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Abstract

We consider L1-isotonic regression and L∞ isotonic and unimodal regression. For L1-

isotonic regression, we present a linear time algorithm when the number of outputs are

bounded. We extend the algorithm to construct an approximate isotonic regression in

linear time when the output range is bounded. We present linear time algorithms for

L∞ isotonic and unimodal regression.

1 Introduction

Isotonic regression in the Lp norm, p > 0, is defined as follows. Let x = [x1, x2, . . . , xn], xi ∈
R, be given. The task is to construct a corresponding sequence w = [w1 ≤ w2 ≤ . . . ≤ wn]
so that Ep(w) is minimized for some given p, where

Ep(w) =











1
n

n
∑

i=1

|xi − wi|
p 1 ≤ p <∞,

max
i
|xi − wi| p =∞.

The regression is unimodal if w1 ≤ w2 ≤ · · · ≤ wi ≥ wi+1 ≥ · · · ≥ wn, for some i; xi is
denoted a crossover point. The prefix-isotonic regression problem is to construct the isotonic
regression for all prefixes of x. We study the cases p = 1 and p = ∞. The case p = 1 is
sometimes denoted isotonic median regression. We will refer to E1(w) or E∞(w) as the error
of the regression when the context is clear. The efficiency of an algorithm is measured in
terms of n.

In this paper, we provide two output sensitive isotonic median regression algorithms and
algorithms for L∞ regression. More specifically,

i. Suppose that xi ∈ X where |X | = K. Then, L1-isotonic regression can be performed in
O(n logK) time, linear in n. In the worst case, K = n and we have O(n logn).

ii. Suppose that xi ∈ [a, b], ∀i. Given ε > 0, we construct an approximate L1-isotonic
regression with error at most the optimal plus ε in time O(n log( b−a

ε
)).
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iii. We give linear time algorithms for L∞ prefix-isotonic and unimodal regression.

Applications of isotonic regression can be found in [12, 11]. Isotonic and unimodal re-
gression are both examples of nonparametric shape constrained regression. Such regressions
are useful when prior knowledge about the shape but not the parametric form of a function
are known. The importance of isotonic regression stems from the fact that it is often the
case in statistical estimation or learning that one wishes to estimate a function that is known
to be monotonically increasing (say), even though the data will not necessarily exhibit this
behavior, on account of noise, [6, 13]. Examples include the probability of heart attack as
a function of cholesterol level, [6]; the “credit worthiness” as a function of income, [13]. To
illustrate, suppose that we would like to determine cholesterol level thresholds at which a
heart attack becomes more prevalent, and we have a sequence of patients with cholesterol
levels c1 < c2 < . . . < cn. Associated to each patient i, let xi be the number of heart
attacks they had within the following year, xi = 0, 1, 2, . . . , K for some small value of K.
The isotonic regression determines thresholds for the cholesterol levels that identify different
severities for heart attack risk.

The outline of the remainder of the paper is as follows. First we summarize the previous
work in this area. Then, we present some results on L1 isotonic regression that lead to the
final O(n log K) algorithm. Lastly, we cover L∞ isotonic regression, from which the L∞

unimodal regression naturally follows. We give all algorithms in their respective sections.

1.1 Previous Work

L2 isotonic regression can be performed efficiently in linear time using some variant of a
Pooling Adjacent Violators (PAV) algorithm [1, 11, 12]. For L1 isotonic regression, algo-
rithms in the efficiency class O(n log n) are known. Some approaches to isotonic regression
are given in [2, 9, 10, 12].

The L1 and L2 prefix-isotonic regression problems have been solved optimally in [14].
For L2, the runtime is O(n), which is clearly optimal, and for L1 it is O(n logn), which, by
a reduction from sorting, is optimal [14]. While O(n log n) is optimal for L1 prefix-isotonic
regression, it is not known whether the apparently simpler isotonic regression problem can
be performed faster than O(n log n). We take a first step in this direction by obtaining a
linear bound in terms of the size of the output (K).

Unimodal regression has been studied extensively in [14], where the author gives a linear
time algorithm for the L2 case, and an O(n logn) algorithm for the L1 cases. This result was
a significant improvement over the exponential and quadratic algorithms that existed prior
to this work [4, 5, 7, 8].

