
and {A,B,E}. Suppose that P = {A,B,C}, i.e.
the first generator, while P ′ = {A,B}. In this
case kDCI will store pdiff = C with P . We have
that the supp({A,B, C, E}) = supp({A,B, C, E} \
({A,B,C} \ {A,B})) = supp({A,B,C, E} \
{pdiff } = supp({A,B,E}, where {A,B,E} is exactly
the second generator. In this case, no search is necessary
to find {A,B,E}. Looking at the Figure, it is possible
to verify that {A,B,C, E} and {A,B,E} both belong
to the same equivalence class.

3 Experimental Results

We experimentally evaluated kDCI performances by
comparing its execution time with respect to the origi-
nal implementations of state of the art FSC algorithms,
namely FP-growth (FP) [6], Opportunistic Projection
(OP) [7] and Eclat with diffsets (Eclatd) [14], provided
by their respective authors.

We used a MS-WindowsXP workstation equipped

with a Pentium IV 1800 MHz processor, 368MB of
RAM memory and an eide hard disk. For the tests,
we used both synthetic and real-world datasets. All
the synthetic datasets used were created with the IBM
dataset generator [1], while all the real-world datasets
but one were downloaded from the UCI KDD Archive
(http://kdd.ics.uci.edu/). We also extracted
a real-world dataset from the TREC WT10g corpus [2].
The original corpus contained about 1.69 millions of
WEB documents. The dataset for our tests was built by
considering the set of all the terms contained in each
document as a transaction. Before generating the trans-
actional dataset, the collection of documents was filtered
by removing HTML tags and the most common words
(stopwords), and by applying a stemming algorithm. The
resulting trec dataset is huge. It is about 1.3GB, and
contains 1.69 millions of short and long transactions,
where the maximum length of a transaction is 71, 473
items.

kDCI performance and comparisons. Figure 5 and
6 report the total execution time obtained running FP,
Eclatd, OP, and kDCI on various datasets as a func-

tion of the support threshold s. On all datasets in Fig-
ure 5, connect, chess pumsb and pumsb star,
kDCI runs faster than the others algorithms. On pumsb
its execution time is very similar to the one of OP. For
high support thresholds kDCI can drastically prune the
dataset, and build a compact vertical dataset, whose
tidlists presents large similarities. Such similarity of
tidlists is effectively exploited by our strategy for com-
pact datasets. For smaller supports, the benefits intro-
duced by the counting inference strategy become more
evident, particularly for the pumsb star and con-
nect datasets. In these cases the number of frequent
itemsets is much higher than the number of key-patterns,
thus allowing kDCI to drastically reduce the number of
intersections needed to determine candidate supports.

On the datasets mushroom and T30I16D400K
(see Figure 6), kDCI outperforms the other competi-
tors, and this also holds on the real-world dataset
BMS View 1 when mined with very small support
thresholds (see Figure 6). On only a dataset, namely
T25I10D10K, FP and OP are faster than kDCI for all
the supports. The reason of this behavior is the size
of the candidate set C3, which for this dataset is much
larger than F3. While kDCI has to carry out a lot of use-
less work to determine the support of many candidate
itemsets which are not frequent, FP-growth and OP take
advantage of the fact that they do not require candidate
generation.

Furthermore, differently from FP, Eclatd, and OP,
kDCI can efficiently mine huge datasets such as trec
and USCensus1990. Figure 7 reports the total execu-
tion time required by kDCI to mine these datasets with
different support thresholds. The other algorithms failed
in mining these datasets due to memory shortage, also
when very large support thresholds were used. On the
other hand, kDCI was able to mine such huge datasets
since it adapts its behavior to both the size of the dataset
and the main memory available.

4 Conclusions and Future Work

Due to the complexity of the problem, a good algo-
rithm for FSC has to implement multiple strategies and
some level of adaptiveness in order to be able to succes-
fully manage diverse and differently featured inputs.

kDCI uses different approaches for extracting fre-
quent patterns: count-based during the first iterations
and intersection-based for the following ones.

Moreover, a new counting inference strategy, to-
gether with, adaptiveness and resource awareness are the
main innovative features of the algorithm.

On the basis of the characteristics of the mined
dataset, kDCI chooses which optimization to adopt for

100

1000

10000

7 8 9 10 11 12 13 14 15

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = trec

kDCI

(b)

10

100

1000

74 76 78 80 82 84 86 88 90

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Support (%)

Dataset = USCensus1990

kDCI

(a)

Figure 7. Total execution time of kDCI: on
datasets trec (a) and USCensus1990 (b)
as a function of the support.

reducing the cost of mining at run–time. Dataset pruning
and effective out-of-core techniques are exploited dur-
ing the count-based phase, while the intersection-based
phase, which starts only when the pruned dataset can fit
into the main memory, exploits a novel technique based
on the notion of key-pattern that in many cases allows to
infer the support of an itemset without any counting.

kDCI also adopts compressed data structures and dy-
namic type selection to adapt itself to the characteristics
of the dataset being mined.

The experimental evaluation demonstrated that kDCI
outperforms FP, OP, and Eclatd in most cases. More-
over, differently from the other FSC algorithms tested,
kDCI can efficiently manage very large datasets, also on
machines with limited physical memory.

Although the variety of datasets used and the large
amount of tests conducted permit us to state that the per-
formance of kDCI is not highly influenced by dataset

characteristics, and that our optimizations are very effec-
tive and general, some further optimizations and future
work will reasonably improve kDCI performance. More
optimized data structures could be used to store itemset
collections in order to make faster searches in such col-
lections. Note that such fast searches are very important
in kDCI, which bases its count inference technique at
level k on searching for frequent itemset in Fk−1. Fi-
nally, we can benefit from a higher level of adaptive-
ness to the available memory on the machine, either
with fully memory mapped data structures or with out-
of-core ones, depending on the data size. This should
allow a better scalability and a wider applicability of the
algorithm.

5 Acknowledgments

We acknowledge J. Han, Y. Pan, M.J. Zaki and J. Liu
for kindly providing us the latest versions of their FSC
software.

References

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. In Proc. of the
20th VLDB Conf., pages 487–499, 1994.

[2] P. Bailey, N. Craswell, and D. Hawking. Engineering
a multi-purpose test collection for Web retrieval exper-
iments. Information Processing and Management. to
appear.

[3] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and
L. Lakhal. Mining frequent patterns with counting infer-
ence. ACM SIGKDD Explorations Newsletter, 2(2):66–
75, December 2000.

[4] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic
itemset counting and implication rules for market basket
data. In J. Peckham, editor, SIGMOD 1997, Proceed-
ings ACM SIGMOD International Conference on Man-
agement of Data, May 13-15, 1997, Tucson, Arizona,
USA. ACM Press, 05.

[5] B. Goethals. Efficient Frequent Itemset Mining. PhD
thesis, Limburg University, Belgium, 2003.

[6] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns
without Candidate Generation. In Proc. of the ACM SIG-
MOD Int. Conf. on Management of Data, pages 1–12,
Dallas, Texas, USA, 2000.

[7] J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent
Item Sets by Opportunistic Projection. In Proc. 2002 Int.
Conf. on Knowledge Discovery in Databases (KDD’02),
Edmonton, Canada, 2002.

[8] S. Orlando, P. Palmerini, and R. Perego. Enhancing the
Apriori Algorithm for Frequent Set Counting. In Proc. of
3rd Int. Conf. on Data Warehousing and Knowledge Dis-
covery (DaWaK 01) - Munich, Germany, volume 2114 of
LNCS, pages 71–82. Springer, 2001.

[9] S. Orlando, P. Palmerini, and R. Perego. On Statistical
Properties of Transactional Datasets. In 2004 ACM Sym-
posium on Applied Computing (SAC 2004), 2004. To
appear.

[10] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri.
Adaptive and Resource-Aware Mining of Frequent Sets.
In Proc. The 2002 IEEE International Conference on
Data Mining (ICDM’02), pages 338–345, 2002.

[11] J. S. Park, M.-S. Chen, and P. S. Yu. An Effective Hash
Based Algorithm for Mining Association Rules. In Proc.
of the 1995 ACM SIGMOD Int. Conf. on Management of
Data, pages 175–186, 1995.

[12] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Dis-
covering frequent closed itemsets for association rules.
Lecture Notes in Computer Science, 1540:398–416,
1999.

[13] J. Pei, J. Han, H. Lu, S. Nishio, and D. Tang, S.
amd Yang. H-Mine: Hyper-Structure Mining of Fre-
quent Patterns in Large Databases. In Proc. The
2001 IEEE International Conference on Data Mining
(ICDM’01), San Jose, CA, USA, 2000.

[14] M. J. Zaki and K. Gouda. Fast Vertical Mining Using
Diffsets. In 9th Int. Conf. on Knowledge Discovery and
Data Mining, Washington, DC, 2003.

APRIORI, A Depth First Implementation

Walter A. Kosters
Leiden Institute of Advanced Computer Science

Universiteit Leiden
P.O. Box 9512, 2300 RA Leiden

The Netherlands
kosters@liacs.nl

Wim Pijls
Department of Computer Science

Erasmus University
P.O. Box 1738, 3000 DR Rotterdam

The Netherlands
pijls@few.eur.nl

Abstract

We will discuss DF , the depth £rst implementation of
APRIORI as devised in 1999 (see [8]). Given a database,
this algorithm builds a trie in memory that contains all fre-
quent itemsets, i.e., all sets that are contained in at least
minsup transactions from the original database. Here min-
sup is a threshold value given in advance. In the trie, that
is constructed by adding one item at a time, every path cor-
responds to a unique frequent itemset. We describe the al-
gorithm in detail, derive theoretical formulas, and provide
experiments.

1 Introduction

In this paper we discuss the depth £rst (DF , see [8])
implementation of APRIORI (see [1]), one of the fastest
known data mining algorithms to £nd all frequent item-
sets in a large database, i.e., all sets that are contained in at
least minsup transactions from the original database. Here
minsup is a threshold value given in advance. There exist
many implementations of APRIORI (see, e.g., [6, 11]). We
would like to focus on algorithms that assume that the whole
database £ts in main memory, this often being the state of
affairs; among these, DF and FP (the FP-growth imple-
mentation of APRIORI, see [5]) are the fastest. In most pa-
pers so far little attention has been given to theoretical com-
plexity. In [3, 7] a theoretical basis for the analysis of these
two algorithms was presented.

The depth £rst algorithm is a simple algorithm that
proceeds as follows. After some preprocessing, which in-
volves reading the database and a sorting of the single items
with respect to their support, DF builds a trie in memory,
where every path from the root downwards corresponds to
a unique frequent itemset; in consecutive steps items are
added to this trie one at a time. Both the database and the trie

are kept in main memory, which might cause memory prob-
lems: both are usually very large, and in particular the trie
gets much larger as the support threshold decreases. Finally
the algorithm outputs all paths in the trie, i.e., all frequent
itemsets. Note that once completed, the trie allows for fast
itemset retrieval in the case of online processing.

We formerly had two implementations of the algorithm,
one being time ef£cient, the other being memory ef£cient
(called dftime.cc and dfmemory.cc, respectively),
where the time ef£cient version could not handle low sup-
port thresholds. The newest version (called dffast.cc)
combines them into one even faster implementation, and
runs for all support thresholds.

In this paper we £rst describe DF , we then give some
formal de£nitions and theoretical formulas, we discuss the
program, provide experimental results, and conclude with
some remarks.

2 The Algorithm

An appropriate data structure to store the frequent item-
sets of a given database is a trie. As a running example in
this section we use the dataset of Figure 1. Each line rep-
resents a transaction. The trie of frequent patterns is shown
in Figure 2. The entries (or cells) in a node of a trie are
usually called buckets, as is also the case for a hash-tree.
Each bucket can be identi£ed with its path to the root and
hence with a unique frequent itemset. The example trie has
9 nodes and 18 buckets, representing 18 frequent itemsets.
As an example, the frequent itemset {A,B,E, F} can be
seen as the leftmost path in the trie; and a set as {A,B,C}
is not present.

One of the oldest algorithms for £nding frequent patterns
is APRIORI, see [1]. This algorithm successively £nds all
frequent 1-itemsets, all frequent 2-itemsets, all frequent 3-
itemsets, and so on. (A k-itemset has k items.) The frequent
k-itemsets are used to generate candidate (k + 1)-itemsets,

Dataset

transaction items
number

1 B C D
2 A B E F
3 A B E F
4 A B C F
5 A B C E F
6 C D E F

Frequent itemsets when minsup = 3

support frequent itemsets
5 B, F
4 A, AB, AF, ABF, BF, C, E, EF
3 AE, ABE, ABEF, AEF, BC,

BE, BEF, CF

Figure 1. An example of a dataset along with
its frequent itemsets.

A B C E F
¡

¡
¡

¡¡

A
A
A
AA

@
@
@
@@

B E F C E F F F
A
A
A
AA

A
A
A
AA

E F F F

F

A
A
A
AA

Figure 2. An example of a trie (without sup-
port counts).

where the candidates are only known to have two frequent
subsets with k elements. After a pruning step, where can-
didates still having infrequent subsets are discarded, the
support of the candidates is determined. The way APRIORI
£nds the frequent patterns implies that the trie is built layer
by layer. First the nodes in the root (depth = 0) are con-
structed, next the trie nodes at depth 1 are constructed, and

so on. So, APRIORI can be thought of as an algorithm that
builds the pattern trie in a breadth £rst way. We propose an
algorithm that builds the trie in a depth £rst way. We will ex-
plain the depth £rst construction of the trie using the dataset
of Figure 1. Note that the trie grows from right to left.

The algorithm proceeds as follows. In a preprocessing
step, the support of each single item is counted and the in-
frequent items are eliminated. Let the n frequent items be
denoted by i1, i2, . . . , in. Next, the code from Figure 3 is
executed.

(1) T := the trie including only bucket in;
(2) for m := n− 1 downto 1 do
(3) T ′ := T ;
(4) T := T ′ with im added to the left and

a copy of T ′ appended to im;
(5) S := T\T ′ (= the subtrie rooted in im);
(6) count(S, im);
(7) delete the infrequent itemsets from S;

(9) procedure count(S, im) ::
(10) for every transaction t including item im do
(11) for every itemset I in S do
(12) if t supports I then I .support++;

Figure 3. The algorithm.

The procedure count(S, im) determines the support of
each itemset (bucket) in the subtrie S. This is achieved by
a database pass, in which each transaction including item
im is considered. Any such transaction is one at a time
“pushed” through S, where it only traverses a subtrie if it
includes the root of this subtrie, meanwhile updating the
support £elds in the buckets. In the last paragraph from Sec-
tion 4 a re£nement of this part of the algorithm is presented.
On termination of the algorithm, T exactly contains the fre-
quent itemsets.

Figure 4 illustrates the consecutive steps of the algorithm
applied to our example. The single items surpassing the
minimum support threshold 3 are i1 = A, i2 = B, i3 =
C, i4 = E and i5 = F . In the £gure, the shape of T after
each iteration of the for loop is shown. Also the infrequent
itemsets to be deleted at the end of an iteration are men-
tioned. At the start of the iteration with index m, the root of
trie T consists of the 1-itemsets im+1, . . . , in. (We denote a
1-itemset by the name of its only item, omitting curly braces
and commas as in Figure 1 and Figure 4.) By the statement
in line (3) from Figure 3, this trie may also be referred to as
T ′. A new trie T is composed by adding bucket im to the
root and by appending a copy of T ′ (the former value of T)
to im. The newly added buckets are the new candidates and
they make up a subtrie S. In Figure 4, the candidate set S is
in the left part of each trie and is drawn in bold. Notice that

i4 = E
@
@
@
@

E

F

F

i3 = C

CE and CEF
are infrequent
and hence deleted

E F
@
@
@
@

F

C
A
A
A
A

E F
@
@
@
@

F

i2 = B

BCF is infrequent
and hence deleted

A
A
A
A

@
@
@
@

C E F

F F

B

C E F
A
A
A
A

F F

i1 = A

ABC, AC and ACF are infrequent
and hence deleted

A
A
A
A

F

@
@
@
@

B C E F

C E F
A
A
A
A

F

F

A
¡

¡
¡
¡

B C E F
A
A
A
A

@
@
@
@

C E F FF
A
A
A
A
F

Figure 4. Illustrating the algorithm.

the £nal trie (after deleting infrequent itemsets) is identical
to Figure 2.

The number of iterations in the for loop is one less
than the number of frequent 1-itemsets. Consequently, the

number of database passes is one less than the num-
ber of frequent 1-itemsets. This causes the algorithm to
be tractable only if the database under consideration is
memory-resident. Given the present-day memory sizes, this
is not a real constraint any more.

As stated above, our algorithm has a preprocessing step
which counts the support for each single item. After this
preprocessing step, the items may be re-ordered. The most
favorable execution time is achieved if we order the items
by increasing frequency (see Section 3 for a more formal
motivation). It is better to have low support at the top of the
deeper side (to the left bottom) of the trie and hence, high
support at the top of the shallow part (to the upper right) of
the trie.

We may distinguish between “dense” data sets and
“sparse” datasets. A dense dataset has many frequent pat-
terns of large size and high support, as is the case for
test sets such as chess and mushroom (see Section 5).
In those datasets, many transactions are similar to each
other. Datasets with mainly short patterns are called sparse.
Longer patterns may exist, but with relatively small sup-
port. Real-world transaction databases of supermarkets
mostly belong to this category. Also the synthetic datasets
from Section 5 have similar properties: interesting support
thresholds are much lower than in the dense case.

Algorithms for £nding frequent patterns may be divided
into two types: algorithms respectively with and without
candidate generation Any APRIORI-like instance belongs to
the £rst type. Eclat (see [9]) may also be considered as an
instance of this type. The FP-growth algorithm FP from
[5] is the best-known instance of the second type (though
one can also defend the point of view that it does generate
candidates). For dense datasets, FP performs better than
candidate generating algorithms. FP stores the dataset in
a way that is very ef£cient especially when the dataset has
many similar transactions. In case of algorithms that do ap-
ply candidate generation, dense sets produce a large number
of candidates. Since each new candidate has to be related
to each transaction, the database passes take a lot of time.
However, for sparse datasets, candidate generation is a very
suitable method for £nding frequent patterns. To our expe-
rience, the instances of the APRIORI family are very useful
when searching transaction databases. According to the re-
sults in [7] the depth £rst algorithm DF outperforms FP-
growth FP in the synthetic transaction sets (see Section 5
for a description of these sets).

Finally, note that technically speaking DF is not a full
implementation of APRIORI, since every candidate itemset
is known to have only one frequent subset (resulting from
the part of the trie which has already been completed) in-
stead of two. Apart from this, its underlying candidate gen-
eration mechanism strongly resembles the one from APRI-
ORI.

3 Theoretical Complexity

Let m denote the number of transactions (also called
customers), and let n denote the number of products (also
called items). Usually m is much larger than n. For a non-
empty itemset A ⊆ {1, 2, . . . , n} we de£ne:

• supp(A) is the support of A: the number of customers
that buy all products from A (and possibly more), or
equivalently the number of transactions that contain A;

• sm(A) is the smallest number in A;

• la(A) is the largest number in A.

In line with this we let supp(∅) = m. We also put la(∅) = 0
and sm(∅) = n + 1. A set A ⊆ {1, 2, . . . , n} is called fre-
quent if supp(A) ≥ minsup, where the so-called support
threshold minsup is a £xed number given in advance.

We assume every 1-itemset to be frequent; this can be
effected by the £rst step of the algorithms we are looking
at, which might be considered as preprocessing.

A “database query” is de£ned as a question of the form
“Does customer C buy product P ?” (or “Does transaction
T has item I?”), posed to the original database. Note that
we have mn database queries in the “preprocessing” phase
in which the supports of the 1-itemsets are computed and
ordered: every £eld of the database is inspected once. (By
the way, the sorting, in which the items are assigned the
numbers 1, 2, . . . , n, takes O(n log n) time.) The number
of database queries for DF equals:

m(n−1)+
∑

A6=∅
A frequent

sm(A)−1∑

j=1

supp({j}∪A\{la(A)}) . (1)

For a proof, see [3]. It relies on the fact that in order for a
node to occur in the trie the path to it (except for the root)
should be frequent, and on the observation that this partic-
ular node is “questioned” every time a transaction follows
this same path. In [3] a simple version of FP is described
in a similar style, leading to

∑

A 6=∅
A frequent

n∑

j=la(A)+1
{j}∪A\{la(A)} frequent

supp(A) (2)

database queries in “local databases” (FP-trees), except for
the preprocessing phase. Note the extra condition on the in-
ner summation (which is “good” forFP: we have less sum-
mands there), while on the other hand the summands are
larger (which is “good” for DF : we have a smaller contri-
bution there).

It makes also sense to look at the total number of nodes
of the trie during its construction, which is connected to the

effort of maintaining and using the datastructures. Counting
each trie-node with the number of buckets it contains, the
total is computed to be:

n +
∑

A6=∅
A frequent

sm(A)−1∑

j=1

1 =
∑

A frequent

[sm(A)− 1] . (3)

When the trie is £nally ready the number of remaining buck-
ets equals the number of frequent sets, each item in a node
being the end of the path that represents the corresponding
itemset.

Notice that the complexity heavily depends on the sort-
ing order of the items at the top level. It turns out that an in-
creasing order of items is bene£cial here. This is suggested
by the contribution of the 1-itemsets in Equation (1):

n∑

i=1

(n− i) supp({i}) , (4)

which happens to be minimal in that case. This 1-itemset
contribution turns out to be the same for both DF and FP:
see [3, 7], where also results for FP are presented in more
detail.

4 Implementation Issues

In this section we discuss some implementation details
of our program. As mentioned in Section 2, the database
is traversed many times. It is therefore necessary that the
database is memory-resident. Fortunately, only the occur-
rences of frequent items need to be stored. The database
is represented by a two-dimensional boolean array. For ef£-
ciency reasons, one array entry corresponds to one bit. Since
the function count in the algorithm considers the database
transaction by transaction, a horizontal layout is chosen,
cf. [4].

We have four preprocessing steps before the algorithm
of Section 2 actually starts.

1 The range of the item values is determined. This is nec-
essary, because some test sets, e.g., the BMS-WebView
sets, have only values > 10, 000.

2 This is an essential initial step. First, for each item the
support is counted. Next, the frequent items are se-
lected and sorted by frequency. This process is rele-
vant, since the frequency order also prescribes the or-
der in the root of the trie, as stated before. The sorted
frequent items along with their supports are retained in
an array.

3 If a transaction has zero or one frequent item, it needs
not to be stored into the memory-resident representa-
tion of the database. The root of the trie is constructed

according to the information gathered in step 2. For
constructing the other buckets, only transactions with
at least two frequent items are relevant. In this step, we
count the relevant transactions.

4 During this step the databases is stored into a two-
dimensional array with horizontal layout. Each item is
given a new number, according to its rank in the fre-
quency order. The length of the array equals the result
of step 3; the width is determined by the number of
frequent items.

After this preparatory work, which in practice usually takes
a few seconds, the code as described in Section 2 is exe-
cuted. The cells of the root are constructed using the result
of initial step 2.

In line (12) from Figure 3 in Section 2, backtracking is
applied to inspect each path P of S. Inspecting a path P is
aborted as soon as an item i with i outside the current trans-
action t is found. Obviously, processing one transaction dur-
ing the count procedure is a relatively expensive task, which
is unfortunately inevitable, whichever version of APRIORI
is used.

As mentioned in the introduction, we used to have two
implementations, one being time ef£cient, the other being
memory ef£cient. These two have been used in the overall
FIMI’03 comparisons. The newest implementation (called
dffast.cc) combines these versions by using the follow-
ing re£nement. Instead of appending a copy T ′ of T to im
(see Figure 3 in Section 2), £rst the counting is done in aux-
iliary £elds in the original T , after which only the frequent
buckets are copied underneath im. This makes the dele-
tion of infrequent itemsets (line (7) from Figure 3) unnec-
essary and leads to better memory management. Another
improvement might be achieved by using more auxiliary
£elds while adding two root items simultaneously in each
iteration, thereby halving the number of database passes at
the cost of more bookkeeping.

5 Experiments

Using the relatively small database chess (342 kB, with
3,196 transactions; available from the FIMI’03 website at
http://fimi.cs.helsinki.fi/testdata.html), the
database mushroom (570 kB, with 8,124 transactions; also
available from the FIMI’03 website) and the well-known
IBM-Almaden synthetic databases (see [2]) we shall exam-
ine the complexity of the algorithm. These databases have
either few, but coherent records (chess and mushroom),
or many records (the synthetic databases). The parameters
for generating a synthetic database are the number of trans-
actions D (in thousands), the average transaction size T and
the average length I of so-called maximal potentially large

itemsets. The number of items was set to N = 1,000, fol-
lowing the design in [2]. We use T10I4D100K (4.0 MB)
and T40I10D100K (15.5 MB), both also available from
the FIMI’03 website mentioned above; they both contain
100,000 transactions.

0

200

400

600

800

1000

404550556065
0

1

2

3

4

5

ru
nt

im
e

(s
ec

on
ds

)

nu
m

be
r o

f s
et

s
in

 1
,0

00
,0

00
s

relative support (%)

Database chess

execution time DF
number of frequent sets (scale on right axis)

Figure 5. Experimental results for database
chess.