A general PAV type algorithm, [14], relies on the ability to efficiently update a suitably
defined “mean”. Such an algorithm is easily applicable to the L1 and L2 cases, however, for
p > 2, the “Lp-mean” is not conveniently updated. For the case p =∞ it is not clear what
this “mean” should be, and hence, the algorithm cannot be applied.

We are unaware of any published work regarding the L∞ case. Our algorithms for L∞

prefix-isotonic and unimodal regression are linear time, and hence optimal.
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2 L1-Isotonic Regression

We use the notation [i, j] to refer to the interval of integers {i, i + 1, . . . , j}, and x[i, j] to
represent the sequence [xi, . . . , xj ]. In this section, the isotonic regression will always refer
to L1-optimal isotonic regression. Without loss of generality, we can represent the isotonic
regression by a collection of monotonically increasing level sets, or intervals to each of which
is associated a value or level : C = {Iα, hα}

K
α=1. Each Iα is an interval of the form Iα = [iα, jα].

We assume that i1 = 1, jK = n, iα+1 = jα + 1 and hα < hα+1 for 1 ≤ α < K. The isotonic
regression that is induced by C is given by assigning wi = hα for all i ∈ Iα. We define the
error for C, E1(C), as the error E1(w) of the corresponding induced isotonic regression w.
The example below illustrates all this notation for the sequence x = [2, 1, 2, 1, 2].

wi

1 5432

2

1

i

wi

1 5432

2

1

i

wi

1 5432

2

1

i

C = {([1, 4], 1), ([5, 5], 2)} C = {([1, 2], 1), ([3, 5], 2)} C = {([1, 5], 2)}
w = [1, 1, 1, 1, 2] w = [1, 1, 2, 2, 2] w = [2, 2, 2, 2, 2]
E1(C) = 2 E1(C) = 2 E1(C) = 2

Note that the isotonic regression is not unique. To remove this ambiguity, we will only con-
sider the isotonic regression in which the sum of the wi is minimized (the leftmost regression
in the figure). We define the weight of the isotonic regression by W (C) =

∑

i wi, where {wi}
is the isotonic regression induced by C. Thus if C is an isotonic regression, and C′ is any other
monotonically increasing collection of level sets, then E1(C) ≤ E1(C

′), and if E1(C) = E1(C
′),

then W (C) < W (C′) (we will show later that the isotonic regression is indeed unique).
Throughout, we will refer to the unique isotonic regression by C = {Iα = [iα, jα], hα}

K
α=1,

and in general, we will use Iα to refer both to the interval [iα, jα], as well as to the set of
points {xiα , . . . , xjα

}.
We define the median of a level set I = [i, j], M(I), to be the median of the points

{xi, xi+1, . . . , xj}, where the median is defined in the usual way:

M(y1 ≤ y2 . . . ≤ ym) = yb m+1

2 c

Note that M(I) = xk for some k ∈ [i, j]. Further, note that if M(S1) ≤M(S2) for any S1, S2,
then M(S1) ≤ M(S1 ∪ S2) ≤ M(S2). It is also well known that the median is a minimizer
of the L1 error. Since we require the weight of the isotonic regression to be minimum, we
conclude that the level of each level set has to be the median of the set:

Proposition 2.1 hα = M(Iα) for all α ∈ [1, K].

Proof: Suppose that hα < M(Iα) for some α. This means that there are strictly more
points in Iα above hα than below. By raising hα we can decrease the error, contradicting the
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optimality of the isotonic regression. Suppose that hα > M(Iα) for some α. In this case, by
the definition of the median, there are at least as many points below hα as there are above.
In this case, we guarantee not to increase the error by lowering hα, and at the same time
decrease the sum of the wi contradicting the minimality of W (C).

In particular, hα = xk for some k ∈ [iα, jα], i.e., every level is one of the xi’s. Note that
since, hα < hα+1, we immediately have that the sequence of medians must be increasing.

Corollary 2.2 M(Iα) < M(Iβ) for 1 ≤ α < β ≤ K.