0

50

100

150

200

468101214
0

1

2

3

4

5

ru
nt

im
e

(s
ec

on
ds

)

nu
m

be
r o

f s
et

s
in

 1
,0

00
,0

00
s

relative support (%)

Database mushroom

execution time DF
number of frequent sets (scale on right axis)

Figure 6. Experimental results for database
mushroom.

The experiments were conducted at a Pentium-IV ma-
chine with 512 MB memory at 2.8 GHz, running Red Hat
Linux 7.3. The program was developed under the GNU C++

compiler, version 2.96.
The following statistics are plotted in the graphs: the ex-

ecution time in seconds of the algorithm (see Section 4),
and the total number of frequent itemsets: in all £gures the
corresponding axis is on the right hand side and scales 0–
5,500,000 (0–8,000,000 for T10I4D100K). The execution
time excludes preprocessing: in this phase the database is
read three times in order to detect the frequent items (see

0

20

40

60

80

100

00.0050.010.0150.020.0250.030.0350.040.045
0

1

2

3

4

5

6

7

8

ru
nt

im
e

(s
ec

on
ds

)

nu
m

be
r o

f s
et

s
in

 1
,0

00
,0

00
s

relative support (%)

Database T10I4D100K

execution time DF
number of frequent sets (scale on right axis)

Figure 7. Experimental results for database
T10I4D100K.

0

50

100

150

200

250

300

350

400

450

500

00.511.52
0

1

2

3

4

5

ru
nt

im
e

(s
ec

on
ds

)

nu
m

be
r o

f s
et

s
in

 1
,0

00
,0

00
s

relative support (%)

Database T40I10D100K

execution time DF
number of frequent sets (scale on right axis)

Figure 8. Experimental results for database
T40I10D100K.

before); also excluded is the time needed to print the re-
sulting itemsets. These actions together usually only take a
few seconds. The number of frequent 1-itemsets (n from
the previous sections, where we assumed all 1-itemsets
to be frequent) has range 31–39 for the experiments on
the database chess, 54–76 for mushroom, 844–869 for
T10I4D100K and 610–862 for T40I10D100K. Note the
very high support thresholds for mushroom (at least 5%)
and chess (at least 44%); for T10I4D100K a support
threshold as low as 0.003% was even feasible.

The largest output £les produced are of size 110.6 MB
(chess, minsup = 1,400, having 3,771,728 frequent sets
with 13 frequent 17-itemsets), 121.5 MB (mushroom, min-
sup = 400, having 3,457,747 frequent sets with 24 frequent
17-itemsets), 131.1 MB (T10I4D100K, minsup = 3, hav-
ing 6,169,854 frequent sets with 30 frequent 13-itemsets
and 1 frequent 14-itemset) and 195.9 MB (T40I10D100K,

minsup = 300, having 5,058,313 frequent sets, with 21 fre-
quent 19-itemsets and 1 frequent 20-itemset). The £nal trie
in the T40I10D100K case occupies approximately 65 MB
of memory — the output £le in this case being 3 times as
large.

Note that the 3,457,747 sets for the chess database
with minsup = 1,400 require 829 seconds to £nd, whereas
the 3,771,728 frequent itemsets for mushroom with min-
sup = 400 take 158 seconds — differing approximately
a factor 5 in time. This difference in runtime is probably
caused by the difference in the absolute minsup value. Each
cell corresponding to a frequent itemset is visited at least
1400 times in the former case against 400 times in the lat-
ter case. A similar phenomenon is observed when compar-
ing T40I10D100K with absolute minsup value 300 and
T10I4D100K with minsup = 3: this takes 378 versus 88
seconds. Although the outputs have the same orders of mag-
nitude, the runtimes differ substantially. We see that, besides
the number of frequent itemsets and the sizes of these sets,
the absolute minsup value is a major factor determining the
runtime.

6 Conclusions

In this paper, we addressed DF , a depth £rst implemen-
tation of APRIORI. To our experience, DF competes with
any other well-known algorithm, especially when applied to
large databases with transactions.

Storing the database in the primary memory is no longer
a problem. On the other hand, storing the candidates causes
trouble in situations, where a dense database is considered
with a small support threshold. This is the case for any al-
gorithm using candidates. Therefore, it would be desirable
to look for a method which stores candidates in secondary
memory. This is an obvious topic for future research. To
our knowledge, FP is the only algorithm that can cope
with memory limitations. However, for real world retail
databases this algorithm is surpassed by DF , as we showed
in [7]. Other optimizations might also be possible. Besides
improving the C++ code, ideas from, e.g., [10] on diffsets
with vertical layouts might be used.

Our conclusion is thatDF is a simple, practical, straight-
forward and fast algorithm for £nding all frequent itemsets.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A.I. Verkamo. Fast discovery of association rules.
In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Dis-
covery and Data Mining, pages 307–328. AAAI/MIT
Press, 1996.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In J.B. Bocca, M. Jarke, and C. Zan-
iolo, editors, Proceedings 20th International Confer-
ence on Very Large Data Bases, VLDB, pages 487–
499. Morgan Kaufmann, 1994.

[3] J.M. de Graaf, W.A. Kosters, W. Pijls, and V. Popova.
A theoretical and practical comparison of depth £rst
and FP-growth implementations of Apriori. In
H. Blockeel and M. Denecker, editors, Proceedings
of the Fourteenth Belgium-Netherlands Arti£cial In-
telligence Conference (BNAIC 2002), pages 115–122,
2002.

[4] B. Goethals. Survey on frequent pattern mining.
Helsinki, 2003. http : //www.cs.helsinki.fi/u/-
goethals/publications/survey.ps.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proceedings 2000
ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’00), pages 1–12, 2000.

[6] J. Hipp, U. Günther, and G. Nakhaeizadeh. Mining as-
sociation rules: Deriving a superior algorithm by an-
alyzing today’s approaches. In D.A. Zighed, J. Ko-
morowski, and J. ¢Zytkov, editors, Principles of Data
Mining and Knowledge Discovery, Proceedings of
the 4th European Conference (PKDD 2000), Springer
Lecture Notes in Computer Science 1910, pages 159–
168. Springer Verlag, 2000.

[7] W.A. Kosters, W. Pijls, and V. Popova. Complex-
ity analysis of depth £rst and FP-growth implemen-
tations of Apriori. In P. Perner and A. Rosenfeld, ed-
itors, Machine Learning and Data Mining in Pattern
Recognition, Proceedings MLDM 2003, Springer Lec-
ture Notes in Arti£cial Intelligence 2734, pages 284–
292. Springer Verlag, 2003.

[8] W. Pijls and J.C. Bioch. Mining frequent item-
sets in memory-resident databases. In E. Postma
and M. Gyssens, editors, Proceedings of the Eleventh
Belgium-Netherlands Conference on Arti£cial Intelli-
gence (BNAIC1999), pages 75–82, 1999.

[9] M.J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineer-
ing, 12:372–390, 2000.

[10] M.J. Zaki and K. Gouda. Fast vertical mining using
diffsets. In Proceedings 9th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, 2003.

[11] Z. Zheng, R. Kohavi, and L. Mason. Real world per-
formance of association rule algorithms. In F. Provost

and R. Srikant, editors, Proceedings of the Seventh
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD-2001), pages
401–406, 2001.

AFOPT: An Efficient Implementation of Pattern Growth Approach∗

Guimei Liu Hongjun Lu

Department of Computer Science

Hong Kong University of

Science & Technology

Hong Kong, China

{cslgm, luhj}@cs.ust.hk

Jeffrey Xu Yu

Department of Systems Engineering and

Engineering Management

The Chinese University of Hong Kong

Hong Kong, China

{yu}@se.cuhk.edu.hk

Wei Wang Xiangye Xiao

Department of Computer Science

Hong Kong University of

Science & Technology

Hong Kong, China

{fervvac, xiaoxy}@cs.ust.hk

Abstract

In this paper, we revisit the frequent itemset mining

(FIM) problem and focus on studying the pattern growth ap-

proach. Existing pattern growth algorithms differ in several

dimensions: (1) item search order; (2) conditional database

representation; (3) conditional database construction strat-

egy; and (4) tree traversal strategy. They adopted differ-

ent strategies on these dimensions. Several adaptive algo-

rithms were proposed to try to find good strategies for gen-

eral situations. In this paper, we described the implemen-

tation techniques of an adaptive pattern growth algorithm,

called AFOPT, which demonstrated good performance on

all tested datasets. We also extended the algorithm to mine

closed and maximal frequent itemsets. Comprehensive ex-

periments were conducted to demonstrate the efficiency of

the proposed algorithms.

1 Introduction

Since the frequent itemset mining problem (FIM) was

first addressed [2], a large number of FIM algorithms have

been proposed. There is a pressing need to completely char-

acterize and understand the algorithmic performance space

of FIM problem so that we can choose and integrate the best

strategies to achieve good performance in general cases.

Existing FIM algorithms can be classified into two cat-

egories: the candidate generate-and-test approach and the

pattern growth approach. In each iteration of the candidate

generate-and-test approach, pairs of frequent k-itemsets are

joined to form candidate (k+1)-itemsets, then the database

is scanned to verify their supports. The resultant frequent

(k+1)-itemsets will be used as the input for next itera-

tion. The drawbacks of this approach are: (1) it needs scan

database multiple times, in worst case, equal to the maximal

length of the frequent itemsets; (2) it needs generate lots of

∗This work was partly supported by the Research Grant Council of the

Hong Kong SAR, China (Grant HKUST6175/03E, CUHK4229/01E).

candidate itemsets, many of which are proved to be infre-

quent after scanning the database; and (3) subset checking

is a cost operation, especially when itemsets are very long.

The pattern growth approach avoids the cost of generating

and testing a large number of candidate itemsets by grow-

ing a frequent itemset from its prefix. It constructs a condi-

tional database for each frequent itemset t such that all the

itemsets that have t as prefix can be mined only using the

conditional database of t.

The basic operations in the pattern growth approach are

counting frequent items and new conditional databases con-

struction. Therefore, the number of conditional databases

constructed during the mining process, and the mining cost

of each individual conditional database have a direct effect

on the performance of a pattern growth algorithm. The to-

tal number of conditional databases mainly depends on in

what order the search space is explored. The traversal cost

and construct cost of a conditional database depends on the

size, the representation format (tree-based or array-based)

and construction strategy (physical or pseudo) of the condi-

tional database. If the conditional databases are represented

by tree structure, the traversal strategy of the tree structure

also matters. In this paper, we investigate various aspects

of the pattern growth approach, and try to find out what are

good strategies for a pattern growth algorithm.

The rest of the paper is organized as follows: Section

2 revisits the FIM problem and introduces some related

works; In Section 3, we describe an efficient pattern growth

algorithm—AFOPT; Section 4 and Section 5 extend the

AFOPT algorithm to mine frequent closed itemsets and

maximal frequent itemsets respectively; Section 6 shows

experiment results; finally, Section 7 concludes this paper.

2 Problem Revisit and Related Work

In this section, we first briefly review FIM problem and

the candidate generate-and-test approach, then focus on

studying the algorithmic performance space of the pattern

growth approach.

1

2.1 Problem revisit

Given a transactional database D, let I be the set of items

appearing in it. Any combination of the items in I can be

frequent in D, and they form the search space of FIM prob-

lem. The search space can be represented using set enumer-

ation tree [14, 1, 4, 5, 7]. For example, given a set of items

I = {a, b, c, d, e} sorted in lexicographic order, the search

space can be represented by a tree as shown in Figure 1.

The root of the search space tree represents the empty set,

and each node at level l (the root is at level 0, and its chil-

dren are at level 1, and so on) represents an l-itemset. The

candidate extensions of an itemset p is defined as the set of

items after the last item of p. For example, items d and e are

candidate extensions of ac, while b is not a candidate exten-

sion of ac because b is before c. The frequent extensions of

p are those candidate extensions of p that can be appended

to p to form a longer frequent itemset. In the rest of this pa-

per, we will use cand exts(p) and freq exts(p) to denote

the set of candidate extensions and frequent extensions of p

respectively.

N
U
L
L
{
a
,
b
,
c
,
d
,
e
}

a
 b
 c
 d

a
b
 a
d
a
c
 b
c
 c
d
b
d

b
c
d
a
c
d
a
b
d

a
b
c
d

a
b
c

e

a
e
 d
e
c
e
b
e

a
b
e

a
b
c
e

a
b
c
d
e

a
c
e
 a
d
e

a
c
d
e

b
c
e

b
c
d
e

b
d
e
 c
d
e

a
b
d
e

Figure 1. Search space tree

2.2 Candidate generate-and-test approach

Frequent itemset mining can be viewed as a set contain-

ment join between the transactional database and the search

space of FIM. The candidate generate-and-test approach es-

sentially uses block nested loop join, i.e. the search space

is the inner relation and it is divided into blocks accord-

ing to itemset length. Different from simple block nested

loop join, in candidate generate-and-test approach the out-

put of the previous pass is used as seeds to generate next

block. For example, in the k-th pass of the Apriori algo-

rithm, the transaction database and the candidate k-itemsets

are joined to generate frequent k-itemsets. The frequent k-

itemsets are then used to generate next block—candidate

(k+1)-itemsets. Given the large amount of memory avail-

able nowadays, it is a waste of memory to put only a sin-

gle length of itemsets into memory. It is desirable to fully

utilize available memory by putting some longer and possi-

bly frequent itemsets into memory in earlier stage to reduce

the number of database scans. The first FIM algorithm AIS

[2] tries to estimate the frequencies of longer itemsets us-

ing the output of current pass, and includes those itemsets

that are estimated as frequent or themselves are not esti-

mated as frequent but all of its subsets are frequent or esti-

mated as frequent into next block. The problem with AIS

algorithm is that it does not fully utilize the pruning power

of the Apriori property, thus many unnecessary candidate

itemsets are generated and tested. DIC algorithm [3] makes

improvements based on Apriori algorithm. It starts count-

ing the support of an itemset shortly after all the subsets of

that itemset are determined to be frequent rather than wait

until next pass. However, DIC algorithm cannot guarantee

the full utilization of memory. The candidate generate-and-

test approach faces a trade-off: on one hand, the memory is

not fully utilized and it is desirable to put as many as pos-

sible candidate itemsets into memory to reduce the number

of database scans; on the other hand, set containment test is

a costly operation, putting itemsets into memory in earlier

stage has the risk of counting support for many unnecessary

candidate itemsets.

2.3 Pattern growth approach

The pattern growth approach adopts the divide-and-

conquer methodology. The search space is divided into

disjoint sub search spaces. For example, the search space

shown in Figure 1 can be divided into 5 disjoint sub search

spaces: (1) itemsets containing a; (2) itemsets containing b

but no a; (3) itemsets containing c but no a, b; (4) itemsets

containing d but no a, b and c; and (5) itemsets containing

only e. Accordingly, the database is divided into 5 parti-

tions, and each partition is called a conditional database.

The conditional database of item i, denoted as Di, includes

all the transactions containing item i. All the items before i

are eliminated from each transaction. All the frequent item-

sets containing i can be mined from Di without accessing

other information. Each conditional database is divided re-

cursively following the same procedure. The pattern growth

approach not only reduces the number of database scans,

but also avoids the costly set-containment-test operation.

Two basic operations in pattern growth approach are

counting frequent items and new conditional databases

construction. Therefore, the total number of conditional

databases constructed and the mining cost of each individ-

ual conditional database are key factors that affect the per-

formance of a pattern growth algorithm. The total num-

ber of conditional databases mainly depends on in what or-

der the search space is explored. This order is called item

search order in this paper. Some structures for representing

conditional databases can also help reduce the total num-

ber of conditional databases. For example, if a conditional

database is represented by tree-structure and there is only

one branch, then all the frequent itemsets in the conditional

database can be enumerated directly from the branch. There

is no need to construct new conditional databases. The min-

ing cost of a conditional database depends on the size, the

2

Datasets Asc Lex Des

#cdb time max mem #cdb time max mem #cdb time max mem

T10I4D100k (0.01%) 53688 4.52s 5199 kb 47799 4.89s 5471 kb 36725 5.32s 5675 kb

T40I10D100k (0.5%) 311999 30.42s 17206 kb 310295 33.83s 20011 kb 309895 43.37s 21980 kb

BMS-POS (0.05%) 115202 27.83s 17294 kb 53495 127.45s 38005 kb 39413 147.01s 40206 kb

BMS-WebView-1 (0.06%) 33186 0.69s 731 kb 65378 1.12s 901 kb 79571 2.16s 918 kb

chess (45%) 312202 2.68s 574 kb 617401 8.46s 1079 kb 405720 311.19s 2127 kb

connect-4 (75%) 12242 1.31s 38 kb 245663 2.65s 57 kb 266792 14.27s 113 kb

mushroom (5%) 9838 0.34s 1072 kb 258068 3.11s 676 kb 464903 272.30s 2304 kb

pumsb (70%) 272373 3.87s 383 kb 649096 12.22s 570 kb 469983 16.62s 1225 kb

Table 1. Comparison of Three Item Search Orders (Bucket Size=0)

representation and construction strategy of the conditional

database. The traversal strategy also matters if the condi-

tional database is represented using a tree-structure.

Item Search Order. When we divide the search space,

all items are sorted in some order. This order is called item

search order. The sub search space of an item contains all

the items after it in item search order but no item before it.

Two item search orders were proposed in literature: static

lexicographic order and dynamic ascending frequency or-

der. Static lexicographic order is to order the items lexico-

graphically. It is a fixed order—all the sub search spaces

use the same order. Tree projection algorithm [15] and H-

Mine algorithm[12] adopted this order. Dynamic ascend-

ing frequency order reorders frequent items in every condi-

tional database in ascending order of their frequencies. The

most infrequent item is the first item, and all the other items

are its candidate extensions. The most frequent item is the

last item and it has no candidate extensions. FP-growth [6],

AFOPT [9] and most of maximal frequent itemsets mining

algorithms [7, 1, 4, 5] adopted this order.

The number of conditional databases constructed by an

algorithm can differ greatly using different item search or-

ders. Ascending frequency order is capable of minimizing

the number and/or the size of conditional databases con-

structed in subsequent mining. Intuitively, an itemset with

higher frequency will possibly have more frequent exten-

sions than an itemset with lower frequency. We put the most

infrequent item in front, though the candidate extension set

is large, the frequent extension set cannot be very large. The

frequencies of successive items increase, at the same time

the size of candidate extension set decreases. Therefore we

only need to build smaller and/or less conditional databases

in subsequent mining. Table 1 shows the total number of

conditional databases constructed (#cdb column), total run-

ning time and maximal memory usage when three orders are

adopted in the framework of AFOPT algorithm described

in this paper. The three item search orders compared are:

dynamic ascending frequency order (Asc column), lexico-

graphic order (Lex column) and dynamic descending fre-

quency order (Des column). The minimum support thresh-

old on each dataset is shown in the first column. On the

first three datasets, ascending frequency order needs to build

more conditional databases than the other two orders, but

its total running time and maximal memory usage is less

than the other two orders. It implies that the conditional

databases constructed using ascending frequency order are

smaller. On the remaining datasets, ascending frequency

order requires to build less conditional databases and needs

less running time and maximal memory usage, especially

on dense datasets connect-4 and mushroom.

Agrawal et al proposed an efficient support counting

technique, called bucket counting, to reduce the total num-

ber of conditional databases[1]. The basic idea is that if the

number of items in a conditional database is small enough,

we can maintain a counter for every combination of the

items instead of constructing a conditional database for each

frequent item. The bucket counting can be implemented

very efficiently compared with conditional database con-

struction and traversal operation.

Conditional Database Representation. The traver-

sal and construction cost of a conditional database heav-

ily depends on its representation. Different data struc-

tures have been proposed to store conditional databases, e.g.

tree-based structures such as FP-tree [6] and AFOPT-tree

[9], and array-based structure such as Hyper-structure [12].

Tree-based structures are capable of reducing traversal cost

because duplicated transactions can be merged and different

transactions can share the storage of their prefixes. But they

incur high construction cost especially when the dataset is

sparse and large. Array-based structures incur little con-

struction cost but they need much more traversal cost be-

cause the traversal cost of different transactions cannot be

shared. It is a trade-off in choosing tree-based structures or

array-based structures. In general, tree-based structures are

suitable for dense databases because there can be lots of pre-

fix sharing among transactions, and array-based structures

are suitable for sparse databases.

Conditional Database Construction Strategy Con-

structing every conditional database physically can be ex-

pensive especially when successive conditional databases

do not shrink much. An alternative is to pseudo-construct

them, i.e. using pointers pointing to transactions in upper

3

Algorithms Item Search Order CondDB Format CondDB Construction Tree Traversal

Tree-Projection [15] static lexicographic array adaptive -

FP-growth [6] dynamic frequency FP-tree physical bottom-up

H-mine [12] static lexicographic hyper-structure pseudo -

OP [10] adaptive adaptive adaptive bottom-up

PP-mine [17] static lexicographic PP-tree pseudo top-down

AFOPT [9] dynamic frequency adaptive physical top-down

CLOSET+ [16] dynamic frequency FP-tree adaptive adaptive

Table 2. Pattern Growth Algorithms

level conditional databases. However, pseudo-construction

cannot reduce traversal cost as effectively as physical con-

struction. The item ascending frequency search order can

make the subsequent conditional databases shrink rapidly,

consequently it is beneficial to use physical construction

strategy with item ascending frequency order together.

Tree Traversal Strategy The traversal cost of a tree is

minimal using top-down traversal strategy. FP-growth al-

gorithm [6] uses ascending frequency order to explore the

search space, while FP-tree is constructed according to de-

scending frequency order. Hence FP-tree has to be traversed

using bottom-up strategy. As a result, FP-tree has to main-

tain parent links and node links at each node for bottom-up

traversal. which increases the construction cost of the tree.

AFOPT algorithm [9] uses ascending frequency order both

for search space exploration and prefix-tree construction, so

it can use the top-down traversal strategy and do not need to

maintain additional pointers at each node. The advantage of

FP-tree is that it can be more compact than AFOPT-tree be-

cause descending frequency order increases the possibility

of prefix sharing. The ascending frequency order adopted

by AFOPT may lead to many single branches in the tree.

This problem was alleviated by using arrays to store single

branches in AFOPT-tree.

Existing pattern growth algorithms mainly differ in the

several dimensions aforementioned. Table 2 lists existing

pattern growth algorithms and their strategies on four di-

mensions. AFOPT [9] is an efficient FIM algorithm devel-

oped by our group. We will discuss its technical details in

next three sections.

3 Mining All Frequent Itemsets

We discussed several trade-offs faced by a pattern growth

algorithm in last section. Some implications from above

discussions are: (1) Use tree structure on dense database

and use array structure on sparse database. (2) Use dynamic

ascending frequency order on dense databases and/or when

minimum support threshold is low. It can dramatically re-

duce the number and/or the size of the successive condi-

tional databases. (3) If dynamic ascending frequency order

is adopted, then use physical construction strategy because

the size of conditional databases will shrink quickly. In this

section, we describe our algorithm AFOPT which takes the

above three implications into consideration. The distinct

features of our AFOPT algorithm include: (1) It uses three

different structures to represent conditional databases: ar-

rays for sparse conditional databases, AFOPT-tree for dense

conditional databases, and buckets for counting frequent

itemsets containing only top-k frequent items, where k is

a parameter to control the number of buckets used. Sev-

eral parameters are introduced to control when to use arrays

or AFOPT-tree. (2) It adopts the dynamic ascending fre-

quency order. (3) The conditional databases are constructed

physically on all levels no matter whether the conditional

databases are represented by AFOPT-tree or arrays.

3.1 Framework

Given a transactional database D and a minimum

support threshold, AFOPT algorithm scans the original

database twice to mine all frequent itemsets. In the first

scan, all frequent items in D are counted and sorted in

ascending order of their frequencies, denoted as F =
{i1, i2, · · · , im}. We perform another database scan to con-

struct a conditional database for each ij ∈ F , denoted as

Dij
. During the second scan, infrequent items in each trans-

action t are removed and the remaining items are sorted ac-

cording to their orders in F . Transaction t is put into Dij
if

the first item of t after sorting is ij . The remaining mining

will be performed on conditional databases only. There is

no need to access the original database.

We first perform mining on Di1 to mine all the itemsets

containing i1. Mining on individual conditional database

follows the same process as mining on the original database.

After the mining on Di1 is finished, Di1 can be discarded.

Because Di1 also contains other items, the transactions in

it will be inserted into the remaining conditional databases.

Given a transaction t in Di1 , suppose the next item after i1
in t is ij , then t will be inserted into Dij

. This step is called

push-right. Sorting the items in ascending order of their

frequencies ensures that every time, a small conditional

database is pushed right. The pseudo-code of AFOPT-all

algorithm is shown in Algorithm 1.

3.2 Conditional database representation

Algorithm 1 is independent of the representation of con-

ditional databases. We choose proper representations ac-

4

Algorithm 1 AFOPT-all Algorithm

Input:

p is a frequent itemset

Dp is the conditional database of p

min sup is the minimum support threshold;

Description:

1: Scan Dp count frequent items, F={i1, i2,· · ·, in};
2: Sort items in F in ascending order of their frequencies;

3: for all item i ∈ F do

4: D
p

⋃
{i}

= φ;

5: for all transaction t ∈ Dp do

6: remove infrequent items from t, and sort remaining items according

to their orders in F ;

7: let i be the first item of t, insert t into D
p

⋃
{i}

.

8: for all item i ∈ F do

9: Output s = p
⋃

{i};
10: AFOPT-all(s, Ds, min sup);

11: PushRight(Ds);

T
I
D
 T
r
a
n
s
a
c
t
i
o
n
s

1
 a
,

b
,

c
,

f
,

m
,

p

2
 a
,

d
,

e
,

f
,

g

3
 a
,

b
,

f
,

m
,

n

4
 a
,

c
,

e
,

f
,

m
,

p

5
 d
,

f
,

n
,

p

6
 a
,

c
,

h
,

m
,

p

7
 a
,

d
,

m
,

s

(a) D

T
I
D
 T
r
a
n
s
a
c
t
i
o
n
s

1
 c
,

p
,

f
,

m
,

a

2
 d
,

f
,

a

3
 f
,

m
,

a

4
 c
,

p
,

f
,

m
,

a

5
 d
,

p
,

f

6
 c
,

p
,

m
,

a

7
 d
,

m
,

a

(b)

4

c
:
3
 d
:
3
 p
:
4
 f
:
5
 m
:
5
 a
:
6

p

f

m

a

4

p

f

m

a

3

f

m

a

2

p

f

2

f

a

2

m

a

m
:
1

a
:
1

h
e
a
d
e
r

t
a
b
l
e

(c)

Figure 2. Conditional DB Representation

cording to the density of conditional databases. Three struc-

tures are used: (1) array, (2) AFOPT-tree, and (3) buck-

ets. As aforementioned, these three structures are suit-

able for different situations. Bucket counting technique

is proper and extremely efficient when the number of dis-

tinct frequent items is around 10. Tree structure is bene-

ficial when conditional databases are dense. Array struc-

ture is favorable when conditional databases are sparse.

We use four parameters to control when to use these three

structures as follows: (1) frequent itemsets containing only

top-bucket size frequent items are counted using buck-

ets; (2) if the minimum support threshold is greater than

tree min sup or average support of all frequent items is

no less than tree avg sup, then all the rest conditional

databases are represented using AFOPT-tree; otherwise (3)

the conditional databases of the next tree alphabet size

most frequent items are represented using AFOPT-tree, and

the rest conditional databases are represented using arrays.

Figure 2 shows a transactional database D and the ini-

tial conditional databases constructed with min sup=40%.

There are 6 frequent items {c:3, d:3, p:4, f :5, m:5,a:6}.
Figure 2(b) shows the projected database after remov-

ing infrequent items and sorting. The values of

the parameters for conditional database construction are

set as follows: bucket size=2, tree alphabet size=2,

tree min sup=50%, tree avg sup=60%. The frequent

itemsets containing only m and a are counted using buck-

ets of size 4 (=2bucket size). The conditional databases of

f and p are represented by AFOPT-tree. The conditional

databases of item c and d are represented using arrays. From

our experience, the bucket size parameter can choose a

value around 10. A value between 20 and 200 will be safe

for tree alphabet size parameter. We set tree min sup

to 5% and tree avg sup to 10% in our experiments.

Table 3 shows the size, construction time (build col-

umn) and push-right time if applicable, of the initial struc-

ture constructed from original database by AFOPT, H-Mine

and FP-growth algorithms. We set bucket size to 8 and

tree alphabet size to 20 for AFOPT algorithm. The ini-

tial structure of AFOPT includes all three structures. The

array structure in AFOPT algorithm simply stores all items

in a transaction. Each node in hyper-structure stores three

pieces of information: an item, a pointer pointing to the

next item in the same transaction and a pointer pointing to

the same item in another transaction. Therefore the size of

hyper-structure is approximately 3 times larger than the ar-

ray structure used in AFOPT. A node in AFOPT-tree main-

tains only a child pointer and a sibling pointer, while a FP-

tree node maintains two more pointers for bottom-up traver-

sal: a parent pointer and a node link. AFOPT consumes the

least amount of space on almost all tested datasets.

4 Mining Frequent Closed Itemsets

The complete set of frequent itemsets can be very large.

It has been shown that it contains many redundant informa-

tion [11, 18]. Some works [11, 18, 13, 16, 8] put efforts

on mining frequent closed itemsets to reduce output size.

An itemset is closed if all of its supersets have a lower sup-

port than it. The set of frequent closed itemsets is the min-

imum informative set of frequent itemsets. In this section,

we describe how to extend Algorithm 1 to mine only fre-

quent closed itemsets. For more details, please refer to [8].

4.1 Removing non-closed itemsets

Non-closed itemsets can be removed either in a postpro-

cessing phase, or during mining process. The second strat-

egy can help avoid unnecessary mining cost. Non-closed

frequent itemsets are removed based on the following two

lemmas (see [8] for proof of these two lemmas).

Lemma 1 In Algorithm 1, an itemset p is closed if and only

if two conditions hold: (1) no existing frequent itemsets is a

superset of p and is as frequent as p; (2) all the items in Dp

have a lower support than p.

Lemma 2 In Algorithm 1, if a frequent itemset p is not

closed because condition (1) in Lemma 1 does not hold,

then none of the itemsets mined from Dp can be closed.

We check whether there exists q such that p ⊂ q and

sup(p)=sup(q) before mining Dp. If such q exists, then

there is no need to mine Dp based on Lemma 2 (line 10).

5

Datasets AFOPT H-Mine FP-growth

size build pushright Size build pushright size build

T10I4D100k (0.01%) 5116 kb 0.55s 0.37s 11838 kb 0.68s 0.19s 20403 kb 1.83s

T40I10D100k (0.5%) 16535 kb 1.85s 1.91s 46089 kb 2.10s 1.42s 104272 kb 6.16s

BMS-POS (0.05%) 17264 kb 2.11s 1.43s 38833 kb 2.58s 1.00s 47376 kb 6.64s

BMS-WebView-1 (0.06%) 711 kb 0.12s 0.01s 1736 kb 0.17s 0.01s 1682 kb 0.27s

chess (45%) 563 kb 0.04s 0.01s 1150 kb 0.05s 0.03s 1339 kb 0.12s

connect-4 (75%) 35 kb 0.73s 0.01s 22064 kb 1.15s 0.55s 92 kb 2.08s

mushroom (5%) 1067 kb 0.08s 0.04s 2120 kb 0.10s 0.03s 988 kb 0.17s

pumsb (70%) 375 kb 0.82s 0.02s 17374 kb 1.15s 0.43s 1456 kb 2.26s

Table 3. Comparison of Initial Structures

Thus the identification of a non-closed itemsets not only re-

duces output size, but also avoids unnecessary mining cost.

Based on pruning condition (2) in Lemma 1, we can check

whether an item i ∈ F appears in every transaction of Dp.

If such i exists, then there is no need to consider the frequent

itemsets that do not contain i when mining Dp. In other

words, we can directly perform mining on D
p
⋃

{i} instead

of Dp (line 3-4). The efforts for mining D
p
⋃

{j}, j 6= i are

saved. The pseudo-code for mining frequent closed item-

sets is shown in Algorithm 2.

Algorithm 2 AFOPT-close Algorithm

Input:

p is a frequent itemset

Dp is the conditional database of p

min sup is the minimum support threshold;

Description:

1: Scan Dp count frequent items, F={i1, i2,· · ·, in};
2: Sort items in F in ascending order of their frequencies;

3: I = {i|i ∈ F and support(p
⋃

{i}) = support(p)};

4: F = F − I; p = p
⋃

I;

5: for all transaction t ∈ Dp do

6: remove infrequent items from t, and sort remaining items according

to their orders in F ;

7: let i be the first item of t, insert t into D
p

⋃
{i}

.

8: for all item i ∈ F do

9: s = p
⋃

{i};
10: if s is closed then

11: Output s;

12: AFOPT-close(s, Ds, min sup);

13: PushRight(Ds);

F
r
e
q
u
e
n
t

C
l
o
s
e
d

I
t
e
m
s
e
t
s

d
:
3
,
p
:
4
,
f
:
5
,
a
:
6

p
f
:
3
,
f
a
:
4
,

m
a
:

5

f
m
a
:

3

c
p
m
a
:
3

(a)

c
:
3
 d
:
3
 p
:
4
 f
:
5
 m
:
5
 a
:
6

f
:
3
 m
:
3
 a
:
4

a
:
3

a
:
5

p
m
a
:
3

(b) CFP-tree

c

d

p

f

m

a

4

1

4
 1

2
 0
 0

4
 0
 0

4
 0
 0
 0

(c)

Figure 3. CFP-tree and Two-layer Hash Map

4.2 Closed itemset checking

During the mining process, we store all existing frequent

closed itemsets in a tree structure, called Condensed Fre-

quent Pattern tree or CFP-tree for short [8]. We use the

CFP-tree to check whether an itemset is closed. An exam-

ple of CFP-tree is shown in Figure 3(b) which stores all

the frequent closed itemsets in Figure 3(a). They are mined

from the database shown in Figure 2(a) with support 40%.

Each CFP-tree node is a variable-length array, and all

the items in the same node are sorted in ascending order of

their frequencies. A path in the tree starting from an entry

in the root node represents a frequent itemset. The CFP-

tree has two properties: the left containment property and

the Apriori property. The Apriori Property is that the sup-

port of any child of a CFP-tree entry cannot be greater than

the support of that entry. The Left Containment Property is

that the item of an entry E can only appear in the subtrees

pointed by entries before E or in E itself. The superset of

an itemset p with support s can be efficiently searched in the

CFP-tree based on these two properties. The apriori prop-

erty can be exploited to prune subtrees pointed by entries

with support less than s. The left containment property can

be utilized to prune subtrees that do not contain all items

in p. We also maintain a hash-bitmap in each entry to indi-

cate whether an item appears in the subtree pointed by that

entry to further reduce searching cost. The superset search

algorithm is shown in Algorithm 3. BinarySearch(cnode,

s) returns the first entry in a CFP-tree node with support no

less than s. Algorithm 3 do not require the whole CFP-tree

to be in main memory because it is also very efficient on

disk. Moreover, the CFP-tree structure is a compact repre-

sentation of the frequent closed itemsets, so it has a higher

chance to be held in memory than flat representation.

Although searching in CFP-tree is very efficient, it is

still costly when CFP-tree is large. Inspired by the two-

layer structure adopted by CLOSET+ algorithm[16] for

subset checking, we use a two-layer hash map to check

whether an itemset is closed before searching in CFP-

tree. The two-layer hash map is shown in Figure 3(c).

We maintain a hash map for each item. The hash map

of item i is denoted by i.hashmap. The length of the

hash map of an item i is set to min{sup(i)-min sup,

max hashmap len}, where max hashmap len is a pa-

rameter to control the maximal size of the hash maps and

min sup=min{sup(i)|i is frequent}. Given an itemset

6

Algorithm 3 Search Superset Algorithm

Input:

l is a frequent itemset

cnode the CFP+-tree node pointed by l

s is the minimum support threshold

I is a set of items to be contained in the superset

Description:

1: if I = φ then

2: return true;

3: Ē = the first entry of cnode such that Ē.item ∈ I;

4: E′ = BinarySearch(cnode, s);

5: for all entry E ∈ cnode, E between E′ and Ē do

6: l′=l
⋃

{E.item};
7: if E.child 6= NULL AND all items in I − {E.item} are in

E.subtree then

8: found = Search Superset(l′, E.child, s, I − {E.item});
9: if found then

10: return true;

11: else if I − {E.item} = φ then

12: return true;

13: return false;

p = {i1, i2, · · · , il}, p is mapped to ij .hashmap[(sup(p)−
min sup)%max hashmap len], j = 1, 2, · · · , l. An en-

try in a hash map records the maximal length of the item-

sets mapped to it. For example, itemset {c, p,m, a} set the

first entry of c.hashmap, p.hashmap, m.hashmap and

a.hashmap to 4. Figure 3(c) shows the status of the two-

layer hash map before mining Df . An itemset p must be

closed if any of the entry it mapped to contains a lower value

than its length. In such cases there is no need to search in

CFP-tree. The hash map of an item i can be released af-

ter all the frequent itemsets containing i are mined because

they will not be used in later mining. For example, when

mining Df , the hash map of items c, d and p can be deleted.

5 Mining Maximal Frequent Itemsets

The problem of mining maximal frequent itemsets can

be viewed as given a minimum support threshold min sup,

finding a border through the search space tree such that all

the nodes below the border are infrequent and all the nodes

above the border are frequent. The goal of maximal fre-

quent itemsets mining is to find the border by counting sup-

port for as less as possible itemsets. Existing maximal algo-

rithms [19, 7, 1, 4, 5] adopted various pruning techniques to

reduce the search space to be explored.

5.1 Pruning techniques

The most effective techniques are based on the following

two lemmas to prune a whole branch from search space tree.

Lemma 3 Given a frequent itemset p, if p
⋃

cand exts(p)
is frequent but not maximal, then none of the frequent item-

sets mined from Dp and from p’s right sibling’s conditional

databases can be maximal because all of them are subsets

of p
⋃

cand exts(p).

Lemma 4 Given a frequent itemset p, if p
⋃

freq exts(p)
is frequent but not maximal, then none of the frequent item-

sets mined from Dp can be maximal because all of them are

subsets of p
⋃

freq exts(p).

Based on Lemma 3, before mining Dp, we can first

check whether p
⋃

cand exts(p) is frequent but not max-

imal. This can be done by two techniques.

Superset Pruning Technique: It is to check whether

there exists some maximal frequent itemset such that it is a

superset of p
⋃

cand exts(p). Like frequent closed itemset

mining, subset checking can be challenging when the num-

ber of maximal itemsets is large. We will discuss this issue

in next subsection.

Lookahead Technique: It is to check whether

p
⋃

cand exts(p) is frequent when count frequent items in

Dp. If Dp is represented by AFOPT-tree, the lookahead op-

eration can be accomplished by simply looking at the left-

most branch of AFOPT-tree. If p
⋃

cand exts(p) is fre-

quent, then the length of the left-most branch is equal to

|cand exts(p)|, and the support of the leaf node of the left-

most branch is no less than min sup.

If the superset pruning technique and lookahead tech-

nique fail, then based on Lemma 4 we can use superset

pruning technique to check whether p
⋃

freq exts(p) is

frequent but not maximal. Two other techniques are adopted

in our algorithm.

Excluding items appearing in every transaction of Dp

from subsequent mining: Like frequent closed itemset

mining, if an item i appears in every transaction of Dp, then

a frequent itemset q mined from Dp and not containing i

cannot be maximal because q
⋃
{i} is frequent.

Single Path Trimming: If Dp is represented by AFOPT-

tree and it has only one child i, then we can append i to p

and remove it from subsequent mining.

5.2 Subset checking

When do superset prunning, to check against all fre-

quent maximal itemsets can be costly when the number

of maximal itemsets is large. Zaki et. al proposed a pro-

gressive focusing technique for subset checking [5]. The

observation behind the progressive focusing technique is

that only the maximal frequent itemsets containing p can

be a superset of p
⋃

cand exts(p) or p
⋃

freq exts(p).
The set of maximal frequent itemsets containing p is called

the local maximal frequent itemsets with respect to p, de-

noted as LMFIp. When check whether p
⋃

cand exts(p)
or p

⋃
freq exts(p) is a subset of some existing maxi-

mal frequent itemsets, we only need to check them against

LMFIp. The frequent itemsets in LMFIp can either come

from p’s parent’s LMFI, or from p’s left-siblings’ LMFI.

The construction of LMFIs is very similar to the construc-

tion of conditional databases. The construction consists of

two steps: (1) projecting: after all frequent items F in Dp

7

1

10

100

1000

10000

0 0.01 0.02 0.03 0.04 0.05 0.06

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: T10I4D100k (output threshold = 0.01%)

Apriori
DCI

Eclat
H-Mine

FP-Growth
AFOPT

(a) T10I4D100k

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: T40I10D100k (output threshold = 0.5%)

Apriori
DCI

Eclat
H-Mine

FP-Growth
AFOPT

(b) T40I10D100k

0.1

1

10

100

1000

0.05 0.055 0.06 0.065 0.07

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: BMS-WebView-1 (output threshold = 0.006%)

Apriori
DCI

Eclat
H-Mine

FP-Growth
AFOPT

(c) BMS-WebView-1

10

100

1000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: BMS-POS (output threshold = 0.05%)

Apriori
DCI

Eclat
H-Mine

FP-Growth
AFOPT

(d) BMS-POS

1

10

100

1000

10000

20 30 40 50 60 70

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: chess (output threshold = 45%)

Apriori
DCI

Eclat
FP-Growth

AFOPT

(e) chess

0.1

1

10

100

1000

10000

20 30 40 50 60 70 80

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: connect-4 (output threshold = 75%)

Apriori
DCI

Eclat
FP-Growth

AFOPT

(f) connect-4

0.1

1

10

100

1000

10000

0 2 4 6 8 10

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: mushroom (output threshold = 5%)

Apriori
DCI

Eclat
FP-Growth

AFOPT

(g) mushroom

1

10

100

1000

10000

45 50 55 60 65 70 75 80 85

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: pumsb (output threshold = 70%)

Apriori
DCI

Eclat
FP-Growth

AFOPT

(h) pumsb

Figure 4. Performance Comparison of FI Mining Algorithms

Data Sets Size #Trans #Items MaxTL AvgTL

T10I4D100k (0.01%) 3.93M 100000 870 30 10.10

T40I10D100k (0.5%) 15.12M 100000 942 78 39.61

BMS-POS (0.05%) 11.62MB 515597 1657 165 6.53

BMS-WebView-1 (0.06%) 1.28M 59601 497 267 2.51

chess (45%) 0.34M 3196 75 37 37.00

connect-4 (75%) 9.11M 67557 129 43 43.00

mushroom (5%) 0.56M 8124 119 23 23.00

pumsb (70%) 16.30M 49046 2113 74 74.00

Table 4. Datasets

are counted, ∀s ∈LMFIp, s is put into LMFI
p
⋃

{i}, where

i is the first item in F appears in s; (2) push-right: after

all the maximal frequent itemsets containing p are mined,

∀s ∈LMFIp, s is put into LMFIq if q is the first right sib-

ling of p containing an item in s. In our implementation,

we use pseudo projection technique to generate LMFIs, i.e.

LMFIp is a collection of pointers pointing to those maximal

itemsets containing p.

6 Experimental results

In this section, we compare the performance of our al-

gorithms with other FIM algorithms. All the experiments

were conducted on a 1Ghz Pentium III with 256MB mem-

ory running Mandrake Linux.

Table 4 shows some statistical information about the

datasets used for performance study. All the datasets were

downloaded from FIMI’03 workshop web site. The fifth

and sixth columns are maximal and average transaction

length. These statistics provide some rough description of

the density of the datasets.

6.1 Mining all frequent itemsets

We compared the efficiency of AFOPT-all algorithm

with Apriori, DCI, FP-growth, H-Mine and Eclat algo-

10

100

1000

10000

100000

200 400 600 800 1000

T
im

e
(s

e
c
)

#Transactions(x1000)

minimum support=0.1%

DCI
AFOPT

(a) #Transactions

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50 55

T
im

e
(s

e
c
)

Average Transaction Length

minimum support=0.1%

DCI
AFOPT

(b) AvgTransLen

Figure 5. Scalability Study

rithms. The Apriori and Eclat algorithms we used are im-

plemented by Christian Borgelt. DCI was downloaded from

its web site. We obtained the source code of FP-growth

from its authors. H-Mine was implemented by ourselves.

We ran H-Mine only on several sparse datasets since it was

designed for sparse datasets and it changes to use FP-tree

on dense datasets. Figure 4 shows the running time of all

algorithms over datasets shown in Table 4. When the min-

imum support threshold is very low, an intolerable number

of frequent itemsets can be generated. So when minimum

support threshold reached some very low value, we turned

off the output. This minimum support value is called out-

put threshold, and they are shown on top of each figure.

With high minimum support threshold, all algorithms

showed comparable performance. When minimum sup-

port threshold was lowered, the gaps between algorithms

increased. The two candidate generate-and-test approaches,

Apriori and DCI, showed satisfactory performance on sev-

eral sparse datasets, but took thousands of seconds to ter-

minate on dense datasets due to high cost for generat-

ing and testing a large number of candidate itemsets. H-

Mine demonstrated similar performance with FP-growth on

dataset T10I4D100k, but it was slower than FP-growth on

the other three sparse datasets. H-Mine uses pseudo con-

8

1

10

100

1000

0 0.02 0.04 0.06 0.08 0.1 0.12

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: T10I4D100k

Apriori-close
MAFIA-close
AFOPT-close

(a) T10I4D100k

10

100

1000

0.8 0.9 1 1.1 1.2 1.3

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: T40I10D100k

Apriori-close
MAFIA-close
AFOPT-close

(b) T40I10D100k

0.1

1

10

100

1000

10000

0.04 0.06 0.08 0.1 0.12 0.14

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: BMS-WebView-1

Apriori-close
MAFIA-close
AFOPT-close

(c) BMS-WebView-1

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: BMS-POS

Apriori-close
MAFIA-close
AFOPT-close

(d) BMS-POS

1

10

100

1000

50 55 60 65 70

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: chess

Apriori-close
MAFIA-close
AFOPT-close

(e) chess

1

10

100

1000

30 35 40 45 50 55 60

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: connect-4

MAFIA-close
AFOPT-close

(f) connect-4

0.1

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: mushroom

MAFIA-close
AFOPT-close

(g) mushroom

1

10

100

1000

65 70 75 80

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: pumsb

MAFIA-close
AFOPT-close

(h) pumsb

Figure 6. Performance Comparison of FCI Mining Algorithms

struction strategy, which cannot reduce traversal cost as ef-

fective as physical construction strategy. Eclat uses verti-

cal mining techniques. Support counting is performed effi-

ciently by transaction id list join. But Eclat is not scale well

with respect to the number of transactions in a database.

The running time of AFOPT-all was rather stable over all

tested datasets, and it outperformed other algorithms.

6.2 Scalability

We studied the scalability of our algorithm by perturb-

ing the IBM synthetic data generator along two dimensions:

the number of transactions was varied from 200k to 1000k

and the average transaction length was varied from 10 to

50. The default values of these two parameters were set

to 1000k and 40 respectively. We compared our algorithm

with algorithm DCI. Other algorithms took long time to fin-

ish on large datasets, so we exclude them from comparison.

Figure 5 shows the results when varying the two parameters.

6.3 Mining frequent closed itemsets

We compared AFOPT-close with MAFIA [4] and Apri-

ori algorithms. Both algorithms have an option to gen-

erate only closed itemsets. We denoted these two algo-

rithms as Apriori-close and MAFIA-close respectively in

figures. MAFIA was downloaded from its web site. We

compared with Apriori-close only on sparse datasets be-

cause Apriori-close requires a very long time to terminate

on dense datasets. On several sparse datasets, AFOPT-

close and Apriori-close showed comparable performance.

Both of them were orders of magnitude faster than MAFIA-

close. MAFIA-close uses vertical mining technique. It uses

bitmaps to represent tid lists. AFOPT-close showed better

performance on tested dense datasets due to its adaptive na-

ture and the efficient subset checking techniques described

in Section 4. On dense datasets, AFOPT-close uses tree

structure to store conditional databases. The tree structure

has apparent advantages on dense datasets because many

transactions share their prefixes.

6.4 Mining maximal frequent itemsets

We compared AFOPT-max with MAFIA and Apriori

algorithms. The Apriori algorithm also has an option to

produce only maximal frequent itemsets. It is denoted as

“Apriori-max” in figures. Again we only compare with

it on sparse datasets. Apriori-max explores the search

space in breadth-first order. It finds short frequent item-

sets first. Maximal frequent itemsets are generated in a

post-processing phase. Therefore Apriori-max is infeasi-

ble when the number of frequent itemsets is large even if

it adopts some pruning techniques during the mining pro-

cess. AFOPT-max and MAFIA generate frequent itemsets

in depth-first order. Long frequent itemsets are mined first.

All the subsets of a long maximal frequent itemsets can

be pruned from further consideration by using the super-

set pruning and lookahead technique. AFOPT-max uses

tree structure to represent dense conditional databases. The

AFOPT-tree introduces more pruning capability than tid list

or tid bitmap. For example, if a conditional database can

be represented by a single branch in AFOPT-tree, then the

single branch will be the only one possible maximal item-

set in the conditional database. AFOPT-max also benefits

from the progressive focusing technique for superset prun-

ing. MAFIA was very efficient on small datasets, e.g chess

and mushroom when the length of bitmap is short.

7 Conclusions

In this paper, we revisited the frequent itemset mining

problem and focused on investigating the algorithmic per-

formance space of the pattern growth approach. We iden-

tified four dimensions in which existing pattern growth al-

9

1

10

100

1000

10000

0 0.02 0.04 0.06 0.08 0.1

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: T10I4D100k

Apriori-max
MAFIA-max
AFOPT-max

(a) T10I4D100k

10

100

1000

10000

0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: T40I10D100k

Apriori-max
MAFIA-max
AFOPT-max

(b) T40I10D100k

0.1

1

10

100

1000

10000

0 0.02 0.04 0.06 0.08 0.1

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: BMS-WebView-1

Apriori-max
MAFIA-max
AFOPT-max

(c) BMS-WebView-1

10

100

1000

10000

0.04 0.06 0.08 0.1 0.12 0.14

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: BMS-POS

Apriori-max
MAFIA-max
AFOPT-max

(d) BMS-POS

1

10

100

1000

20 25 30 35 40

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: chess

MAFIA-max
AFOPT-max

(e) chess

1

10

100

1000

10 15 20 25 30 35 40

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: connect-4

MAFIA-max
AFOPT-max

(f) connect-4

0.1

1

10

100

1000

10000

0.04 0.06 0.08 0.1 0.12 0.14

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: mushroom

MAFIA-max
AFOPT-max

(g) mushroom

1

10

100

1000

50 55 60 65 70

T
im

e
(s

e
c
)

Minimum Support(%)

Dataset: pumsb

MAFIA-max
AFOPT-max

(h) pumsb

Figure 7. Performance Comparison of MFI Mining Algorithms

gorithms differ: (1) item search order: static lexicograph-

ical order or ascending frequency order; (2) conditional

database representation: tree-based structure or array-based

structure; (3) conditional database construction strategy:

physical construction or pseudo construction; and (4) tree

traversal strategy: bottom-up or top-down. Existing algo-

rithms adopted different strategies on these four dimensions

in order to reduce the total number of conditional databases

and the mining cost of each individual conditional database.

we described an efficient pattern growth algorithm

AFOPT in the paper. It adaptively uses three different struc-

tures: arrays, AFOPT-tree and buckets, to represent condi-

tional databases according to the density of a conditional

database. Several parameters were introduced to control

which structure should be used for a specific conditional

database. We showed that the adaptive conditional database

representation strategy requires less space than using array-

based structure or tree-based structure solely. We also ex-

tended AFOPT algorithm to mine closed and maximal fre-

quent itemsets, and described how to incorporate pruning

techniques into AFOPT framework. Efficient subset check-

ing techniques for both closed and maximal frequent item-

sets mining were presented. A set of experiments were con-

ducted to show the efficiency of the proposed algorithms.

References

[1] R. Agrawal, C. Aggarwal, and V. Prasad. Depth first genera-
tion of long patterns. In SIGKDD, 2000.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining as-
sociation rules between sets of items in large databases. In
SIGMOD, 1993.

[3] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic
itemset counting and implication rules for market basket
data. In SIGMOD, 1997.

[4] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal
frequent itemset algorithm for transactional databases. In
ICDE, 2001.

[5] K. Gouda and M. J. Zaki. Genmax: Efficiently mining max-
imal frequent itemsets. In ICDM, 2001.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In SIGMOD, 2000.

[7] R.J. Bayardo. Jr. Efficiently mining long patterns from
databases. In SIGMOD, 1998.

[8] G. Liu, H. Lu, W. Lou, and J. X. Yu. On computing, storing
and querying frequent patterns. In SIGKDD, 2003.

[9] G. Liu, H. Lu, Y. Xu, and J. X. Yu. Ascending frequency
ordered prefix-tree: Efficient mining of frequent patterns. In
DASFAA, 2003.

[10] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item
sets by opportunistic projection. In SIGKDD, 2002.

[11] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discover-
ing frequent closed itemsets for association rules. In ICDT,
1999.

[12] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-
mine: Hyper-structure mining of frequent patterns in large
databases. In ICDM, 2001.

[13] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for
mining frequent closed itemsets. In DMKD, 2000.

[14] R. Raymon. Search through systematic set enumeration. In
Proc. of KR Conf., 1992.

[15] R.C.Agarwal, C.C.Aggarwal, and V.V.V.Prasad. A tree pro-
jection algorithm for finding frequent itemsets. Journal on
Parallel and Distributed Computing, 61(3):350–371, 2001.

[16] J. Wang, J. Pei, and J. Han. Closet+: Searching for the best
strategies for mining frequent closed itemsets. In SIGKDD,
2003.

[17] Y. Xu, J. X. Yu, G. Liu, and H. Lu. From path tree to fre-
quent patterns: A framework for mining frequent patterns.
In ICDM, pages 514–521, 2002.

[18] M. J. Zaki and C. Hsiao. Charm: An efficient algorithm for
closed itemset mining. In SDM, 2002.

[19] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New al-
gorithms for fast discovery of association rules. In SIGKDD,
1997.

10

Efficiently Using Prefix-trees in Mining Frequent Itemsets

Gösta Grahne and Jianfei Zhu
Concordia University

Montreal, Canada
{grahne, j zhu}@cs.concordia.ca

Abstract

Efficient algorithms for mining frequent itemsets are
crucial for mining association rules. Methods for min-
ing frequent itemsets and for iceberg data cube computa-
tion have been implemented using a prefix-tree structure,
known as an FP-tree, for storing compressed information
about frequent itemsets. Numerous experimental results
have demonstrated that these algorithms perform extremely
well. In this paper we present a novel array-based tech-
nique that greatly reduces the need to traverse FP-trees,
thus obtaining significantly improved performance for FP-
tree based algorithms. Our technique works especially well
for sparse datasets.

Furthermore, we present new algorithms for a number
of common data mining problems. Our algorithms use
the FP-tree data structure in combination with our array
technique efficiently, and incorporates various optimization
techniques. We also present experimental results which
show that our methods outperform not only the existing
methods that use the FP-tree structure, but also all existing
available algorithms in all the common data mining prob-
lems.

1. Introduction

A fundamental problem for mining association rules is
to mine frequent itemsets (FI’s). In a transaction database,
if we know the support of all frequent itemsets, the asso-
ciation rules generation is straightforward. However, when
a transaction database contains large number of large fre-
quent itemsets, mining all frequent itemsets might not be a
good idea. As an example, if there is a frequent itemset with
size `, then all 2` nonempty subsets of the itemset have to
be generated. Thus, a lot of work is focused on discover-
ing only all the maximal frequent itemsets (MFI’s). Unfor-
tunately, mining only MFI’s has the following deficiency.
From an MFI and its support s, we know that all its subsets
are frequent and the support of any of its subset is not less

than s, but we do not know the exact value of the support.
To solve this problem, another type of a frequent itemset,
the Closed Frequent Itemset (CFI), has been proposed. In
most cases, though, the number of CFI’s is greater than the
number of MFI’s, but still far less than the number of FI’s.

In this work we mine FI’s, MFI’s and CFI’s by efficiently
using the FP-tree, the data structure that was first introduced
in [6]. The FP-tree has been shown to be one of the most
efficient data structures for mining frequent patterns and for
“iceberg” data cube computations [6, 7, 9, 8].

The most important contribution of our work is a novel
technique that uses an array to greatly improve the perfor-
mance of the algorithms operating on FP-trees. We first
demonstrate that the use of our array-based technique dras-
tically speeds up the FP-growth method, since it now needs
to scan each FP-tree only once for each recursive call ema-
nating from it. We then use this technique and give a new
algorithm FPmax*, which extends our previous algorithm
FPmax, for mining maximal frequent itemsets. In FPmax*,
we use a variant of the FP-tree structure for subset testing,
and give number of optimizations that further reduce the
running time. We also present an algorithm, FPclose, for
mining closed frequent itemsets. FPclose uses yet another
variation of the FP-tree structure for checking the closed-
ness of frequent itemsets.

Finally, we present experimental results that demonstrate
the fact that all of our FP-algorithms outperform previously
known algorithms practically always.

The remaining of the paper is organized as follows. In
Section 2, we briefly review the FP-growth method, and
present our novel array technique that results in the greatly
improved method FPgrowth*. Section 3 gives algorithm
FPmax*, which is an extension of our previous algorithm
FPmax, for mining MFI’s. Here we also introduce our ap-
proach of subset testing needed in mining MFI’s and CFI’s.
In Section 4 we give algorithm FPclose, for mining CFI’s.
Experimental results are given in Section 5. Section 6 con-
cludes, and outlines directions of future research.

2. Discovering FI’s

2.1. The FP-tree and FP-growth method
The FP-growth method by Han et al. [6] uses a data

structure called the FP-tree (Frequent Pattern tree). The FP-
tree is a compact representation of all relevant frequency
information in a database. Every branch of the FP-tree rep-
resents a frequent itemset, and the nodes along the branches
are stored in decreasing order of frequency of the corre-
sponding items, with leaves representing the least frequent
items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corre-
sponding branches.

The FP-tree has a header table associated with it. Single
items and their counts are stored in the header table in de-
creasing order of their frequency. The entry for an item also
contains the head of a list that links all the corresponding
nodes of the FP-tree.

Compared with Apriori [1] and its variants which need
several database scans, the FP-growth method only needs
two database scans when mining all frequent itemsets. The
first scan counts the number of occurrences of each item.
The second scan constructs the initial FP-tree which con-
tains all frequency information of the original dataset. Min-
ing the database then becomes mining the FP-tree.

a b c e f o
a c g
e i
a c d e g
a c e g l
e j
a b c e f p
a c d
a c e g m
a c e g n

(a)

root

e:8

Header table

item

Head of

node−links c:2

c:6 a:2

a:6

b:2 g:4

f:2 d:1

g:1 d:1

e:8

c:8

a:8

g:5

b:2

f:2

d:2

(b)

Figure 1. An Example FP-tree (minsup=20%)

To construct the FP-tree, first find all frequent items by
an initial scan of the database. Then insert these items in the
header table, in decreasing order of their count. In the next
(and last) scan, as each transaction is scanned, the set of
frequent items in it are inserted into the FP-tree as a branch.
If an itemset shares a prefix with an itemset already in the
tree, the new itemset will share a prefix of the branch rep-
resenting that itemset. In addition, a counter is associated
with each node in the tree. The counter stores the number of
transactions containing the itemset represented by the path
from the root to the node in question. This counter is up-
dated during the second scan, when a transaction causes the
insertion of a new branch. Figure 1 (a) shows an example
of a database and Figure 1 (b) the FP-tree for that database.

Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
i is the sum of the count associated with all nodes repre-
senting i, and the frequency of an itemset equals the sum
of the counts of the least frequent item in it, restricted to
those branches that contain the itemset. For instance, from
Figure 1 (b) we can see that the frequency of the itemset
{c, a, g} is 5.

Thus the constructed FP-tree contains all frequency in-
formation of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: if X and Y are two itemsets, the count
of itemset X ∪ Y in the database is exactly that of Y in
the restriction of the database to those transactions contain-
ing X . This restriction of the database is called the condi-
tional pattern base of X , and the FP-tree constructed from
the conditional pattern base is called X’s conditional FP-
tree, which we denote by TX . We can view the FP-tree
constructed from the initial database as T∅, the conditional
FP-tree for ∅. Note that for any itemset Y that is frequent in
the conditional pattern base ofX , the setX∪Y is a frequent
itemset for the original database.

Given an item i in the header table of an FP-tree TX ,
by following the linked list starting at i in the header table
of TX , all branches that contain item i are visited. These
branches form the conditional pattern base of X ∪ {i}, so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-tree TX∪{i}, by first initializing its header
table based on the found frequent items, and then visiting
the branches of TX along the linked list of i one more time
and inserting the corresponding itemsets in TX∪{i}. Note
that the order of items can be different in TX and TX∪{i}.
The above procedure is applied recursively, and it stops
when the resulting new FP-tree contains only one single
path. The complete set of frequent itemsets is generated
from all single-path FP-trees.

2.2. An array technique
The main work done in the FP-growth method is travers-

ing FP-trees and constructing new conditional FP-trees after
the first FP-tree is constructed from the original database.
From numerous experiments we found out that about 80%
of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the
method can be sped up?

The answer is yes, by using a simple additional data
structure. Recall that for each item i in the header of a con-
ditional FP-tree TX , two traversals of TX are needed for
constructing the new conditional FP-tree TX∪{i}. The first
traversal finds all frequent items in the conditional pattern
base of X ∪ {i}, and initializes the FP-tree TX∪{i} by con-
structing its header table. The second traversal constructs

the new tree TX∪{i}. We can omit the first scan of TX by
constructing an array AX while building TX . The follow-
ing example will explain the idea. In Figure 1 (a), supposing
that the minimum support is 20%, after the first scan of the
original database, we sort the frequent items as e:8, c:8, a:8,
g:5, b:2, f :2, d:2. This order is also the order of items in the
header table of T∅. During the second scan of the database
we will construct T∅, and an array A∅. This array will store
the counts of all 2-itemsets. All cells in the array are initial-
ized as 0.

�

�

�

�

�

�

� � � � � � � � � � �

	

	 �

� � � � �

 �
 �
 � �

 �
 �
 � � �

� �
 �
 � � � � � �

�

�

� � �

�

� � �

������ ����� ���

Figure 2. Two array examples

In A∅, each cell is a counter of a 2-itemset, cell
A∅[d, e] is the counter for itemset {d, e}, cell A∅[d, c]
is the counter for itemset {d, c}, and so forth. Dur-
ing the second scan for constructing T∅, for each trans-
action, first all frequent items in the transaction are ex-
tracted. Suppose these items form itemset I . To insert
I into T∅, the items in I are sorted according to the or-
der in header table of T∅. When we insert I into T∅,
at the same time A∅[i, j] is incremented by 1 if {i, j}
is contained in I . For example, for the first transaction,
{a, b, c, e, f} is extracted (item o is infrequent) and sorted
as e, c, a, b, f . This itemset is inserted into T∅ as usual,
and at the same time, A∅[f, e], A∅[f, c], A∅[f, a], A∅[f, b],
A∅[b, a], A∅[b, c],A∅[b, e], A∅[a, e],A∅[a, c], A∅[c, e] are all
incremented by 1. After the second scan, arrayA∅ keeps the
counts of all pairs of frequent items, as shown in table (a)
of Figure 2.

Next, the FP-growth method is recursively called to mine
frequent itemsets for each item in header table of T∅. How-
ever, now for each item i, instead of traversing T∅ along
the linked list starting at i to get all frequent items in i’s
conditional pattern base, A∅ gives all frequent items for i.
For example, by checking the third line in the table for A∅,
frequent items e, c, a for the conditional pattern base of g
can be obtained. Sorting them according to their counts, we
get a, c, e. Therefore, for each item i in T∅ the array A∅

makes the first traversal of T∅ unnecessary, and T{i} can be
initialized directly from A∅.

For the same reason, from a conditional FP-tree TX ,
when we construct a new conditional FP-tree for X ∪ {i},
for an item i, a new array AX∪{i} is calculated. Dur-
ing the construction of the new FP-tree TX∪{i}, the array

AX∪{i} is filled. For instance, in Figure 1, the cells of
array A{g} is shown in table (b) of Figure 2. This array
is constructed as follows. From the array A∅, we know
that the frequent items in the conditional pattern base of
{g} are, in order, a, c, e. By following the linked list of
g, from the first node we get {e, c, a} : 4, so it is inserted as
(a : 4, c : 4, e : 4) into the new FP-tree T{g}. At the same
time, A{g}[e, c], A{g}[e, a] and A{g}[c, a] are incremented
by 4. From the second node in the linked list, {c, a} : 1 is
extracted, and it is inserted as (a : 1, c : 1) into T{g}. At the
same time, A{g}[c, a] is incremented by 1. Since there are
no other nodes in the linked list, the construction of T{g} is
finished, and array A{g} is ready to be used for construction
of FP-trees in next level of recursion. The construction of
arrays and FP-trees continues until the FP-growth method
terminates.

Based on above discussion, we define a variation of the
FP-tree structure in which besides all attributes given in [6],
an FP-tree also has an attribute, array, which contains the
corresponding array.

Now let us analyze the size of an array. Suppose the
number of frequent items in the first FP-tree is n. Then
the size of the associated array is

∑n−1
i=1 i = n(n − 1)/2.

We can expect that FP-trees constructed from the first FP-
tree have fewer frequent items, so the sizes of the associated
arrays decrease. At any time, since an array is an attribute
of an FP-tree, when the space for the FP-tree is freed, the
space for the array is also freed.

2.3. Discussion
The array technique works very well especially when the

dataset is sparse. The FP-tree for a sparse dataset and the re-
cursively constructed FP-trees will be big and bushy, due to
the fact that they do not have many shared common pre-
fixes. The arrays save traversal time for all items and the
next level FP-trees can be initialized directly. In this case,
the time saved by omitting the first traversals is far greater
than the time needed for accumulating counts in the associ-
ated array.

However, when a dataset is dense, the FP-trees are more
compact. For each item in a compact FP-tree, the traversal
is fairly rapid, while accumulating counts in the associated
array may take more time. In this case, accumulating counts
may not be a good idea.

Even for the FP-trees of sparse datasets, the first levels of
recursively constructed FP-trees are always conditional FP-
trees for the most common prefixes. We can therefore expect
the traversal times for the first items in a header table to be
fairly short, so the cells for these first items are unnecessary
in the array. As an example, in Figure 2 table (a), since
e, c, and a are the first 3 items in the header table, the first
two lines do not have to be calculated, thus saving counting
time.

Note that the datasets (the conditional pattern bases)
change during the different depths of the recursion. In order
to estimate whether a dataset is sparse or dense, during the
construction of each FP-tree we count the number of nodes
in each level of the tree. Based on experiments, we found
that if the upper quarter of the tree contains less than 15% of
the total number of nodes, we are most likely dealing with
a dense dataset. Otherwise the dataset is likely to be sparse.

If the dataset appears to be dense, we do not calculate
the array for the next level of the FP-tree. Otherwise, we
calculate array for each FP-tree in the next level, but the
cells for the first several (say 5) items in its header table are
not set.

2.4. FPgrowth* : an improved FP-growth method
Figure 3 contains the pseudocode for our new method

FPgrowth*. The procedure has an FP-tree T as parameter.
The tree has attributes: base, header and array. T.base
contains the itemsetX , for which T is a conditional FP-tree,
the attribute header contains the head table, and T.array
contains the array AX .

Procedure FPgrowth*(T)
Input: A conditional FP-tree T
Output: The complete set of FI’s

corresponding to T.
Method:
1. if T only contains a single path P
2. then for each subpath Y of P
3. output pattern Y ∪ T.base with

count = smallest count of nodes
in Y

4. else for each i in T.header
5. output Y = T.base ∪ {i} with i.count
6. if T.array is not NULL
7. construct a new header table

for Y ’s FP-tree from T.array
8. else construct a new header table

from T;
9. construct Y ’s conditional

FP-tree TY and its array AY ;
10. if TY 6= ∅
11. call FPgrowth*(TY);

Figure 3. Algorithm FPgrowth*

In FPgrowth*, line 6 tests if the array of the current FP-
tree is NULL. If the FP-tree corresponds to a sparse dataset,
its array is not NULL, and line 7 will be used to construct
the header table of the new conditional FP-tree from the
array directly. One FP-tree traversal is saved for this item
compared with the FP-growth method in [6]. In line 9, dur-
ing the construction, we also count the nodes in the different

levels of the tree, in order to estimate whether we shall re-
ally calculate the array, or just set TY .array = NULL.

From our experimental results we found that an FP-tree
could have millions of nodes, thus, allocating and deallo-
cating those nodes takes plenty of time. In our implementa-
tion, we used our own main memory management for allo-
cating and deallocating nodes. Since all memory for nodes
in an FP-tree is deallocated after the current recursion ends,
a chunk of memory is allocated for each FP-tree when we
create the tree. The chunk size is changeable. After gen-
erating all frequent itemsets from the FP-tree, the chunk is
discarded. Thus we successfully avoid freeing nodes in the
FP-tree one by one, which is more time-consuming.

3. FPmax*: Mining MFI’s

In [5] we developed FPmax, a variation of the FP-growth
method, for mining maximal frequent itemsets. Since the
array technique speeds up the FP-growth method for sparse
datasets, we can expect that it will be useful in FPmax too.
This gives us an improved method, FPmax*. Compared to
FPmax, the improved method FPmax* also has a more ef-
ficient subset test, as well as some other optimizations. It
turns out that FPmax* outperforms GenMax[4] and MAFIA
[3] for all cases we discussed in [5].

3.1. The MFI-Tree
Since FPmax is a depth-first algorithm, a frequent item-

set can be a subset only of an already discovered MFI. In
FPmax we introduced a global data structure, the Maxi-
mal Frequent Itemset tree (MFI-tree), to keep the track of
MFI’s. A newly discovered frequent itemset is inserted into
the MFI-tree, unless it is a subset of an itemset already in
the tree. However, for large datasets, the MFI-tree will be
quite large, and sometimes one itemset needs thousands of
comparisons for subset testing. Inspired by the way subset
checking is done in [4], in FPmax*, we still use the MFI-
tree structure, but for each conditional FP-tree TX , a small
MFI-treeMX is created. The treeMX will contain all max-
imal itemsets in the conditional pattern base of X . To see if
a local MFI Y generated from a conditional FP-tree TX is
maximal, we only need to compare Y with the itemsets in
MX . This achieves a significant speedup of FPmax.

Each MFI-tree is associated with a particular FP-tree.
Children of the root of the MFI-tree are item prefix sub-
trees. In an MFI-tree, each node in the subtree has three
fields: item-name, level and node-link. The level-field will
be useful for subset testing. All nodes with same item-name
are linked together, as in an FP-tree. The MFI-tree also
has a header table. However, unlike the header table in an
FP-tree, which is constructed from traversing the previous
FP-tree or using the associated array, the header table of an

MFI-tree is constructed based on the item order in the ta-
ble of the FP-tree it is associated with. Each entry in the
header table consists of two fields, item-name and head of a
linked list. The head points to the first node with the same
item-name in the MFI-tree.

Header table

item
Head of
node−links

e
c
a
g
b
f
d

Header table

item
Head of
node−links

e
c
a
g
b
f
d

e:1

c:2

a:3

e:1

c:2

a:3

c:1

a:2

d:3

b:4

f:5

g:4b:4

f:5

d:3

a:2

c:1

root:0 root:0

(a) (b)

Figure 4. Construction of MFI-Tree

The insertion of an MFI into an MFI-tree is similar to the
insertion of a frequent set into an FP-tree. Figure 4 shows
the insertions of three MFI’s into an MFI-tree associated
with the FP-tree in Figure 1 (b). In Figure 4, a node x : `
means that the node is for item x and its level is `. Figure 4
(a) shows the tree after (c, a, d) and (e, c, a, b, f) have been
inserted. In Figure 4 (b), since new MFI (e, c, a, b, g) shares
prefix (e, c, a) with (e, c, a, b, f), only one new node for g
is inserted.

3.2. FPmax*
Figure 5 gives algorithm FPmax*. The first call will be

for the FP-tree constructed from the original database, and
it will have an empty MFI-tree. Before a recursive call FP-
max*(T,M), we already know from line 10 that the set con-
taining T.base and the items in the current FP-tree is not a
subset of any existing MFI. During the recursion, if there
is only one single path in T , this single path together with
T.base is an MFI of the database. In line 2, the MFI is in-
serted into M . If the FP-tree is not a single-path tree, then
for each item i in the header table, we start preparing for the
recursive call FPmax*(TY ,MY), for Y = T.base ∪ {i}.
The items in the header table of T are processed in increas-
ing order of frequency, so that maximal frequent itemsets
will be found before any of their frequent subsets. Lines
5 to 8 use the array technique, and line 10 calls function
subset checking to check if Y together with all frequent
items in Y ’s conditional pattern base is a subset of any ex-
isting MFI in M (thus we do superset pruning here). If
subset checking return false, FPmax* will be called recur-
sively, with (TY ,MY). The implementation of function
subset checking will be explained shortly.

Note that before and after calling subset checking, if Y ∪
Tail is not subset of any MFI, we still do not know whether
Y ∪ Tail is frequent. If, by constructing Y ’s conditional

Procedure FPmax*(T,M)
Input: T, an FP-tree

M, the MFI-tree for T.base
Output: Updated M
Method:
1. if T only contains a single path P
2. insert P into M
3. else for each i in T.header
4. set Y = T.base ∪ {i};
5. if T.array is not NULL
6. Tail={frequent items for i in

T.array}
7. else
8. Tail={frequent items in i’s

conditional pattern base}
9. sort Tail in decreasing order of

the items’ counts
10. if not subset checking(Y ∪ Tail,M)
11. construct Y ’s conditional

FP-tree TY and its array AY ;
12. initialize Y ’s conditional

MFI-tree MY ;
13. call FPmax*(TY ,MY);
14. merge MY with M

Figure 5. Algorithm FPmax*

FP-tree TY , we find out that TY only has a single path, we
can conclude that Y ∪Tail is frequent. Since Y ∪Tail was
not a subset of any previously discovered MFI, it is a new
MFI and will be inserted into MY .

3.3. Implementation of subset testing
The function subset checking works as follows. Suppose

Tail = i1i2, . . . ik, in decreasing order of frequency accord-
ing to the header table of M . By following the linked list of
i, for each node n in the list, we test if Tail is a subset of the
ancestors of n. Here, the level of n can be used for saving
comparison time. First we test if the level of n is smaller
than k. If it is, the comparison stops because there are not
enough ancestors of n for matching the rest of Tail. This
pruning technique is also applied as we move up the branch
and towards the front of Tail.

Unlike an FP-tree, which is not changed during the ex-
ecution of the algorithm, an MFI-tree is dynamic. At line
12, for each Y , a new MFI-tree MY is initialized from the
predecessor MFI-tree M . Then after the recursive call, M
is updated on line 14 to contain all newly found frequent
itemsets. In the actual implementation, we however found
that it was more efficient to update all MFI-trees along the
recursive path, instead of merging only at the current level.
In other words, we omitted line 14, and instead on line 2, P

is inserted into the current M , and also into all predecessor
MFI-trees that the implementation of the recursion needs to
keep in main memory in any case.

Since FPmax* is a depth-first algorithm, it is straight-
forward to show that the above subset checking is correct.
Based on the correctness of the FP-growth method, we can
conclude that FPmax* returns all and only the maximal fre-
quent itemsets in a given dataset.

3.4. Optimizations
In the method FPmax*, one more optimization is used.

Suppose, that at some level of the recursion, the header table
of the current FP-tree is i1, i2, . . . , im. Then starting from
im, for each item in the header table, we may need to do
the work from line 4 to line 14. If for any item, say ik,
where k ≤ m, its maximal frequent itemset contains items
i1, i2, . . . , ik−1, i.e., all the items that have not yet called
FPmax* recursively, these recursive calls can be omitted.
This is because for those items, their tails must be subsets
of {i1, i2, . . . , ik−1}, so subset checking(Y ∪Tail)would
always return true.

FPmax* also uses the memory management described in
Section 2.4, for allocating and deallocating space for FP-
trees and MFI-trees.

3.5. Discussion
One may wonder if the space required for all the MFI-

trees of a recursive branch is too large. Actually, before
the first call of FPmax*, the first FP-tree has to fit in main
memory. This is also required by the FP-growth method.
The corresponding MFI-tree is initialized as empty. Dur-
ing recursive calls of FPmax*, new conditional FP-trees are
constructed from the first FP-tree or from an ancestors FP-
tree. From the experience of [6], we know the recursively
constructed FP-trees are relatively small. We can expect
that the total size of these FP-trees is not greater than the
final size of the MFI-tree for ∅. Similarly, the MFI-trees
constructed from ancestors are also small. All MFI-trees
grow gradually. Thus we can conclude that the total main
memory requirement for running FPmax* on a dataset is
proportional to the sum of the size of the FP-tree and the
MFI-tree for ∅.

4. FPclose: Mining CFI’s

For mining frequent closed itemsets, FPclose works sim-
ilarly to FPmax*. They both mine frequent patterns from
FP-trees. Whereas FPmax* needs to check that a newly
found frequent itemset is maximal, FPclose needs to verify
that the new frequent itemset is closed. For this we use a
CFI-tree, which is another variation of an FP-tree.

One of the first attempts to use FP-trees in CFI mining
was the algorithm CLOSET+ [9]. This algorithm uses one

global prefix-tree for keeping track of all closed itemsets.
As we pointed out before, one global tree will be quite big,
and thus slows down searches. In FPclose we will therefore
use multiple, conditional CFI-trees for checking closedness
of itemsets. We can thus expect that FPclose outperforms
CLOSET+.

4.1. The CFI-tree and algorithm FPclose
Similar to an MFI-tree, a CFI-tree is related to an FP-tree

and an itemset X , and we will denote the CFI-tree as CX .
The CFI-tree CX always stores all already found CFI’s con-
taining itemsetX , and their counts. A newly found frequent
itemset Y that contains X only needs to be compared with
the CFI’s in CX . If in CX , there is no superset of Y with
same count as Y , Y is closed.

In a CFI-tree, each node in the subtree has four fields:
item-name, count, node-link and level. Here, the count field
is needed because when comparing a Y with a set Z in the
tree, we are trying to verify that it is not the case that Y ⊂
Z, and Y and Z have the same count. The order of the items
in a CFI-tree’s header table is same as the order of items in
header table of its corresponding FP-tree.

Header table

item
Head of
node−links

e
c
a
g
b
f
d

c:1:8

d:3:2 g:3:5 d:3:2 g:3:5

Header table

item
Head of
node−links

e
c
a
g
b
f
db:4:2

f:5:2

e:1:8

c:2:6

a:3:6

g:4:4b:4:2

f:5:2

e:1:2

c:2:2

a:3:2

a:2:5

c:1:5

a:2:8

root root

(a) (b)

Figure 6. Construction of CFI-Tree

The insertion of a CFI into a CFI-tree is similar to the
insertion of a transaction into an FP-tree, except now the
count of a node is not incremented, it is always replaced by
the maximal count up-to-date. Figure 6 shows some snap-
shots of the construction of a CFI-tree with respect to the
FP-tree in Figure 1 (b). The item order in two trees are
same because they are both for base ∅. Note that insertions
of CFI’s into the top level CFI-tree will occur only after re-
cursive calls have been made. In the following example, the
insertions would in actuality be performed during various
stages of the execution, not in bulk as the example might
suggest. In Figure 6, a node x : ` : c means that the node is
for item x, its level is ` and its count is c. In Figure 6 (a), af-
ter inserting (c, a, d) and (e, c, a, b, f)with count 2, then we
insert (c, a, g) with count 5. Since (c, a, g) shares the pre-
fix (c, a) with (c, a, d), only node g is appended, and at the
same time, the counts for nodes c and a are both changed
to be 5. In part (b) of Figure 6, the CFI’s (e, c, a, g) : 4,

(c, a) : 8, (c, a, e) : 6 and (e) : 8 are inserted. At this stage
the tree contains all CFI’s for the dataset in Figure 1 (a).

Procedure FPclose(T,C)
Input: T, an FP-tree

C, the CFI-tree for T.base
Output: Updated C
Method:
1. if T only contains a single path P
2. generate all CFI’s from P
3. for each CFI X generated
4. if not closed checking(X,C)
5. insert X into C
6. else for each i in T.header
7. set Y = T.base ∪ {i};
8. if not closed checking(Y,C)
9. if T.array is not NULL
10. Tail = {frequent items for

i in T.array}
11. else
12. Tail={frequent items in i’s

conditional pattern base}
13. sort Tail in decreasing order

of items’ counts
14. construct the FP-tree TY and

its array AY ;
15. initialize Y ’s conditional

CFI-tree CY ;
16. call FPclose(TY , CY);
17. merge CY with C

Figure 7. Algorithm FPclose

Figure 7 gives algorithm FPclose. Before calling FP-
close with some (T,C), we already know from line 8 that
there is no existing CFI X such that T.base ⊂ X , and
T.base and X have the same count. If there is only one sin-
gle path in T , the nodes and their counts in this single path
can be easily used to list the T.base-local closed frequent
itemsets. These itemsets will be compared with the CFI’s
in C. If an itemset is closed, it is inserted into C. If the
FP-tree T is not a single-path tree, we execute line 6. Lines
9 to 12 use the array technique. Lines 4 and 8 call function
closed checking(Y,C) to check if a frequent itemset Y is
closed. If it is, the function returns true, otherwise, false is
returned. Lines 14 and 15 construct Y ’s conditional FP-tree
and CFI-tree. Then FPclose is called recursively for TY and
CY .

Note that line 17 is not implemented as such. As in algo-
rithm FPmax*, we found it more efficient to do the insertion
of lines 3–5 into all CFI-trees currently in main memory.

CFI-trees are initialized similarly to MFI-trees, de-
scribed in Section 3.3. The implementation of function

closed checking is almost the same as the implementa-
tion of function subset checking, except now we also con-
sider the count of an itemset. Given an itemset Y =
{i1, i2, . . . , ik} with count c, suppose the order of the items
in header table of the current CFI-tree is i1, i2, . . . , ik. Fol-
lowing the linked list of ik, for each node in the list, first we
check if its count is equal to or greater than c. If it is, we
then test if Y is a subset of the ancestors of that node. The
function closed checking returns true only when there is no
existing CFI Z in the CFI-tree such that Z is a superset of
Y and the count of Y is equal to or greater than the count
of Z.

Memory management allocating and deallocating space
for FP-trees and CFI-trees is similar to the memory man-
agement of FPgrowth* and FPmax*.

By a similar reasoning as in Section 3.5, we conclude
that the total main memory requirement for running FP-
close on a dataset is approximately sum of the size of the
first FP-tree and its CFI-tree.

5. Experimental Evaluation

We now present a performance comparison of our FP-
algorithms with algorithms dEclat, GenMax, CHARM and
MAFIA. Algorithm dEclat is a depth-first search algorithm
proposed by Zaki and Gouda in [10]. dEclat uses a linked
list to organize frequent patterns, however, each itemset
now corresponds to an array of transaction IDs (the “TID-
array”). Each element in the array corresponds to a trans-
action that contains the itemset. Frequent itemset mining
and candidate frequent itemset generation are done by TID-
array intersections. A technique called diffset, is used for
reducing the memory requirement of TID-arrays. The diff-
set technique only keeps track of differences in the TID’s of
a candidate itemsets when it is generating frequent itemsets.
GenMax, also proposed by Gouda and Zaki [4], takes an
approach called progressive focusing to do maximality test-
ing. CHARM is proposed by Zaki and Hsiao [11] for CFI
mining. In all three algorithms, the main operation is the in-
tersection of TID-arrays. Each of them has been shown as
one of the best algorithms for mining FI’s, MFI’s or CFI’s.
MAFIA is introduced in [3] by Burdick et al. for mining
maximal frequent itemsets. It also has options for mining
FI’s and CFI’s. We give the results of three different sets
of experiments, one set for FI’s, one for MFI’s and one for
CFI’s.

The source codes for dEclat, CHARM, GenMax and
MAFIA were provided by their authors. We ran all algo-
rithms on many synthetic and real datasets. Due to the lack
of space, only the results for two synthetic datasets and two
real datasets are shown here. These datasets should be rep-
resentative, as recent research papers [2, 3, 4, 11, 10, 8, 9],
use these or similar datasets.

The two synthetic datasets, T40I10D100K and
T100I20D100K, were generated from the application
on the website of IBM 1. They both use 100,000 transac-
tions and 1000 items. The two real datasets, pumsb* and
connect-4, were also downloaded from the IBM website 2.
Dataset connect-4 is compiled from game state information.
Dataset pumsb* is produced from census data of Public Use
Microdata Sample (PUMS). These two real datasets are
both quite dense, so a large number of frequent itemsets can
be mined even for very high values of minimum support.

All experiments were performed on a 1Ghz Pentium III
with 512 MB of memory running RedHat Linux 7.3. All
times in the figures refer to CPU time.

5.1. FI Mining
In [6], the original FPgrowth method has been shown

to be an efficient and scalable algorithm for mining fre-
quent itemsets. FPgrowth is about an order of magnitude
faster than the Apriori. Subsequently, it was shown in [10],
that the algorithm dEclat outperforms FPgrowth on most
datasets. Thus, in the first set of experiments, FP-growth*
is compared with the original FP-growth method and with
dEclat. The original FP-growth method is implemented on
the basis of the paper [6]. In this set of experiments we also
included with MAFIA [3], which has an option for mining
all FI’s. The results of the first set of experiments are shown
in Figure 8.

Figure 8 (a) shows the CPU time of the four algorithms
running on dataset T40I10D100K. We see that FPgrowth*
is the best algorithm for this dataset. It outperforms dEclat
and MAFIA at least by a factor of two. Main memory is
used up by dEclat when the minimum support goes down to
0.25%, while FPgrowth* can still run for even smaller levels
of minimum support. MAFIA is the slowest algorithm for
this dataset and its CPU time increases rapidly.

Due to the use of the array technique, and the fact that
T40I10D100K is a sparse dataset, FPgrowth* turns out to
be faster than FPgrowth. However, when the minimum sup-
port is very low, we can expect the FP-tree to achieve a good
compactification, starting at the initial recursion level. Thus
the array technique does not offer a big gain. Consequently,
as verified in Figure 8 (a), for very low levels minimum sup-
port, FPgrowth* and FPgrowth have almost the same run-
ning time.

Figure 8 (b) shows the CPU time for running the four al-
gorithms on dataset T100I20D100K. The result is similar to
the result in Figure 8 (a). FPgrowth* is again the best. Since
the dataset T100I20D100K is sparser than T40I10D100K,
the speedup from FPgrowth to FPgrowth* is increased.

From Figure 8 (c) and (d), we can see that the FP-
methods are faster than dEclat by an order of magnitude

1http://www.almaden.ibm.com/cs/quest/syndata.html
2http://www.almaden.ibm.com/cs/people/bayardo/resources.html

in both experiments. Since pumsb* and connect-4 are both
very dense datasets, FPgrowth* and FPgrowth have almost
same running time, as the array technique does not achieve
a significant speedup for dense datasets.

In Figure 8 (c), the CPU time increases drastically when
the minimum support goes down below 25%. However, this
is not a problem for FPgrowth and FPgrowth*, which still
are able to produce results. The main reason for the never-
theless steeply increased CPU time is that a long time has
to be spent listing frequent itemsets. Recall, that if there is
a frequent “long” itemset of size `, then we have to generate
2` frequent sets from it.

We also ran the four algorithms on many other datasets,
and we found that FPgrowth* was always the fastest.

To see why FPgrowth* is the fastest, let us consider the
main operations in the algorithms. As discussed before, FP-
growth* spends most of its time on constructing and travers-
ing FP-trees. The main operation in dEclat is to generate
new candidate FI’s by TID-array intersections. In MAFIA,
generating new candidate FI’s by bitvector and-operations
is the main work. Since FPgrowth* uses the compact FP-
tree, further boosted by the array technique, the time it
spends constructing and traversing the trees, is less than the
time needed for TID-array intersections and bitvector and-
operations. Moreover, the main memory space needed for
storing FP-trees is far less than that for storing diffsets or
bitvectors. Thus FPgrowth* runs faster than the other two
algorithms, and it scales to very low levels of minimum sup-
port.

Figure 11 (a) shows the main memory consumption of
three algorithms by running them on dataset connect-4. We
can see that FP-growth* always use the least main memory.
And even for very low minimum support, it still uses a small
amount of main memory.

5.2. MFI Mining
In our paper [5], we analyzed and verified the perfor-

mance of algorithm FPmax. We learned that FPmax out-
performed GenMax and MAFIA in some, but not all cases.
To see the impact of the new array technique and the new
subset checking function that we are using in FPmax*, in
the second set of experiments, we compared FPmax* with
FPmax, GenMax, and MAFIA.

Figure 9 (a) gives the result for running these algorithms
on the sparse dataset T40I10D100K. We can see that FP-
max is slower than GenMax for all levels of minimum sup-
port, while FPmax* outperforms GenMax by a factor of at
least two. Figure 9 (b) shows the results for the very sparse
dataset T100I20D100K, FPmax is the slowest algorithm,
while FPmax* is the fastest algorithm. Figure 9 (c) shows
that FPmax* is the fastest algorithm for the dense dataset
pumsb*, even though FPmax is the slowest algorithm on
this dataset for very low levels of minimum support. In

T40I10D100K

1

10

100

1000

10000

00.250.50.7511.251.51.7522.25

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000
FP-growth*
dEclat
MAFIA
FP-growth

(a)

T100I20D100K

1

10

100

1000

10000

024681012

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000
FP-growth*
dEclat
MAFIA
FP-growth

(b)

Pumsb_star

0.1

1

10

100

1000

10000

152025303540

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.1

1

10

100

1000

10000
FP-growth*
dEclat
MAFIA
FP-growth

(c)

Connect-4

0.01

0.1

1

10

100

1000

10000

102030405060708090100

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.01

0.1

1

10

100

1000

10000
FP-growth*
dEclat
MAFIA
FP-growth

(d)

Figure 8. Mining FI’s

T40I10D100K

1

10

100

1000

10000

00.250.50.7511.251.51.7522.25

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000

FPMAX*
GenMax
MAFIA
FPMAX

(a)

T100I20D100K

1

10

100

1000

10000

024681012

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000

FPMAX*
GenMax
MAFIA
FPMAX

(b)

Pumsb_star

0.1

1

10

100

1000

0510152025303540

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.1

1

10

100

1000

FPMAX*
GenMax
MAFIA
FPMAX

(c)

Connect-4

0.01

0.1

1

10

100

1000

020406080100

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.01

0.1

1

10

100

1000

FPMAX*
GenMax
MAFIA
FPMAX

(d)

Figure 9. Mining MFI’s

T40I10D100K

1

10

100

1000

10000

00.250.50.7511.251.51.7522.25

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000
FPclose
MAFIA
Charm

(a)

T100I20D100K

1

10

100

1000

10000

024681012

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000
FPclose
MAFIA
Charm

(b)

Pumsb_star

0.01

0.1

1

10

100

1000

0510152025303540

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.01

0.1

1

10

100

1000
FPclose
MAFIA
Charm

(c)

Connect-4

0.01

0.1

1

10

100

1000

0102030405060708090100

Minimum Support (%)
C

P
U

 T
im

e(
s)

0.01

0.1

1

10

100

1000
FPclose
MAFIA
Charm

(d)

Figure 10. Mining CFI’s

Connect-4

1

10

100

1000

102030405060708090100

Minimum Support (%)

M
ai

n
M

em
or

y
(M

)

1

10

100

1000
FPgrowth*

MAFIA-FI

dEclat

(a)

Connect-4

1

10

100

0102030405060708090100

Minimum Support (%)

M
ai

n
M

em
or

y
(M

)

1

10

100
FPMAX*

GenMax

MAFIA-MFI

(b)

Connect-4

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

CPU Time (s)

M
ai

n
M

em
or

y
(M

)

FP-tree

MFI-tree

Total

(c)

Connect-4

1

10

100

1000

10000

0102030405060708090100

Minimum Support (%)

M
ai

n
M

em
or

y
(M

)

1

10

100

1000

10000
Charm

MAFIA-CFI

FPclose

(d)

Figure 11. Main Memory used by the algorithms

Figure 9 (d), FPmax outperforms GenMax and MAFIA for
high levels of minimum support, but it is slow for very low
levels. FPmax*, on the other hand is about one to two or-
ders of magnitude faster than GenMax and MAFIA for all
levels of minimum support.

All experiments in this second set show that the array
technique and the new subset checking function are indeed
very effective. Figure 11 (b) shows the main memory used

by three algorithms when running them on dataset connect-
4. From the figure, we can see that FPmax* uses less main
memory than the other algorithms. Figure 11 (c) shows the
main memory used by FP-trees, MFI-trees and the whole
algorithm when running FPmax* on dataset connect-4. The
minimum support was set as 10%. In the figure, the last
point of the line for FP-tree is for the main memory of the
first FP-tree (T∅), since at this point the space for all condi-

tional FP-trees has been freed. The last point of the line for
MFI-tree is for the main memory of the MFI-tree that con-
tains whole set of MFI’s, i.e., M∅. The figure confirms our
analysis of main memory used by FPmax* in Section 3.5.

We also run these four algorithms on many other
datasets, and we found that FPmax* always was the fastest
algorithm.

5.3. CFI Mining
In the third set of experiments, the performances of FP-

close, CHARM and MAFIA, with the option of mining
closed frequent itemset, were compared.

Figure 10 shows the results of running FPclose, CHARM
and MAFIA on datasets T40I10D100K, T100I20D100K,
pumsb* and connect-4. FPclose shows good performance
on all datasets, due to the fact that it uses the compact FP-
tree and the array technique. However, for very low lev-
els of minimum support FPclose has performance similar to
CHARM and MAFIA. By analyzing the three algorithms,
we found that FPclose generates more non-closed frequent
itemsets than the other algorithms. For each of the gener-
ated frequent itemsets, the function closed checking must
be called. Although the closed checking function is very
efficient, the increased number of calls to it means higher
total running time. For high levels of minimum support,
the time saved by using the compact FP-tree and the ar-
ray technique compensates for the time FPclose spends on
closed checking. In all cases, FPclose uses less main mem-
ory for mining CFI’s than CHARM and MAFIA. Figure 11
(d) shows the memory used by three algorithms by run-
ning them on dataset connnect-4. We can see that for very
low levels of minimum support, CHARM and MAFIA were
aborted because they ran out of memory, while FPclose was
still able to run and produce output.

6. Conclusions

We have introduced a novel array-based technique that
allows using FP-trees more efficiently when mining fre-
quent itemsets. Our technique greatly reduces the time
spent traversing FP-trees, and works especially well for
sparse datasets. Furthermore, we presented new algorithms
for mining maximal and closed frequent itemsets.

The FPgrowth* algorithm, which extends original FP-
growth method, also uses the novel array technique to mine
all frequent itemsets.

For mining maximal frequent itemsets, we extended our
earlier algorithm FPmax to FPmax*. FPmax* not only uses
the array technique, but also a new subset-testing algorithm.
For the subset testing, a variation of the FP-tree, an MFI-
tree, is used for storing all already discovered MFI’s. In FP-
max*, a newly found FI is always compared with a small set

of MFI’s that are kept in an MFI-tree, thus making subset-
testing much more efficient.

For mining closed frequent itemsets we give the FPclose
algorithm. In the algorithm, a CFI-tree —another variation
of a FP-tree— is used for testing the closedness of frequent
itemsets.

For all of our algorithms we have presented several opti-
mizations that further reduce their running time.

Our experimental results showed that FPgrowth* and
FPmax* always outperforms existing algorithms. FPclose
also demonstrates extremely good performance. All of the
algorithms need less main memory because of the compact
FP-trees, MFI-trees, and CFI-trees.

Though the experimental results given in this paper show
the success of our algorithms, in the future we will test them
on more applications to further study their performance. We
are also planning to explore ways to improve the FPclose al-
gorithm by reducing the number of closedness-tests needed.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proceedings of VLDB’94, pages 487–499,
1994.

[2] R. J. Bayardo, Jr. Efficiently mining long patterns from
databases. In Proceedings of ACM SIGMOD’98, pages 85–
93, 1998.

[3] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A max-
imal frequent itemset algorithm for transactional databases.
In Proceedings of ICDE’01, pages 443–452, Apr. 2001.

[4] K. Gouda and M. J. Zaki. Efficiently mining maximal fre-
quent itemsets. In Proceedings of ICDM’01, San Jose, CA,
Nov. 2001.

[5] G. Grahne and J. Zhu. High performance mining of maxi-
mal frequent itemsets. In SIAM’03 Workshop on High Per-
formance Data Mining: Pervasive and Data Stream Mining,
May 2003.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proceedings of ACM SIGMOD’00,
pages 1–12, May 2000.

[7] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k fre-
quent closed patterns without minimum support. In Pro-
ceedings of ICDM’02, pages 211–218, Dec. 2002.

[8] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm
for mining frequent closed itemsets. In ACM SIGMOD’00
Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, pages 21–30, 2000.

[9] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best
strategies for mining frequent closed itemsets. In Proceed-
ings of ACM SIGKDD’03, Washington, DC, 2003.

[10] M. Zaki and K. Gouda. Fast vertical mining using diffsets.
In Proceedings of ACM SIGKDD’03, Washington, DC, Aug.
2003.

[11] M. Zaki and C. Hsiao. Charm: An efficient algorithm for
closed itemset mining. In Proceedings of SIAM’02, Arling-
ton, Apr. 2002.

COFI-tree Mining: A New Approach to Pattern Growth with Reduced
Candidacy Generation

Mohammad El-Hajj
Department of Computing Science

University of Alberta Edmonton, AB, Canada
mohammad@cs.ualberta.ca

Osmar R. Zaı̈ane
Department of Computing Science

University of Alberta Edmonton, AB, Canada
zaiane@cs.ualberta.ca

Abstract

Existing association rule mining algorithms suffer
from many problems when mining massive transactional
datasets. Some of these major problems are: (1) the repeti-
tive I/O disk scans, (2) the huge computation involved dur-
ing the candidacy generation, and (3) the high memory de-
pendency. This paper presents the implementation of our
frequent itemset mining algorithm, COFI, which achieves
its efficiency by applying four new ideas. First, it can mine
using a compact memory based data structures. Second,
for each frequent item assigned, a relatively small indepen-
dent tree is built summarizing co-occurrences. Third, clever
pruning reduces the search space drastically. Finally, a sim-
ple and non-recursive mining process reduces the memory
requirements as minimum candidacy generation and count-
ing is needed to generate all relevant frequent patterns.

1 Introduction

Frequent pattern discovery has become a common topic
of investigation in the data mining research area. Its main
theme is to discover the sets of items that occur together
more than a given threshold defined by the decision maker.
A well-known application domain that counts on the fre-
quent pattern discovery is the market basket analysis. In
most cases when the support threshold is low and the num-
ber of frequent patterns “explodes”, the discovery of these
patterns becomes problematic for reasons such as: high
memory dependencies, huge search space, and massive I/O
required. However, recently new studies have been pro-
posed to reduce the memory requirements [8], to decrease
the I/O dependencies [7], still more promising issues need
to be investigated such as pruning techniques to reduce the
search space. In this paper we introduce a new method
for frequent pattern discovery that is based on the Co-
Occurrence Frequent Item tree concept [8, 9]. The new pro-

posed method uses a pruning technique that dramatically
saves the memory space. These relatively small trees are
constructed based on a memory-based structure called FP-
Trees [11]. This data structure is studied in detail in the
following sections. In short, we introduced in [8] the COFI-
tree stucture and an algorithm to mine it. In [7] we pre-
sented a disk based data structure, inverted matrix, that re-
places the memory-based FP-tree and scales the interactive
frequent pattern mining significantly. Our contributions in
this paper are the introduction of a clever pruning technique
based on an interesting property drawn from our top-down
approach, and some implementation tricks and issues. We
included the pruning in the algorithm of building the tree so
that the pruning is done on the fly.

1.1 Problem Statement

The problem of mining association rules over market
basket analysis was introduced in [2]. The problem consists
of finding associations between items or itemsets in trans-
actional data. The data could be retail sales in the form of
customer transactions or even medical images [16]. Asso-
ciation rules have been shown to be useful for other appli-
cations such as recommender systems, diagnosis, decision
support, telecommunication, and even supervised classifi-
cation [5]. Formally, as defined in [3], the problem is stated
as follows: Let I = {i1, i2, ...im} be a set of literals, called
items and m is considered the dimensionality of the prob-
lem. Let D be a set of transactions, where each transaction
T is a set of items such that T ⊆ I . A unique identifier
TID is given to each transaction. A transaction T is said
to contain X , a set of items in I , if X ⊆ T . An associ-
ation rule is an implication of the form “X ⇒ Y ”, where
X ⊆ I , Y ⊆ I , and X ∩ Y = ∅. An itemset X is said to be
large or frequent if its support s is greater or equal than a
given minimum support threshold σ. An itemset X satisfies
a constraint C if and only if C(X) is true. The rule X ⇒ Y
has a support s in the transaction set D if s% of the transac-
tions in D contain X∪Y . In other words, the support of the

rule is the probability that X and Y hold together among all
the possible presented cases. It is said that the rule X ⇒ Y
holds in the transaction set D with confidence c if c% of
transactions in D that contain X also contain Y . In other
words, the confidence of the rule is the conditional proba-
bility that the consequent Y is true under the condition of
the antecedent X . The problem of discovering all associa-
tion rules from a set of transactions D consists of generating
the rules that have a support and confidence greater than a
given threshold. These rules are called strong rules. This
association-mining task can be broken into two steps:
1. A step for finding all frequent k-itemsets known for its
extreme I/O scan expense, and the massive computational
costs;
2. A straightforward step for generating strong rules.

In this paper and our attached code, we focus exclusively
on the first step: generating frequent itemsets.

1.2 Related Work

Several algorithms have been proposed in the literature
to address the problem of mining association rules [12, 10].
One of the key algorithms, which seems to be the most pop-
ular in many applications for enumerating frequent item-
sets, is the apriori algorithm [3]. This apriori algorithm
also forms the foundation of most known algorithms. It
uses an anti-monotone property stating that for a k-itemset
to be frequent, all its (k-1)-itemsets have to be frequent. The
use of this fundamental property reduces the computational
cost of candidate frequent itemset generation. However, in
the cases of extremely large input sets with big frequent 1-
items set, the Apriori algorithm still suffers from two main
problems of repeated I/O scanning and high computational
cost. One major hurdle observed with most real datasets
is the sheer size of the candidate frequent 2-itemsets and
3-itemsets.

TreeProjection is an efficient algorithm presented in [1].
This algorithm builds a lexicographic tree in which each
node of this tree presents a frequent pattern. The authors
report that their algorithm is one order of magnitude faster
than the existing techniques in the literature. Another inno-
vative approach of discovering frequent patterns in transac-
tional databases, FP-Growth, was proposed by Han et al.
in [11]. This algorithm creates a compact tree-structure,
FP-Tree, representing frequent patterns, that alleviates the
multi-scan problem and improves the candidate itemset
generation. The algorithm requires only two full I/O scans
of the dataset to build the prefix tree in main memory and
then mines directly this structure. The authors of this al-
gorithm report that their algorithm is faster than the Apri-
ori and the TreeProjection algorithms. Mining the FP-tree
structure is done recursively by building conditional trees
that are of the same order of magnitude in number as the

frequent patterns. This massive creation of conditional trees
makes this algorithm not scalable to mine large datasets be-
yond few millions. In [14] the same authors propose a new
algorithm, H-mine, that invokes FP-Tree to mine condensed
data. This algorithm is still not scalable as reported by its
authors in [13].

1.3 Preliminaries, Motivations and Contributions

The Co-Occurrence Frequent Item tree (or COFI-tree for
short) and the COFI algorithm presented in this paper are
based on our previous work in [7, 8]. The main motivation
of our current research is the pruning technique that reduces
the memory space needed by the COFI-trees. The presented
algorithm is done in two phases in which phase 1 requires
two full I/O scans of the transactional database to build the
FP-Tree structure[11]. The second phase starts by building
small Co-Occurrence Frequent trees for each frequent item.
These trees are pruned first to eliminate any non-frequent
items with respect to the COFI-tree based frequent item.
Finally the mining process is executed.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the Frequent Pattern tree, design and con-
struction. Section 3 illustrates the design, constructions,
pruning, and mining of the Co-Occurrence Frequent Item
trees. Section 4 presents the implementation procedure of
this algorithm. Experimental results are given in Section 5.
Finally, Section 6 concludes by discussing some issues and
highlighting our future work.

2 Frequent Pattern Tree: Design and Con-
struction

The COFI-tree approach we propose consists of two
main stages. Stage one is the construction of a modified
Frequent Pattern tree. Stage two is the repetitive building of
small data structures, the actual mining for these data struc-
tures, and their release.

2.1 Construction of the Frequent Pattern Tree

The goal of this stage is to build the compact data struc-
ture called Frequent Pattern Tree [11]. This construction is
done in two phases, where each phase requires a full I/O
scan of the dataset. A first initial scan of the database iden-
tifies the frequent 1-itemsets. The goal is to generate an or-
dered list of frequent items that would be used when build-
ing the tree in the second phase.

This phase starts by enumerating the items appearing in
the transactions. After enumeration these items (i.e. after
reading the whole dataset), infrequent items with a support
less than the support threshold are weeded out and the re-
maining frequent items are sorted by their frequency. This

Table 1. Transactional database
T.No. Items

T1 A G D C B
T2 B C H E D
T3 B D E A M
T4 C E F A N
T5 A B N O P
T6 A C Q R G
T7 A C H I G
T8 L E F K B
T9 A F M N O

T10 C F P G R
T11 A D B H I
T12 D E B K L
T13 M D C G O
T14 C F P Q J
T15 B D E F I
T16 J E B A D
T17 A K E F C
T18 C D L B A

list is organized in a table, called header table, where the
items and their respective support are stored along with
pointers to the first occurrence of the item in the frequent
pattern tree. Phase 2 would construct a frequent pattern tree.

Item Counter Item Counter Item Counter Item Counter
A 11 N 3 A 11 F 7
B 10 O 3 B 10 E 8
C 10 P 3 C 10 D 9
D 9 Q 2 D 9 C 10
G 4 R 2 E 8 B 10
E 8 I 3 F 7 A 11
H 3 K 3
F 7 L 3
M 3 J 3

Step 2 Step 3Step 1

Figure 1. Steps of phase 1

Phase 2 of constructing the Frequent Pattern tree struc-
ture is the actual building of this compact tree. This phase
requires a second complete I/O scan from the dataset. For
each transaction read, only the set of frequent items present
in the header table is collected and sorted in descending or-
der according to their frequency. These sorted transaction
items are used in constructing the FP-Trees as follows: for
the first item on the sorted transactional dataset, check if it
exists as one of the children of the root. If it exists then
increment the support for this node. Otherwise, add a new
node for this item as a child for the root node with 1 as
support. Then, consider the current item node as the new
temporary root and repeat the same procedure with the next
item on the sorted transaction. During the process of adding
any new item-node to the FP-Tree, a link is maintained be-

tween this item-node in the tree and its entry in the header
table. The header table holds as one pointer per item that
points to the first occurrences of this item in the FP-Tree
structure.

2.2 Illustrative Example

For illustration, we use an example with the transactions
shown in Table 1. Let the minimum support threshold be set
to 4. Phase 1 starts by accumulating the support for all items
that occur in the transactions. Step 2 of phase 1 removes all
non-frequent items, in our example (G, H, I, J, K, L,M, N,
O, P, Q and R), leaving only the frequent items (A, B, C, D,
E, and F). Finally all frequent items are sorted according to
their support to generate the sorted frequent 1-itemset. This
last step ends phase 1 in Figure 1 of the COFI-tree algorithm
and starts the second phase. In phase 2, the first transaction
(A, G, D, C, B) is filtered to consider only the frequent items
that occur in the header table (i.e. A, D, C and B). This fre-
quent list is sorted according to the items’ supports (A, B,
C and D). This ordered transaction generates the first path
of the FP-Tree with all item-node support initially equal to
1. A link is established between each item-node in the tree
and its corresponding item entry in the header table. The
same procedure is executed for the second transaction (B,
C, H, E, and D), which yields a sorted frequent item list (B,
C, D, E) that forms the second path of the FP-Tree. Trans-
action 3 (B, D, E, A, and M) yields the sorted frequent item
list (A, B, D, E) that shares the same prefix (A, B) with an
existing path on the tree. Item-nodes (A and B) support is
incremented by 1 making the support of (A) and (B) equal
to 2 and a new sub-path is created with the remaining items
on the list (D, E) all with support equal to 1. The same pro-
cess occurs for all transactions until we build the FP-Tree
for the transactions given in Table 1. Figure 2 shows the
result of the tree building process. Notice that in our tree
structure, contrary to the original FP-tree [11], our links are
bi-directional. This, and other differences presented later,
are used by our mining algorithm.

3 Co-Occurrence Frequent-Item-trees: Con-
struction, Pruning and Mining

Our approach for computing frequencies relies first on
building independent, relatively small trees for each fre-
quent item in the header table of the FP-Tree called COFI-
trees. A pruning technique is applied to remove all non-
frequent items with respect to the main frequent item of
the tested COFI-tree. Then we mine separately each one
of the trees as soon as they are built, minimizing the candi-
dacy generation and without building conditional sub-trees
recursively. The trees are discarded as soon as mined. At

Root

A 11 B 4 C 3
F 7
E 8 F 1 C 4 B 6 C 1 E 1 D 2 F 2 D 1
D 9
C 10 E 2 C 2 D 3 D 1 F 1 E 2
B 10
A 11 F 2 D 2 E 2 E 1 F 1

Figure 2. Frequent Pattern Tree.

any given time, only one COFI-tree is present in main mem-
ory. In our following examples we always assume that we
are building the COFI-trees based on the modified FP-Tree
data-structure presented above.

3.1 Pruning the COFI-trees

Pruning can be done after building a tree or, even better,
while building it. We opted for pruning on the fly since the
overhead is minimal but the consequences are drastic reduc-
tion in memory requirements. We will discuss the pruning
idea, then present the building algorithm that considers the
pruning on the fly.

In this section we are introducing a new anti-monotone
property called global frequent/local non-frequent property.
This property is similar to the Apriori one in the sense that
it eliminates at the ith level all non-frequent items that will
not participate in the (i+1) level of candidate itemsets gen-
eration. The difference between the two properties is that
we extended our property to eliminate also frequent items
which are among the i-itemset and we are sure that they
will not participate in the (i+1) candidate set. The Apriori
property states that all nonempty subsets of a frequent item-
set must also be frequent. An example is given later in this
section to illustrate both properties. In our approach, we
are trying to find all frequent patterns with respect to one
frequent item, which is the base item of the tested COFI-
tree. We already know that all items that participate in the
creation of the COFI-tree are frequent with respect to the
global transaction database, but that does not mean that they
are also locally frequent with respect to the based item in the
COFI-tree. The global frequent/local non-frequent property
states that all nonempty subsets of a frequent itemset with
respect to the item A of the A-COFI-tree , must also be
frequent with respect to item A. For each frequent item
A we traverse the FP-Tree to find all frequent items that
occur with A in at least one transaction (or branch in the
FP-Tree) with their number of occurrences. All items that
are locally frequent with item A will participate in build-
ing the A-COFI-tree, other global frequent items, locally
non-frequent items will not participate in the creation of the
A-COFI-tree. In our example we can find that all items
that participate in the creation of the F-COFI-tree are lo-

cally not frequent with respect to item F as the support for
all these items are not greater than the support threshold σ
which is equal to 4, Figure 3. From knowing this, there
will be no need to mine the F-COFI-tree, we already know
that no frequent patterns other than the item F will be gen-
erated. We can extend our knowledge at this stage to know
that item F will not appear in any of the frequent patterns.
The COFI-tree for item E indicates that only items D, and
B are frequent with respect to item E, which means that
there will be no need to test patterns as EC, and EA. The
COFI-tree for item D indicates that item C will be elimi-
nated, as it is not frequent with respect to item D. C-COFI-
tree ignores item B for the same reason. To sum up the
Apriori property states in our example of 6 1-frequent item-
set that we need to generate 15 2-Candidate itemset which
are (A,B), (A,C), (A,D), (A,E), (A,F), (B,C), (B,D), (B,E),
(B,F), (C,D), (C,E), (C,F), (D,E), (D,F), (E,F), using our
property we have eliminated (not generated or counted) 9
patterns which are (A,E), (A,F), (B,C), (B,F), (C,D), (C,E),
(C,F), (D,F), (E,F) leaving only 6 patterns to test which are
(A,B), (A,C), (A,D), (B,D), (B,E), (D,E).

3.2 Construction of the Co-Occurrence Frequent-
Item-trees

The small COFI-trees we build are similar to the condi-
tional FP-Trees [11] in general in the sense that they have
a header with ordered frequent items and horizontal point-
ers pointing to a succession of nodes containing the same
frequent item, and the prefix tree per se with paths repre-
senting sub-transactions. However, the COFI-trees have bi-
directional links in the tree allowing bottom-up scanning as
well, and the nodes contain not only the item label and a
frequency counter, but also a participation counter as ex-
plained later in this section. The COFI-tree for a given fre-
quent item x contains only nodes labeled with items that are
more frequent or as frequent as x.

To illustrate the idea of the COFI-trees, we will explain
step by step the process of creating COFI-trees for the FP-
Tree of Figure 2. With our example, the first Co-Occurrence
Frequent Item tree is built for item F as it is the least fre-
quent item in the header table. In this tree for F, all frequent
items, which are more frequent than F, and share transac-

tions with F, participate in building the tree. This can be
found by following the chain of item F in the FP-Tree struc-
ture. The F-COFI-tree starts with the root node containing
the item in question, then a scan of part of the FP-Tree is ap-
plied following he chain of the F item in the FP-Tree. The
first branch FA has frequency of 1, as the frequency of the
branch is the frequency of the test item, which is F. The goal
of this traversal is to count the frequency of each frequent
item with respect to item F. By doing so we can find that
item E occurs 4 times, D occurs 2 times, C occurs 4 times,
B 2 times, and A 3 times, by applying the anti-monotone
constraint property we can predict that item F will never
appear in any frequent pattern except itself. Consequently
there will be no need to continue building the F-COFI-tree.

The next frequent item to test is E. The same process
is done to compute the frequency of each frequent items
with respect to item E. From this we can find that only two
globally frequent items are also locally frequent which are
(D:5 and B:6). For each sub-transaction or branch in the
FP-Tree containing item E with other locally frequent items
that are more frequent than E which are parent nodes of E,
a branch is formed starting from the root node E. the sup-
port of this branch is equal to the support of the E node
in its corresponding branch in FP-Tree. If multiple fre-
quent items share the same prefix, they are merged into one
branch and a counter for each node of the tree is adjusted
accordingly. Figure 3 illustrates all COFI-trees for frequent
items of Figure 2. In Figure 3, the rectangle nodes are nodes
from the tree with an item label and two counters. The first
counter is a support-count for that node while the second
counter, called participation-count, is initialized to 0 and is
used by the mining algorithm discussed later, a horizontal
link which points to the next node that has the same item-
name in the tree, and a bi-directional vertical link that links
a child node with its parent and a parent with its child. The
bi-directional pointers facilitate the mining process by mak-
ing the traversal of the tree easier. The squares are actually
cells from the header table as with the FP-Tree. This is a
list made of all frequent items that participate in building
the tree structure sorted in ascending order of their global
support. Each entry in this list contains the item-name, item-
counter, and a pointer to the first node in the tree that has
the same item-name.

To explain the COFI-tree building process, we will high-
light the building steps for the E-COFI-tree in Figure 3. Fre-
quent item E is read from the header table and its first loca-
tion in the FP-Tree is located using the pointer in the header
table. The first location of item E indicate that it shares a
branch with items CA, with support = 2, since none of these
items are locally frequent then only the support of the E root
node is incremented by 2. the second node of item E indi-
cates that it shares items DBA with support equals to 2 for
this branch as the support of the E-item is considered the

F COFI-tree
E 4 F (7 0)
D 2
C 4
B 2

A 3

E COFI-tree
E (8 0)

D 5
C 3
B 6 D 5 D (5 0) B (1 0)
A 4 B 6

B (5 0)

D COFI-tree
D (9 0)

C 4 B 8
B 8 A 5 B (8 0)
A 5

A (5 0)

C COFI-tree
C (10 0)

B 3
A 6 A 6

A (6 0)

B COFI-tree
B (10 0)

A 6 A 6

A (6 0)

Figure 3. COFI-trees

support for this branch (following the upper links for this
item). Two nodes are created, for items D and B with sup-
port equals to 2, D is a child node of B, and B is a child node
of E. The third location of E indicate having EDB:1, which
shares an existing branch in the E-COFI-tree, all counters
are adjusted accordingly. A new branch of EB: 1 is created
as the support of E=1 for the fourth occurrences of E. The
final occurrence EDB: 2 uses an existing branch and only
counters are adjusted. Like with FP-Trees, the header con-
stitutes a list of all frequent items to maintain the location
of first entry for each item in the COFI-tree. A link is also
made for each node in the tree that points to the next lo-
cation of the same item in the tree if it exists. The mining
process is the last step done on the E-COFI-tree before re-
moving it and creating the next COFI-tree for the next item
in the header table.

E COFI-tree STEP1 Pattern
E (8 0) E (8 5) E D B 5

 E D 5
D 5 D (5 0) B (1 0) D (5 1) E B 5
B 6 E D B 5

B (5 0) B (5 5)

E COFI-tree STEP2
E (8 5) Pattern

E (8 6) E B 1

D 5 D (5 5) B (1 0) E D 5
B 6 B (1 1) E B 6

E D B 5
B (5 5)

E COFI-tree STEP3
E (8 6) Pattern

E (8 7) E D 0

D 5 D (5 5) B (1 1)
B 6 D (6 6)

Frequent Patterns are:
B (5 5) ED:5, EB: 6, EDB: 5

Figure 4. Steps needed to generate frequent
patterns related to item E

3.3 Mining the COFI-trees

The COFI-trees of all frequent items are not constructed
together. Each tree is built, mined, then discarded before the
next COFI-tree is built. The mining process is done for each
tree independently with the purpose of finding all frequent
k-itemset patterns in which the item on the root of the tree
participates.

Steps to produce frequent patterns related to the E item
for example, as the F-COFI-tree will not be mined based
on the pruning results we found on the previous step, are
illustrated in Figure 4. From each branch of the tree, us-
ing the support-count and the participation-count, candi-
date frequent patterns are identified and stored temporarily
in a list. The non-frequent ones are discarded at the end
when all branches are processed. The mining process for
the E-COFI-tree starts from the most locally frequent item
in the header table of the tree, which is item B. Item B ex-
ists in two branches in the E-COFI-tree which are (B:5, D:5
and E:8), and (B:1, and E:8). The frequency of each branch
is the frequency of the first item in the branch minus the
participation value of the same node. Item B in the first
branch has a frequency value of 5 and participation value
of 0 which makes the first pattern EDB frequency equals
to 5. The participation values for all nodes in this branch
are incremented by 5, which is the frequency of this pat-
tern. In the first pattern EDB: 5. We need to generate all
sub-patterns that item E participates in, which are ED: 5,
EB: 5, and EDB: 5. The second branch that has B gener-

D COFI-tree STEP1 Pattern
D (9 0) D (9 5) D B A 5

B 8 D B A 5
A 5 B (8 0) B (8 5) D B 5

D A 5

A (5 0) A (5 5)

D COFI-tree STEP2 Pattern
D (9 5) D (9 5) D B 3

B 8 D B A 5
A 5 B (8 5) B (8 5) D B 8

D A 5

A (5 5) Frequent Patterns are:
DBA:5, DB: 8, DA: 5

Figure 5. Steps needed to generate frequent
patterns related to item D

ates the pattern EB: 1. EB already exists and its counter
is adjusted to become 6. The COFI-tree of Item E can be
removed at this time and another tree can be generated and
tested to produce all the frequent patterns related to the root
node. The same process is executed to generate the fre-
quent patterns. The D-COFI-tree (Figure 5) is created after
the E-COFI-tree. Mining this tree generates the following
frequent patterns: DBA: 5, DA: 5, and DB:8. The same pro-
cess occurs for the remaining trees that would produce AC:
6 for the C-COFI-tree and BA:6 for the B-COFI-tree.

The following is our algorithm for building and mining
the COFI-trees with pruning.

Algorithm COFI: Creating with pruning and Mining
COFI-trees
Input: modified FP-Tree, a minimum support threshold σ
Output: Full set of frequent patterns
Method:
1. A = the least frequent item on the header table of
FP-Tree
2. While (There are still frequent items) do

2.1 count the frequency of all items that share item (A)
a path. Frequency of all items that share the same path
are the same as of the frequency of the (A) items

2.2 Remove all non-locally frequent items for
the frequent list of item (A)

2.3 Create a root node for the (A)-COFI-tree with both
frequency-count and participation-count = 0
2.3.1 C is the path of locally frequent items in the path
of item A to the root
2.3.2 Items on C form a prefix of the (A)-COFI-tree.
2.3.3 If the prefix is new then Set frequency-count=
frequency of (A) node and participation-
count= 0 for all nodes in the path
Else

2.3.4 Adjust the frequency-count of the already
exist part of the path.

2.3.5 Adjust the pointers of the Header list
if needed

2.3.6 find the next node for item A in the FP-tree and
go to 2.3.1

2.4 MineCOFI-tree (A)
2.5 Release (A) COFI-tree
2.6 A = next frequent item from the header table

3. Goto 2

Function: MineCOFI-tree (A)
1. nodeA = select next node //Selection of nodes starts with
the node of most locally frequent item and following its
chain, then the next less frequent item with its chain, un-
til we reach the least frequent item in the Header list of the
(A)-COFI-tree
2. while there are still nodes do

2.1 D = set of nodes from nodeA to the root
2.2 F = nodeA.frequency-count-nodeA.
participation-count
2.3 Generate all Candidate patterns X from items in D.
Patterns that do not have A will be discarded.
2.4 Patterns in X that do not exist in the A-Candidate
List will be added to it with frequency = F otherwise
just increment their frequency with F
2.5 Increment the value of participation-count
by F for all items in D
2.6 nodeA = select next node

3. Goto 2
4. Based on support threshold σ remove non-frequent pat-
terns from A Candidate List.

4 Experimental Studies

To study the COFI-tree mining strategies we have con-
ducted several experiments on a variety of data sizes com-
paring our approach with the well-known FP-Growth [11]
algorithm written by its original authors. The experiments
were conducted on 2.6 GHz CPU machine with 2 Gbytes
of memory using Win2000 operating system. Transactions
were generated using IBM synthetic data generator [4]. We
have conducted several types of experiments to test the ef-
fect of changing the support, transaction size, dimension,
and transaction length. The first set of experiments were
tested on a transaction database of 500K transactions, 10K
the dimension, and the average transaction length was 12.
We have varied the support from absolute value of 500 to
2 in which frequent patterns generated varied from 15K to
3400K patterns. FP-Growth could not mine the last experi-
ment in this set as it used all available memory space. In all
experiments the COFI-tree approach outperforms the FP-
Growth approach. The major accomplishment of our ap-

No.of transactions = 500K, Dimension= 10K,
Average no. of items / transaction = 12

(A) Runtime

(B) Total Memory requirement

(C) Memory requirement without FP-tree

0

50

10 0

15 0

20 0

25 0

30 0

35 0

0.1 0.05 0.02 0.01 0.00 5 0.02 0.00 1 0.00 04
Support %

T
im

e
in

 S
ec

o
n

d
s

CO FI FP -G rowth

0

20 0

40 0

60 0

80 0

10 00

12 00

14 00

16 00

0.1 0.05 0.02 0.01 0.00 5 0.02 0.00 1 0.00 04
Support %

M
e

m
o

ry
 U

sa
g

e
in

 K
.B

y
te

CO FI FP -G rowth

0

20 0

40 0

60 0

80 0

10 00

12 00

14 00

16 00

0.1 0.05 0.02 0.01 0.00 5 0.02 0.00 1 0.00 04
Support %

M
e

m
o

ry
 U

sa
g

e
in

 K
.B

y
te

CO FI FP -G rowth

Figure 6. Mining dataset of 500K transactions

proach is in the memory space saved. Our algorithm outper-
forms the FP-Growth by one order of magnitude in terms of
memory space requirements. We have also tested the mem-
ory space used during the mining process only, (i.e, isolat-
ing the memory space used to create the FP-Tree by both
FP-growth and COFI-tree FP-Tree based algorithms). We
have found also that the COFI-tree approach outperforms
the FP-tree by one order of magnitude in terms of mem-
ory space used by the COFI-tree compared with the condi-
tional trees used by FP-Growth during the mining process.
Figure 6A presents the time needed to mine 500K transac-
tions using different support levels. Figure 6B depicts the
memory needed during the mining process of the previous
experiments. Figure 6C illustrates the memory needed by

Table 2. Time and Memory Scalability with re-
spect to support on the T10I4D100K dataset

Time in Seconds Memory in KB
Support % COFI FP-Growth COFI FP-Growth

0.50 1.5 3.0 18 173
0.25 1.7 5.2 19 285
0.10 2.7 12.3 26 289
0.05 14.0 20.9 19 403

the COFI-trees and Conditional trees during the mining pro-
cess. Other experiments were conducted to test the effect of
changing the dimension, transaction size, transaction length
using the same support which is 0.05%. Some of these ex-
periments are represented in Figure 7. Figures 7A and 7B
represent the time needed during the mining process. Fig-
ures 7C and 7D represent the memory space needed during
the whole mining process. Figures 7E and 7F represent
the memory space needed by the COFI-trees or conditional
trees during the mining process. In these experiments we
have varied the dimension, which is the number of distinct
items from 5K to 10K, the average transaction length from
12 to 24 items in one transaction, and the number of trans-
actions from 10K to 500K. All these experiments depicted
the fact that our approach is one order of magnitude better
than the FP-Growth approach in terms of memory usage.

We also run experiments using the public UCI datasets
provided on the FIMI workshop website, which are
Mushroom, Chess, Connect, Pumsb, T40I10D100K, and
T10I4D100K. The COFI algorithm scales relatively well
vis-à-vis the support threshold with these datasets. Re-
sults are not reported here for lack of space. Our ap-
proach revealed good results with high support value on all
datasets. However, like with other approaches, in cases of
low support value, where the number of frequent patterns
increases significantly, our approach faces some difficulties.
For such cases it is recommended to consider discovering
closed itemsets or maximal patterns instead of just frequent
itemsets. The sheer number of frequent itemsets becomes
overwhelming, and some argue even useless. Closed item-
sets and maximal itemsets represent all frequent patterns by
eliminating the redundant ones. For illustration, Table 2
compares the CPU time and memory requirement for COFI
and FP-Growth on the T10I4D100K dataset.

5 Implementations

The COFI-tree program submitted with this paper is a
C++ code. The executable of this code runs with 3 param-
eters, which are: (1) the path to the input file name. (2)
a positive integer that presents the absolute support. (3)

An optional file name for the out patterns. This code gen-
erates ALL frequent patterns from the provided input file.
The code scans the database twice. The goal of the first
database scan is to find the frequency of each item in this
transactional database. These frequencies are stored in a
data structure called Candidate-Items. Each entry of this
candidate items is a structure called ItemsStructure that is
made of two long integers representing the item and its fre-
quency. All frequent items are then stored in a special data
structure called F1-Items. This data structure is sorted in
descending order based on the frequency of each item. To
access the location of each item we map it with a specific
location using a new data structure called FindInHashTable.
In brief, since we do not know the number of unique items
at runtime, and thus can’t create an array for counting the
items, rather than having a linked list of items, we create
blocks of p items. The number p could arbitrarily be 100 or
1000. Indeed, following links in a linked list each time to
find and increment a counter could be expensive. Instead,
blocs of items are easily indexed. In the worst case, we
could lose the space of p − 1 unused items.

The second scan starts by eliminating all non frequent
items from each transaction read and then sort this trans-
action based on the frequency of each frequent item. This
process occurred in the Sort-Transaction method. The FP-
tree is built based on the sub-transaction made of the fre-
quent items. The FP-tree data structure is a tree of n chil-
dren. The structure struct FPTTree { long Element; long
counter; FPTTree* child; FPTTree* brother; FPTTree* fa-
ther; FPTTree* next; } has been used to create each node
of this tree, where a link is created between each node and
its first child, and the brother link is maintained to create a
linked list of all children of the same node. This linked list
is built ordered based on the frequency of each item. The
header list is maintained using the structure FrequentStruc
{ long Item; long Frequency; long COFIFrequency; long
COFIFrequency1; FPTTree* first; COFITree* firstCOFI; };
After building the FP-tree we start building the first COFI-
tree by selecting the item with least frequency from the fre-
quent list. A scan is made of the FP-tree starting from the
linked list of this item to find the frequency of other items
with respect to this item. After that, the COFI-tree is created
based on only the locally frequent items. Finally frequent
patterns are generated and stored in the FrequentTree data
structure. All nodes that have support greater or equal than
the given support present a frequent pattern. The COFI-tree
and the FrequentTree are removed from memory and the
next COFI-tree is created until we mine all frequent trees.

One interesting implementation improvement is the fact
that the participation counter was also added to the header
table of the COFI-tree this counter cumulates the partici-
pation of the item in all paterns already discovered in the
current COFI-tree. The difference between the participa-

tion in the node and the participation in the header is that the
counter in the node counts the participation of the node item
in all paths where the node appears, while the new counter
in the COFI-tree header counts the participation of the item
globally in the tree. This trick does not compromise the
effectiveness and usefulness of the participation counting.
One main advantage of this counter is that it looks ahead
to see if all nodes of a specific item have already been tra-
versed or not to reduce the unneeded scans of the COFI-tree.

6 Conclusion and future work

The COFI algorithm, based on our COFI-tree structure,
we propose in this paper is one order of magnitude better
than the FP-Growth algorithm in terms of memory usage,
and sometimes in terms of speed. This Algorithm achieves
this results thanks to: (1) the non recursive technique used
during the mining process, in which with a simple traver-
sal of the COFI-tree a full set of frequent patterns can be
generated. (2) The pruning method that is used to remove
all locally non frequent patterns, leaving the COFI-tree with
only locally frequent items.

The major advantage of our algorithm COFI over FP-
Growth is that it needs a significantly smaller memory foot-
print, and thus can mine larger transactional databases with
smaller main memory available. The fundamental differ-
ence, is that COFI tries to find a compromise between a
fully pattern growth approach, that FP-Growth adopts, and
a total candidacy generation approach that apriori is known
for. COFI grows targeted patterns but performs a reduced
and focused generation of candidates during the mining.
This is to avoid the recursion that FP-growth uses, and no-
torious to blow the stack with large datasets.

We have developed algorithms for closed itemset min-
ing and maximal itemset mining based on our COFI-tree
approach. However, their efficient implementations were
not ready by the deadline of this workshop. These effi-
cient algorithms and experimental results will be compared
to existing algorithms such as CHARM[17], MAFIA[6] and
CLOSET+[15], and will be reported in the future.

7 Acknowledgments

This research is partially supported by a Research Grant
from NSERC, Canada.

References

[1] R. Agarwal, C.Aggarwal, and V. Prasad. A tree projection
algorithm for generation of frequent itemsets. Parallel and
distributed Computing, 2000.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
tion rules between sets of items in large databases. In Proc.
1993 ACM-SIGMOD Int. Conf. Management of Data, pages
207–216, Washington, D.C., May 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. In Proc. 1994 Int. Conf. Very Large Data
Bases, pages 487–499, Santiago, Chile, September 1994.

[4] I. Almaden. Quest synthetic data generation code.
http://www.almaden.ibm.com/cs/quest/syndata.html.

[5] M.-L. Antonie and O. R. Zaı̈ane. Text document categoriza-
tion by term association. In IEEE International Conference
on Data Mining, pages 19–26, December 2002.

[6] C. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A max-
imal frequent itemset algorithm for transactional databases.
In IEEE International Conference on Data Mining (ICDM
01), April 2001.

[7] M. El-Hajj and O. R. Zaı̈ane. Inverted matrix: Efficient dis-
covery of frequent items in large datasets in the context of
interactive mining. In In Proc. 2003 Int’l Conf. on Data
Mining and Knowledge Discovery (ACM SIGKDD), August
2003.

[8] M. El-Hajj and O. R. Zaı̈ane. Non recursive generation of
frequent k-itemsets from frequent pattern tree representa-
tions. In In Proc. of 5th International Conference on Data
Warehousing and Knowledge Discovery (DaWak’2003),
September 2003.

[9] M. El-Hajj and O. R. Zaı̈ane. Parallel association rule
mining with minimum inter-processor communication. In
Fifth International Workshop on Parallel and Distributed
Databases (PaDD’2003) in conjunction with the 14th
Int’ Conf. on Database and Expert Systems Applications
DEXA2003, September 2003.

[10] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufman, San Francisco, CA, 2001.

[11] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In ACM-SIGMOD, Dallas, 2000.

[12] J. Hipp, U. Guntzer, and G. Nakaeizadeh. Algorithms for
association rule mining - a general survey and comparison.
ACM SIGKDD Explorations, 2(1):58–64, June 2000.

[13] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item
sets by oppotunistic projection. In Eight ACM SIGKDD In-
ternationa Conf. on Knowledge Discovery and Data Mining,
pages 229–238, Edmonton, Alberta, August 2002.

[14] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-
mine: Hyper-structure mining of frequent patterns in large
databases. In ICDM, pages 441–448, 2001.

[15] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the
best strategies for mining frequent closed itemsets. In 9th
ACM SIGKDD International Conf. on Knowledge Discovery
and Data Mining, July 2003.

[16] O. R. Zaı̈ane, J. Han, and H. Zhu. Mining recurrent items in
multimedia with progressive resolution refinement. In Int.
Conf. on Data Engineering (ICDE’2000), pages 461–470,
San Diego, CA, February 2000.

[17] M. Zaki and C.-J. Hsiao. ChARM: An efficient algorithm
for closed itemset mining. In 2nd SIAM International Con-
ference on Data MIning, April 2002.

(C) D=5K, L=12 (D) D=10K, L=24

Support = 0.05%

(A) D=5K, L=12 (B) D=10K, L=24

D = Dimension, L = Average number of items in one transaction

(F) D=10K, L=24(E) D=5K, L=12

0

5

10

15

20

25

10 50 100 500
Number of Transactions in K

T
im

e
in

 S
ec

on
d

s

COFI FP-Growth

0

50

100

150

200

250

300

350

400

10 50 100
Number of Transactions in K

T
im

e
in

 S
ec

o
n

d
s

COFI FP-Growth

0

100

200

300

400

500

600

700

800

10 50 100 500Number of Transactions in K

M
em

o
ry

 U
sa

g
e

in
 K

.B
yt

e
COFI FP-Growth

0

50

100

150

200

250

300

350

400

10 50 100Number of Transactions in K

M
em

o
ry

 U
sa

g
e

in
 K

.B
yt

e

COFI FP-Growth

0

100

200

300

400

500

600

10 50 100 500Number of Transactions in K

M
em

o
ry

 U
sa

g
e

in
 K

.B
yt

e

COFI FP-Growth

0

50

100

150

200

250

300

350

10 50 100Number of Transactions in K

M
em

o
ry

 U
sa

g
e

in
 K

.B
yt

e

COFI FP-Growth

Figure 7. Mining dataset of different sizes

Mining Frequent Itemsets using Patricia Tries ∗

Andrea Pietracaprina and Dario Zandolin
Department of Information Engineering

University of Padova
andrea.pietracaprina@unipd.it, dzandol@tin.it

Abstract

We present a depth-first algorithm, PatriciaMine, that
discovers all frequent itemsets in a dataset, for a given sup-
port threshold. The algorithm is main-memory based and
employs a Patricia trie to represent the dataset, which is
space efficient for both dense and sparse datasets, whereas
alternative representations were adopted by previous algo-
rithms for these two cases. A number of optimizations have
been introduced in the implementation of the algorithm. The
paper reports several experimental results on real and ar-
tificial datasets, which assess the effectiveness of the im-
plementation and show the better performance attained by
PatriciaMine with respect to other prominent algorithms.

1. Introduction

In this work, we focus on the problem of finding all fre-
quent itemsets in a dataset D of transactions over a set of
items I, that is, all itemsets X ⊆ I contained in a num-
ber of transactions greater than or equal to a certain given
threshold [2].

Several algorithms proposed in the literature to discover
all frequent itemsets follow a depth-first approach by con-
sidering one item at a time and generating (recursively) all
frequent itemsets which contain that item, before proceed-
ing to the next item. A prominent member of this class of
algorithms is FP-Growth proposed in [7]. It represents the
dataset D through a standard trie (FP-tree) and, for each
frequent itemset X , it materializes a projection DX of the
dataset on the transactions containing X , which is used to
recursively discover all frequent supersets Y ⊃ X . This
approach is very effective for dense datasets, where the trie
achieves high compression, but becomes space inefficient
when the dataset is sparse, and incurs high costs due to the
frequent projections.

∗This research was supported in part by MIUR of Italy under project
“ALINWEB: Algorithmics for Internet and the Web”.

Improved variants of FP-Growth appeared in the litera-
ture, which avoid physical projections of the dataset (Top-
Down FP-Growth [14]), or employ two alternative array-
based and trie-based structures to cope, respectively, with
sparse and dense datasets, switching adaptively from one to
the other (H-mine [12]). The most successful ideas devel-
oped in these works have been gathered and further refined
in OpportuneProject [9] which opportunistically selects the
best strategy based on the characteristics of the dataset.

In this paper, we present an algorithm, PatriciaMine,
which further improves upon the aforementioned algo-
rithms stemmed from FP-Growth. Our main contribution
is twofold:

• We use a compressed (Patricia) trie to store the dataset,
which provides a space-efficient representation for
both sparse and dense datasets, without resorting to
two alternative structures, namely array-based and trie-
based, as was suggested in [12, 9]. Indeed, by featuring
a smaller number of nodes than the standard trie, the
Patricia trie exhibits lower space requirements, espe-
cially in the case of sparse datasets, where it becomes
comparable to the natural array-based representation,
and reduces the amount of bookkeeping operations.
Both theoretical and experimental evidence of these
facts is given in the paper.

• A number of optimizations have been introduced in
the implementation of PatriciaMine. In particular, a
heuristic has been employed to limit the number of
physical projections of the dataset during the course of
execution, with the intent to avoid the time and space
overhead incurred by projection, when not beneficial.
Moreover, novel mechanisms have been developed for
directly generating groups of itemsets supported by
the same subset of transactions, and for visiting the
trie without traversing individual nodes multiple times.
The effectiveness of these optimizations is discussed in
the paper.

We coded PatriciaMine in C, and compared its perfor-
mance with that of a number of prominent algorithms,

whose source/object code was made available to us, on sev-
eral real and artificial datasets. The experiments provide
clear evidence of the higher performance of PatriciaMine
with respect to these other algorithms on both dense and
sparse datasets. It must be remarked that our focus is on
main-memory execution, in the sense PatriciaMine works
under the assumption that the employed representation of
the dataset fits in main memory. If this is not the case,
techniques such as those suggested in [13, 9] could be em-
ployed, but this is beyond the scope of this work.

The rest of the paper is organized as follows. Section 2
introduces some notation and illustrates the datasets used
in the experiments. Section 3 presents the main iterative
strategy adopted by PatriciaMine, which can be regarded
as a reformulation (with some modifications) of the recur-
sive strategies adopted in [7, 12, 14, 9]. Sections 4 and 5
describe the most relevant features of the algorithm imple-
mentation, while the experimental results are reported and
discussed in Section 6.

2. Preliminaries

Let I be a set of items, and D a set of transactions, where
each transaction t ∈ D consists of a distinct identifier tid
and a subset of items tset ⊆ I. For an itemset X ⊆ I,
its support in D, denoted by supp

D
(X), is defined as the

number of transactions t ∈ D such that X ⊆ tset. Given an
absolute support threshold min sup, with 0 < min sup ≤
|D|, an itemset X ⊆ I is frequent w.r.t. D and min sup,
if supp

D
(X) ≥ min sup. With a slight abuse of notation,

we call an item i ∈ I frequent if {i} is frequent, and refer
to supp

D
({i}) as the support of i1. We study the problem

of determining the set of all frequent itemsets for given D
and min sup, which we denote by F(D, min sup). For an
itemset X ⊆ I, we denote by DX the subset of D projected
on those transactions that contain X .

Let I ′ = {i1, i2, . . .} ⊆ I denote the subset of frequent
items ordered by decreasing support, and assume that the
items in each frequent itemset are ordered accordingly. As
observed in [1, 9], the set F(D, min sup) can be conve-
niently represented through a standard trie [8], called Fre-
quent ItemSet Tree (FIST), whose nodes are in one-to-one
correspondence with the frequent itemsets. Specifically,
each node v is labelled with an item i and a support value
σv , so that the itemset associated with v is given by the se-
quence of items labelling the path from v to the root, and
has support σv . The root is associated with the empty item-
set and is labelled with (·, |D|). The children of every node
are arranged left-to-right consistently with the ordering of
their labelling items.

1When clear from the context, we will refer to frequent items or item-
sets, omitting D and min sup.

TID Items
1 A B D E F G H I
2 B C E L
3 A B D F H L
4 A B C D F G L
5 B G H L
6 A B D F I

Figure 1. Sample dataset (items in bold are
frequent for min sup = 3)

Figure 2. FIST for the sample dataset with
min sup = 3

A sample dataset and the corresponding FIST for
min sup = 3 are shown in Figures 1 and 2. Notice that
a different initial ordering of the items in I ′ would pro-
duce a different FIST. Most of the algorithms that compute
F(D, min sup) perform either a breadth-first or a depth-first
exploration of some FIST. In particular, our algorithm per-
forms a depth-first exploration of the FIST defined above.

2.1. Datasets used in the experiments

The experiments reported in this paper have been con-
ducted on several real and artificially generated datasets,
frequently used in previous works. We briefly describe them
below and refer the reader to [4, 16] for more details (see
also Table 1).
Pos: From Blue-Martini Software Inc., contains years
worth of point-of-sale data form an electronics retailer.
WebView1, WebView2: From Blue-Martini Software
Inc., contain several months of clickstream data from e-
commerce web sites.
Pumsb, Pumsb*: derived by [4] from census data.
Mushroom: It contains characteristics of various species of
mushrooms.
Connect-4, Chess: are relative to the respective games.

1. Determine I′ and D′;
2. Create IL and link it to D′;

X ← ∅; h← 0; `← 0;
while (` < |IL|) do

3. if (IL[`].count < min sup) then `← ` + 1;
else

4. if ((h > 0) AND (IL[`].item = X[h− 1]))
5. then `← ` + 1; h← h− 1;

else
6. X[h]← IL[`].item;
7. h← h + 1;
8. Generate itemset X;
9. for i← `− 1 downto 0 do

make IL[i].ptr point to head of t-list(i,D′

X);
IL[i].count← support of IL[i].item in D′

X ;
`← 0;

Figure 3. Main Strategy

IBM-Artificial: a class of artificial datasets obtained using
the generator developed in [3]. A dataset in this class is de-
noted through the parameters used by the generator, namely
as Dx.Ty.Iw.Lu.Nz, where x is the number of transactions,
y the average transaction size, w the average size of max-
imal potentially large itemsets, u the number of maximal
potentially large itemsets, and z the number of items.

Datasets from Blue-Martini Software Inc. and (usually)
the artificial ones are regarded as sparse, while the other
ones as dense.

3. The main strategy

The main strategy adopted by PatriciaMine is described
by the pseudocode in Figure 3 and is based on a depth-first
exploration of the FIST, similar to the one employed by the
algorithms in [7, 12, 14, 9]. However, it must be remarked
that while previous algorithms were expressed in a recur-
sive fashion, PatriciaMine follows an iterative exploration
strategy, which avoids the burden of managing recursion.

A first scan of the dataset D is performed to determine
the set I ′ of frequent items, and a pruned instance D′ of
the original dataset where non-frequent items and empty
transactions are removed (Step 1). Then, an Item List (IL)
vector is created (Step 2), where each entry IL[`] consists
of three fields: IL[`].item, IL[`].count, and IL[`].ptr, which
store, respectively, a distinct item of I ′, its support and a
pointer. The entries are sorted by decreasing value of the
support field, hence the most frequent items are positioned
to the top of the IL. The IL is linked to D′ as follows. For
each entry IL[`], the pointer IL[`].ptr points to a list that
threads together all occurrences of IL[`].item in D′. We call
such a list the threaded list for IL[`].item with respect to D′,
and denote it by t-list(`,D′). The initial IL for the sample

Figure 4. Initial IL and t-lists for the sample
dataset

dataset and the t-lists built on a natural representation of the
dataset, are shown in Figure 4. (The actual data structure
used to represent D′ will be discussed in the next section.)

Then, a depth-first exploration of the FIST is started vis-
iting the children of each node in left-to-right order. This
exploration is performed by the while-loop in the pseu-
docode. A vector X and an integer h are used to store, re-
spectively, the itemset associated with the last visited node
of the FIST and its length (initially, X is empty and h = 0,
meaning that the root has just been visited).

Let us consider the beginning of a generic iteration of
the while-loop and let v be the last visited node of the FIST,
associated with itemset X = (a1, a2, . . . , ah), where ah is
the item labelling v, and, for j < h, aj is the item labelling
the ancestor wj of v at distance h−j from it. For 1 ≤ j ≤ h,
let `j be the IL index such that IL[`j].item = aj , and note
that `h < `h−1 < · · · < `1; also denote by Xj the prefix
(a1, a2, . . . , aj) of X , which is the itemset associated with
wj (clearly, X = Xh).

The following invariant holds at the beginning of the it-
eration. Let `′ be an arbitrary index of the IL, and sup-
pose that `j+1 < `′ ≤ `j , for some 0 ≤ j ≤ h, setting
for convenience `0 = |IL| − 1 and `h+1 = −1. Then,
IL[`′].count stores the support of item IL[`′].item in D′

Xj
,

and IL[`′].ptr points to t-list(`′,D′

Xj
), that threads together

all occurrences of IL[`′].item in D′

Xj
(we let X0 = ∅ and

D′

X0
= D′).

During the current iteration and, possibly, a number of
subsequent iterations, the node u which is either the first
child of v, if any, or the first unvisited child of one of v’s
ancestors is identified (Steps 3÷5). If no such node is found
the algorithm terminates. It is easily seen that the item la-
belling u is the first item IL[`].item found scanning the IL
from the top, such that IL[`].count ≥ min sup and ` 6= `j

for every 1 ≤ j ≤ h. If node u is found, its correspond-
ing itemset is generated (Steps 6÷8). (Note that if u is the
child of an ancestor w of v, we have that before Step 6 is

Figure 5. IL and t-lists after visiting (L,4)

executed X[0 . . . h − 1] correctly stores the itemset associ-
ated with w.) Then, the first ` entries of the IL are updated
so to enforce the invariant for the next iteration (for-loop
of Step 9). Figure 5 shows the IL and t-lists for the sam-
ple dataset at the end of the while-loop iteration where node
u=(L,4) is visited and itemset X = (L) is generated. Ob-
serve that while the entries for items G and H (respectively,
IL[5] and IL[6]) are relative to the entire dataset, all other
entries are relative to D′

X .
The correctness of the whole strategy is easily estab-

lished by noting that the invariant stated before holds with
h = 0 at the beginning of the while-loop, i.e., at the end of
the visit of the root of the FIST.

4. Representing the dataset through a Patricia
trie

Crucial to the efficiency of the main strategy presented
in the previous section is the choice of the data structure
employed to represent the dataset D′. Some previous works
represented the dataset D′ through a standard trie, called
FP-tree, built on the set of transactions, with items sorted
by decreasing support [7, 14]. The advantage of using the
trie is substantial for dense datasets because of the compres-
sion achieved by merging common prefixes, but in the worst
case, when the dataset is highly sparse, the number of nodes
may be close to the size N of the original dataset (i.e., the
sum of all transaction lengths). Since each node of the trie
stores an item, a count value, which indicates the number
of transactions sharing the prefix found along the path from
the node to the root, plus other information needed for nav-
igating the trie (e.g., pointers to the children and/or to the
father), the overall space taken by the trie may turn out to
be αN , where α is a constant greater than 1.

For these reasons, it has been suggested in [12, 9] that
sparse datasets, for which the trie becomes space inefficient,
be stored in a straightforward fashion as arrays of transac-
tions. However, these works also encourage to switch to the
trie representation during the course of execution, for por-

Figure 6. Standard trie for the sample dataset

Figure 7. Patricia trie for the sample dataset

tions of the dataset which are estimated to be sufficiently
dense. However, an effective heuristic to decide when to
switch from one structure to another is hard to find and may
be costly to implement. Moreover, even if a good heuristic
was found, the overhead incurred in the data movement may
reduce the advantages brought by the compression gained.

To avoid the need for two alternative data structures to at-
tain space efficiency, our algorithm resorts to a compressed
trie, better known as Patricia trie [8]. The Patricia trie for
a dataset D′ is a modification of the standard trie: namely,
each maximal chain of nodes v1 → v2 → · · · → vk, where
all vi’s have the same count value c and (except for vk) ex-
actly one child, is coalesced into a single node that inher-
its count value c, vk’s children, and stores the sequence of
items previously stored in the vi’s. (A Patricia trie repre-
sentation of a transaction dataset has been recently adopted
by [6] in an dynamic setting where the dataset evolves with
time, and on-line queries on frequencies of individual item-
sets are supported.)

The standard and Patricia tries for the sample dataset
are compared in Figure 6 and 7, respectively. As the fig-
ure shows, a Patricia trie may still retain some single-child
nodes, however these nodes identify boundaries of transac-
tions that are prefixes of other transactions. The following
theorem provides an upper bound on the overall size of the

Patricia trie.

Theorem 1 A dataset D′ consisting of M transactions with
aggregate size N can be represented through a Patricia trie
of size at most N + O (M).

Proof. Consider the Patricia trie described before. The trie
has less than 2M nodes since each node which has either
zero or one child accounts for (one or more) distinct trans-
actions, and, by standard properties of trees, all other nodes
are at most one less than the number of leaves. The theorem
follows by noting that the total number of items stored at
the nodes is at most N . �

It is important to remark that even for sparse datasets,
which exhibit a moderate sharing of prefixes among trans-
actions, the total number of items stored in the trie may turn
out much less than N , and if the number of transactions
is M � N , as is often the case, the Patricia trie becomes
very space efficient. To provide empirical evidence of this
fact, Table 1 compares the space requirements of the repre-
sentations based on arrays, standard trie, and Patricia trie,
for the datasets introduced before, on some fixed support
thresholds. For each dataset the table reports: the number of
transactions, the average transaction size (AvTS), the cho-
sen support threshold (in percentage), and the sizes in bytes
of the various representations (data are relative to datasets
pruned of non-frequent items). An item is assumed to fit
in one word (4 bytes). For the array-based representation
we considered an overhead of 1 word for each transaction,
while for the standard and Patricia tries, we considered an
overhead per node of 4 and 5 words, respectively, which are
needed to store the count, the pointer to the father and other
information used by our algorithm (the extra word in each
Patricia trie node is used to store the number of items at the
node).

The data reported in the table show the substantial com-
pression achieved by the Patricia trie with respect to the
standard trie, especially in the case of sparse datasets. Also,
the space required by the Patricia trie is comparable to, and
often much less than that of the simple array-based repre-
sentation. In the few cases where the former is larger, in-
dicated in bold in the table, the difference between the two
is rather small (and can be further reduced through a more
compact representation of the Patricia trie nodes). Further-
more, it must be observed that in the execution of the algo-
rithm additional space is required to store the threaded lists
connected to the IL. Initially, this space is proportional to
the overall number of items appearing in the dataset repre-
sentation, which is smaller for the Patricia trie due to the
sharing of prefixes among transactions.

Construction of the Patricia trie Although the Patricia
trie provides a space efficient data structure for representing

D′, its actual construction may be rather costly, thus influ-
encing the overall performance of the algorithm especially
if, as it will be discussed later, the dataset is projected a
number of times during the course of the algorithm.

A natural construction strategy starts from an initial
empty trie and inserts one transaction at a time into it. To in-
sert a transaction t, the current trie is traversed downwards
along the path that corresponds to the prefix shared by t with
previously inserted transactions, suitably updating the count
at each node, until either t is entirely covered, or a point in
t is reached where the shared prefix ends. In the latter case,
the remaining suffix is stored into a new node added as a
child of the last node visited. In order to efficiently search
the correct child of a node v during the downward traver-
sal of the trie, we employ a hash table whose buckets store
pointers to the children of v based on the first items they
contain. (A similar idea was employed by the Apriori algo-
rithm [3] in the hash tree.) The number of buckets in the
hash table is chosen as a function of the number of chil-
dren of the node, in order to strike a good trade-off between
the space taken by the table and the search time. Moreover,
since during the mining of the itemsets the trie is only tra-
versed upwards, the space occupied by the hash table can
be freed after the trie is build.

5. Optimizations

A number of optimizations have been introduced and
tested in the implementation of the main strategy described
in Section 3. In the following subsections, we will always
make reference to a generic iteration of the while-loop of
Figure 3 where a new frequent itemset X is generated in
Step 8 after adding, in Step 6, item IL[`].item. Also, we
define as locally frequent items those items IL[j].item, with
j < `, such that their support in D′

X is at least min sup.

5.1. Projection of the dataset

After frequent itemset X has been generated, the discov-
ery of all frequent supersets Y ⊃ X could proceed either on
a physical projection of the dataset (i.e., a materialization of
D′

X) and on a new IL, both restricted to the locally frequent
items, or on the original dataset D′, with D′

X is identified
by means of the updated t-lists in the IL (in this case, a new
IL or the original one can be used).

The first approach, which was followed in FP-Growth
[7], is effective if the new IL and D′

X shrink considerably.
On the other hand, in the second approach, employed in
Top-Down FP-Growth [14], no time and space overheads
are incurred for building the projected datasets and main-
taining in memory all of the projected datasets along a path
of the FIST.

Dataset Transactions AvgTS min sup % Array Trie Patricia
Chess 3,196 35.53 20 467,060 678,560 250,992
Connect-4 67,557 31.79 60 8,861,312 69,060 55,212
Mushroom 8,124 22.90 1 776,864 532,720 380,004
Pumsb 49,046 33.48 60 6,765,568 711,800 349,180
Pumsb* 49,046 37.26 20 7,506,220 5,399,120 2,177,044
T10.I4.D100k.N1k.L2k 100,000 10.10 0.002 4,440,908 14,294,760 5,129,212
T40.I10.D100k.N1k.L2k 100,000 39.54 0.25 16,217,064 71,134,380 16,935,176
T30.I16.D400k.N1k.L2k 397,487 29.30 0.5 48,175,824 163,079,980 41,023,616
POS 515,597 6.51 0.01 15,497,908 32,395,740 13,993,508
WebView1 59,601 2.48 0.054 831,156 1,110,960 618,292
WebView2 77,512 4.62 0.004 1,742,516 4,547,380 1,998,316

Table 1. Space requirements of array-based, standard trie, and Patricia trie representations

Ideally, one should implement a hybrid strategy allow-
ing for physical projections only when they are beneficial.
This was attempted in OpportuneProject [9] where physical
projections are always performed when the dataset is rep-
resented as an array of transactions (and if sufficient mem-
ory is available), while they are inhibited when the dataset
is represented through a trie, unless sufficient compression
can be attained. However, in this latter case, no precise
heuristic is provided to decide when physical projection
must take place. In fact, the compression rate is rather hard
to estimate without doing the actual projection, hence incur-
ring high costs.

In our implementation, we experimented several heuris-
tics for limiting the number of projections. Although no
heuristic was found superior to all others in every experi-
ment, a rather simple heuristic exhibited very good perfor-
mance in most cases: namely, to allow for physical projec-
tion only at the top s levels of the FIST and when the locally
frequent items are at least k (in the experiments, s = 3 and
k = 10 seemed to work fairly well). The rationale behind
this heuristic is that the cost of projection is justified if the
mining of the projected dataset goes on for long enough to
take full advantage of the compression it achieves. More-
over, the heuristic limits the memory blowup by requiring
at most s projected datasets to coexist in memory. Exper-
imental results regarding the effectiveness of the heuristic,
will be presented and discussed in Section 6.1

5.2. Immediate generation of subtrees of the FIST

Suppose that at the end of the for-loop every locally fre-
quent item IL[j].item, with j < `, has support IL[j].count =
IL[`].count = c in D′

X . Let Z denote the set of the locally
frequent items. Then, for every Z ′ ⊆ Z we have that X∪Z ′

is frequent with support c. Therefore, we can immediately
generate all of these itemsets and set ` = ` + 1 rather than

resetting ` = 0 after the for-loop.2 Viewed on the FIST,
this is equivalent to generate all nodes in the subtree rooted
at the node associated with X , without actually exploring
such a subtree.

A similar optimization was incorporated in previ-
ous implementations, but limited to the case when the
t-list(`,D′

X), pointed by IL[`].ptr, consists of a single node.
Our condition is more general and encompasses also cases
when t-list(`,D′

X) has more than one node.

5.3. Implementation of the for loop

Another important issue concerns the implementation of
the for-loop (Step 9), which contributes a large fraction of
the overall running time. By the invariant previously stated,
we have that, before entering the for-loop, IL[`].ptr points
to head of t-list(`,D′

X), that is, it threads together all of the
occurrences of IL[`].item in nodes of the trie corresponding
to transactions in D′

X . Moreover, the algorithm must ensure
that the count of each such node is relative to D′

X and not
to the entire dataset. Let TX denote the portion of the trie
whose leaves are threaded together by t-list(`,D′

X).
The for-loop determines t-list(j,D′

X) for every 0 ≤ j <

` − 1, and updates IL[j].count to reflect the actual sup-
port of IL[j].item in D′

X . To do so, one could simply take
each occurrence of IL[`].item threaded by t-list(`,D′

X) and
walk up the trie suitably updating the count of each node
encountered, and the count and t-list of each item stored
at the node. This is essentially, the strategy implemented
by Top Down FP-growth [14] and OpportuneProject (under
trie representation) [9]. However, it has the drawback of
traversing every node v ∈ TX multiple times, once for each
leaf in v’s subtree. It is not difficult to show an example

2This optimization is inspired by the concept of closed frequent itemset
[11] in the sense that only X ∪ Z is closed and would be generated when
mining this type of itemsets.

where, with this approach, the number of node traversals is
quadratic in the size of TX .

In our implementation, we adopted an alternative strat-
egy that, rather than traversing each individual leaf-root
path in TX , performs a global traversal from the leaves to
the root guided by the entries of the IL which are being up-
dated. In this fashion, each node in TX is traversed only
once. We refer to this strategy as the item-guided traver-
sal. Specifically, the item-guided traversal starts by walk-
ing through the nodes threaded together in t-list(`,D′

X).
For each such node v, the count and t-list of each item
IL[j].item stored in v, with j < `, are updated, and v

is inserted in t-list(j,D′

X) marked as visited. Also, the
count and t-list of the last item, say IL[j′].item, stored in
v’s father u are updated and u is inserted in t-list(j′,D′

X)
marked as unvisited. After all nodes in t-list(`,D′

X) have
been dealt with, the largest index j < ` is found such that
t-list(j,D′

X) contains some unvisited nodes (which can be
conveniently positioned at the front of the list). Then, the
item-guided traversal is iterated walking through the unvis-
ited nodes in t-list(j,D′

X). It terminates when no threaded
list is found that contains unvisited nodes (i.e., the top of the
IL is reached). The following theorem is easily proved.

Theorem 2 The item-guided traversal correctly visits all
nodes in TX . Moreover, each such node with k direct chil-
dren is touched k times and fully traversed exactly once.

6. Experimental results

This section presents the results of several experiments
we performed on the datasets described in Section 2.1.
Specifically, in Subsection 6.1 we assess the effectiveness
of our implementation, while in Subsections 6.2 and 6.3 we
compare the performance of PatriciaMine with that of other
prominent algorithms. The experiments reported in the first
two subsections have been conducted on an IBM RS/6000
SP multiprocessor, using a single 375Mhz POWER3-II pro-
cessor, with 4GB main memory, and two 9.1 GB SCSI
disks under the AIX 4.3.3 operating system. On this plat-
form, running times as well as other relevant quantities
(e.g., cache and TLB hits/misses) have been measured with
hardware counters, accessed through the HPM performance
monitor by [5]. Instead, since for OpportuneProject only the
object code for a Windows platform was made available to
us by the authors, the experiments in Subsection 6.3 have
been performed on a 1.7Ghz Pentium IV PC, with 256MB
RAM, and 100GB hard disk, under Windows 2000 Pro.

6.1. Effectiveness of the heuristic for conditional
projection

A first set of experiments was run to verify whether
allowing for physical projections of the dataset improves

performance and if the heuristic we implemented to de-
cide when to physically project the dataset is effec-
tive. The results of the experiments are reported in Fig-
ures 8 and 9 (running times do not include the output
of the frequent itemsets). For each dataset, we com-
pared the performance of PatriciaMine using the heuris-
tic (line “WithProjection”) with the performance of a ver-
sion of PatriciaMine where physical projection is inhib-
ited (line “WithoutProjection”), on four different values
of support, indicated in percentage. It is seen that the
heuristic yields performance improvements, often very
substantial, at low support values (e.g., see Connect-
4, Pumsb*, WebView1/2, T30.I16.D400k.N1k.L2k, and
T40.I10.D100k.N1k.L2k) while it has often no effect or in-
curs a slight slowdown at higher supports. This can be ex-
plained by the fact that at high supports the FIST is shal-
low and the projection overhead cannot be easily hidden by
the subsequent computation. Note that the case of Pos is
anomalous. For this dataset the heuristic, and in fact all of
the heuristics we tested, slowed down the execution, hence
suggesting that physical projection is never beneficial. This
case, however, will be further investigated.

We also tested the speed-up achieved by immediately
generating all supersets of a certain frequent itemset X

when the locally frequent items have the same support as
X . In particular, we observed that the novelty introduced
in our implementation, that is considering also those cases
when the threading list t-list(`,D′

X) consists of more than
one node, yielded a noticeable performance improvement
(e.g., a factor 1.4 speed-up was achieved on WebView1 with
support 0.054%, and a factor 1.6 speed-up was achieved on
WebView2 with support 0.004%).

We finally compared the effectiveness of the implemen-
tation of the for-loop of Figure 3 based on the novel item-
guided traversal, with respect to the straightforward one.
Although the item-guided traversal is provably superior in
an asymptotic worst-case sense (e.g., see Theorem 2 and the
discussion in Section 5.3) , the experiments provided mixed
results. For all dense datasets and for Pos, the item-guided
traversal turned out faster than the straightforward one up to
a factor 1.5 (e.g., for Mushroom with support 5%), while for
sparse datasets it resulted actually slower by a factor at most
1.2. This can be partly explained by noting that if the tree to
be traversed is skinny (as is probably the case for the sparse
datasets, except for Pos) the item-guided traversal cannot
provide a substantial improvement while it suffers a slight
overhead for the scan of the IL. Moreover, for some sparse
datasets, we observed that while the item-guided traversal
performs a smaller number of instructions, it exhibits less
locality (e.g., it incurs higher TLB misses) which causes
the higher running time. We conjecture that a refined imple-
mentation could make the item-guided traversal competitive
even for sparse datasets.

60% 40% 30% 20%
10−1

100

101

102

 T
im

e
 (

s
)

 Support

 Chess

WithProjection
WithoutProjection

5% 2% 1% 0.25%
10−1

100

101

102

 T
im

e
 (

s
)

 Support

Mushroom

WithProjection
WithoutProjection

90% 80% 60% 50%
10

0

10
1

10
2

 T
im

e
 (

s
)

 Support

Pumsb

WithProjection
WithoutProjection

50% 40% 30% 20%
10

0

10
1

10
2

10
3

10
4

 T
im

e
 (

s
)

 Support

Pumsb*

WithProjection
WithoutProjection

70% 60% 50% 40%
10

0

10
1

10
2

 T
im

e
(s

)

 Support

Connect−4

WithProjection
WithoutProjection

0.5% 0.1% 0.05% 0.01%
10

0

10
1

10
2

10
3

 T
im

e
(s

)

 Support

Pos

WithProjection
WithoutProjection

Figure 8. Comparison between PatriciaMine
with and without projection on Chess, Mush-
room, Pumsb, Pumsb*, Connect-4, Pos

6.2. Comparison with other algorithms

In this subsection, we compare PatriciaMine with other
prominent algorithms whose source code was made avail-
able to us: namely FP-Growth [7], which has been men-
tioned before, DCI [10], and Eclat [15].

DCI (Direct Count & Intersect) performs a breadth-first
exploration of the FIST, generating a set of candidate item-
sets for each level, computing their support, and then de-
termining the frequent ones. It employs two alternative
representations for the dataset, a horizontal and a vertical
one, and, respectively, a count-based and intersection-based
method to compute the supports, switching adaptively from
one to the other based on the characteristics of the dataset.

Eclat, instead is based on a depth-first exploration strat-
egy (like FP-Growth and PatriciaMine). It employs a verti-
cal representation of the dataset which stores with each item
the list of transaction IDs (TID-list) where it occurs, and
determines an itemset’s support through TID-lists intersec-
tions. The counting mechanism was successively improved
in dEclat [16] by using diffsets, that is, differences between

0.075% 0.067% 0.059% 0.054%
10−1

100

101

102

103

 T
im

e
 (

s
)

 Support

WebView1

WithProjection
WithoutProjection

0.065% 0.052% 0.045% 0.004%
10−1

100

101

102

 T
im

e
 (

s
)

 Support

WebView2

WithProjection
WithoutProjection

10% 5% 1% 0.5%
10

0

10
1

10
2

10
3

10
4

 T
im

e
 (

s
)

 Support

T30I16D400k

WithProjection
WithoutProjection

5% 2.5% 0.5% 0.25%
10

0

10
1

10
2

10
3

 T
im

e
 (

s
)

 Support

T40I100D100k

WithProjection
WithoutProjection

0.050% 0.010% 0.005% 0.002%
10

0

10
1

10
2

 T
im

e
 (

s
)

 Support

T10I4D100k

WithProjection
WithoutProjection

Figure 9. Comparison between PatriciaMine
with and without projection on WebView1,
WebView2, and some artificial datasets

TID-lists, in order to avoid managing very long TID-lists.
For FP-Growth and Eclat, we used the source code de-

veloped by Goethals3, while for DCI we obtained the source
code directly from the authors. The implementation of Eclat
we employed includes the use of diffsets.

The experimental results are reported in Figures 10 and
11. For each dataset, a graph shows the running times
achieved by the algorithms on four support values, indicated
in percentages. (Here we included the output time since for
DCI the writing on file of frequent itemsets is functional
to the algorithm’s operation.) It is easily seen that the per-
formance of PatriciaMine is significantly superior to that of
Eclat and FP-Growth on all datasets and supports. We also
observed that Eclat features higher locality than FP-Growth,
exhibiting in some cases a better running time, though per-
forming a larger number of instructions.

Compared to DCI, PatriciaMine is consistently and often
substantially faster at low values of support, while at higher
supports, where execution time is in the order of a few sec-

3Available at http://www.cs.helsinki.fi/u/goethals

onds, the two algorithms exhibit similar performance and
sometimes PatriciaMine is slightly slower, probably due to
the trie construction overhead. However, it must be re-
marked that small differences between DCI and Patricia at
low execution times could also be due to the different for-
mat required of the initial dataset, and different input/output
functions employed by the two algorithms.

60% 50% 40% 35%
100

101

102

103

 T
im

e
(s

)

 Support

 Chess
Patricia
DCI
Eclat
FP−growth

15% 10% 5% 2%
10−1

100

101

102

103
 T

im
e

(s
)

 Support

Mushroom
Patricia
DCI
Eclat
FP−growth

90% 80% 70% 60%
10

0

10
1

10
2

10
3

10
4

 T
im

e
(s

)

 Support

 Pumsb
Patricia
DCI
Eclat
FP−growth

70% 60% 50% 40%
10

0

10
1

10
2

 T
im

e
(s

)

 Support

Pumsb*
Patricia
DCI
Eclat
FP−growth

90% 80% 70% 60%
10

0

10
1

10
2

10
3

10
4

 T
im

e
(s

)

 Support

 Connect−4
Patricia
DCI
Eclat
FP−growth

1% 0.5% 0.1% 0.05%
10

0

10
1

10
2

10
3

 T
im

e
(s

)

 Support

Pos
Patricia
DCI
Eclat
FP−growth

Figure 10. Comparison of PatriciaMine, DCI,
Eclat and FP-Growth on Chess, Mushroom,
Pumsb, Pumsb*, Connect-4, Pos

6.3. Comparison with OpportuneProject

Particularly relevant for our work is the comparison be-
tween PatriciaMine and OpportuneProject [9], which, to the
best of our knowledge, represents the latest and most ad-
vanced algorithm in the family stemmed from FP-Growth.
For lack of space, we postpone a detailed and critical discus-
sion of the strengths and weaknesses of the two algorithms
to the full version of the paper.

Figures 12 and 13, report the performances exhib-
ited by PatriciaMine and OpportuneProject on the Pen-
tium/Windows platform for a number of datasets and sup-
ports. It can be seen that, the performance of Patrici-

0.085% 0.075% 0.067% 0.060%
10−1

100

101

102

 T
im

e
(s

)

 Support

 WebView1
Patricia
DCI
Eclat
FP−growth

0.065% 0.058% 0.052% 0.045%
100

101

102

103

 T
im

e
(s

)

 Support

WebView2
Patricia
DCI
Eclat
FP−growth

0.05% 0.01% 0.005% 0.002%
10

0

10
1

10
2

10
3

10
4

 T
im

e
(s

)

 Support

T10I4D100k
Patricia
DCI
Eclat
FP−growth

5% 2.5% 0.5% 0.25%
10

0

10
1

10
2

10
3

10
4

 T
im

e
(s

)

 Support

T40I100D100k
Patricia
DCI
Eclat
FP−growth

Figure 11. Comparison of PatriciaMine, DCI,
Eclat and FP-Growth on WebView1, Web-
View2, and some artificial datasets

aMine is consistently superior, up to one order of magnitude
(e.g., in Pumsb*). The only exception are Pos (see graph
labelled “Pos with projection”) and the artificial dataset
T30.I16.D400k.N1k.L2k. For Pos, we have already ob-
served that our heuristic for limiting the number of phys-
ical projections does not improve the running time. In fact,
it is interesting to note that by inhibiting projections, Patri-
ciaMine becomes faster than OpportuneProject (see graph
labelled “Pos without projection”). This suggests that a bet-
ter heuristic could eliminate this anomalous case.

As for T30.I16.D400k.N1k.L2k, some measurements we
performed revealed that the time taken by the initialization
of the Patricia trie accounts for a significant fraction of the
running time at high support thresholds, and such an ini-
tial overhead cannot be hidden by the subsequent mining
activity. However, at lower support thresholds, where the
computation of the frequent itemsets dominates over the trie
construction, PatriciaMine becomes faster than Opportune-
Project.

Finally we report that on WebView1 for absolute support
32 (about 0.054%), OpportuneProject ran out of memory
while PatriciaMine successfully completed the execution.

References

[1] R. Agrawal, C. Aggarwal, and V. Prasad. A tree projection
algorithm for generation of frequent itemsets. Journal of
Parallel and Distributed Computing, 61(3):350–371, 2001.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
tion rules between sets of items in large databases. In Proc.

60% 40% 30% 20%
10−1

100

101

102

 T
im

e
 (

s
)

 Support

Chess

Patricia
Opportune Project

5% 2% 1% 0.25%
10−1

100

101

102

 T
im

e
 (

s
)

 Support

Mushroom

Patricia
Opportune Project

90% 80% 60% 50%
10

0

10
1

10
2

 T
im

e
 (

s
)

 Support

Pumsb

Patricia
Opportune Project

50% 40% 30% 20%
10

0

10
1

10
2

10
3

10
4

 T
im

e
 (

s
)

 Support

Pumsb*

Patricia
Opportune Project

70% 60% 50% 40%
10

0

10
1

10
2

 T
im

e
(s

)

 Support

Connect−4
Patricia
Opportune Project

10% 5% 1% 0.5%
10

0

10
1

10
2

10
3

 T
im

e
(s

)

 Support

T30I16D400k
Patricia
Opportune Project

Figure 12. Comparison of PatriciaMine
and OpportuneProject on Chess, Mush-
room, Pumsb, Pumsb*, Connect-4, and
T30I16D400k

of the ACM SIGMOD Intl. Conference on Management of
Data, pages 207–216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. In Proc. of the 20th Very Large Data Base
Conference, pages 487–499, 1994.

[4] R. Bayardo. Efficiently mining long patterns from databases.
In Proc. ot the ACM SIGMOD Intl. Conference on Manage-
ment of Data, pages 85–93, 1998.

[5] L. DeRose. Hardware Performance Monitor (HPM) toolkit.
version 2.3.1. Technical report, Advanced Computer Tech-
nology Center, Nov. 2001.

[6] A. Hafez, J. Deogun, and V. Raghavan. The item-set tree:
A data structure for data mining. In Proc. of the 1st Int.
Conference on Data Warehousing and Knowledge Discov-
ery, LNCS 1676, pages 183–192, 1999.

[7] J. Han, J. Pei, and Y. Yin. Mining frequent patterns with-
out candidate generation. In Proc. of ACM SIGMOD Intl.
Conference on Management of Data, pages 1–12, 2000.

[8] D. Knuth. The Art of Computer Programming, volume 3:
Sorting and Searching. Addison Wesley, Reading, MA,
1973.

[9] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent
item sets by opportunistic projection. In Proc. of the 8th

0.5% 0.1% 0.05% 0.01%
10

0

10
1

10
2

 T
im

e
 (

s
)

 Support

Pos without projection

Patricia
Opportune Project

0.5% 0.1% 0.05% 0.01%
10

0

10
1

10
2

 T
im

e
 (

s
)

 Support

Pos with projection

Patricia
Opportune Project

0.075% 0.067% 0.059% 0.055%
10−1

100

101

102

 T
im

e
 (

s
)

 Support

WebView1

Patricia
Opportune Project

0.065% 0.052% 0.045% 0.004%
10−1

100

101

102

 T
im

e
 (

s
)

 Support

WebView2

Patricia
Opportune Project

Figure 13. Comparison of PatriciaMine and
OpportuneProject on Pos, WebView1, Web-
View2

ACM SIGKDD Intl. Conference on Knowledge Discovery
and Data Mining, pages 229–238, July 2002.

[10] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adap-
tive resource-aware mining of frequent sets. In Proc. of
the IEEE Intl. Conference on Data Mining, pages 338–345,
Dec. 2002.

[11] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discover-
ing frequent closed itemsets for association rules. In Proc.
of the 7th Int. Conference on Database Theory, pages 398–
416, Jan. 1999.

[12] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-
mine: Hyper-structure mining of frequent patterns in large
databases. In Proc. of IEEE Intl. Conference on Data Min-
ing, pages 441–448, 2001.

[13] A. Savasere, E. Omiecinski, and S. Navathe. An efficient
algorithm for mining association rules in large databases. In
Proc. of the 21st Very Large Data Base Conference, pages
432–444, Sept. 1995.

[14] K. Wang, L. Tang, J. Han, and J. Liu. Top down FP-Growth
for association rule mining. In Proc. of the 6th Pacific-Asia
Conf. on Advances in Knowledge Discovery and Data Min-
ing, LNCS 2336, pages 334–340, May 2002.

[15] M. Zaki. Scalable algorithms for association mining. IEEE
Trans. on Knowledge and Data Engineering, 12(3):372–
390, May-June 2000.

[16] M. Zaki and K. Gouda. Fast vertical mining using diffsets. In
Proc. of the 9th ACM SIGKDD Intl. Conference on Knowl-
edge Discovery and Data Mining, Aug. 2003.

	Introduction
	The Method
	Adaptation to Frequency Constraints
	The Organization of the Implementation
	The Experiments
	Conclusions and Future Work