The next proposition is one of the crucial properties that we will use. It essentially states
that the isotonic regression for a set of points is the union of the isotonic regressions for two
disjoint subsets of the points. Consider any level set Iα in the isotonic regression and define
the left and right subsets of the points with respect to this level set by Sl = {x1, . . . , xiα−1}
and Sr = {xiα, . . . , xn}. We define the left and right isotonic regressions Cl and Cr as the
isotonic regressions for the respective left and right subsets. Then C = Cl ∪Cr. We will need
the following lemma to prove the proposition,

Lemma 2.3 For any α, with Iα = [iα, jα] ∈ C,

(i) M({xiα , . . . , xj}) ≥M(Iα), for all j ≥ iα.
(ii) M({xi, . . . , xjα

}) ≤M(Iα), for all i ≤ jα.

Proof: (i) Let Iα be the last level set for which there exists a j ≥ iα, with M({xiα , . . . , xj}) <
M(Iα). Suppose j > jα. Then, M(xiα+1

, . . . , xj) < M(Iα) < M(Iα+1) and so Iα is not the
last level set with this property. Thus, j < jα. Decompose (Iα, hα) into two level sets:
(I1 = {xiα, . . . , xj}, max(hα−1, M(I1))) and (I2 = {xj+1, . . . , xjα

}, hα). The decomposition
guarantees not to increase the error, while lowering the weight of the regression, contradicting
the fact that C has minimum weight among optimal isotonic regressions.

(ii) Let Iα be the first level set for which there exists an i ≤ jα, with M({xi, . . . , xjα
}) >

M(Iα). Suppose i < iα. Then, M(xi, . . . , xjα−1
) > M(Iα) > M(Iα−1) and so Iα is not

the first level set with this property. Thus, i > iα. Decompose (Iα, hα) into two level sets:
(I1 = {xiα, . . . , xi−1}, hα). and (I2 = {xi, . . . , xjα

}, min(hα+1, M(I2))). The decomposition
strictly decreases the error, contradicting the fact that C has minimum error.

Proposition 2.4 C = Cl ∪ Cr

Note that the proposition is valid for any level set Iα that is used to construct Sl, Sr.

Proof: Let C′ = Cl ∪ Cr = {I ′
β, h′

β}
K ′

β=1. Since h′
β = M(I ′

β), it will suffice to show that
I ′
α = Iα for all α ∈ [1, K]. Suppose to the contrary and let α∗ be the first level set for which

Iα∗ 6= I ′
α∗ . Further, suppose without loss of generality that |Iα∗| > |I ′

α∗| (a similar argument
holds for |Iα∗| < |I ′

α∗|). Therefore,

Iα∗ = I ′
α∗ ∪ I ′

α∗+1 ∪ · · · ∪ I ′
α∗+L ∪ P,
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where P is a prefix of I ′
α∗+L+1. Note that Iα∗ , . . . , I ′

α∗+L+1 are either all in Cl or all in Cr.
Without loss of generality, assume they are all in Cl. We know that h′

α∗+i = M(I ′
α∗+i) for

i ∈ [0, L + 1] and by construction, h′
α∗+i < h′

α∗+i+1 for i ∈ [0, L]. From Lemma 2.3, we
know that M(P ) ≥ M(I ′

α∗+L+1) (since Cl is the isotonic regression for Sl). By Lemma 2.3,
we also have that M(Iα∗) ≥ M(I ′

α∗), and similarly from the optimality of C, we have that
M(I ′

α∗) ≥M(Iα∗), hence that M(I ′
α∗) = M(Iα∗). Therefore, we have that

M(Iα∗) = M(I ′
α∗) < M(I ′

α∗+1) < · · · < M(I ′
α∗+L) < M(I ′

α∗+L+1) ≤M(P ).

Since P is a suffix of Iα∗ , by the optimality of C and Lemma 2.3, we have that M(P ) ≤M(Iα∗)
which is the desired contradiction.

An immediate consequence of this proposition is that the isotonic regression is unique, by
choosing (for example) Sl = x and Sr = {}.

Corollary 2.5 The isotonic regression is unique.

Suppose we are given a constant γ, we would like to find the first level set whose height is
at least γ. In particular, we would like to find the first point of this level set. We call this
point a pivot point for γ. More specifically, let C be the isotonic regression, and let α be
such that hα ≥ γ and if α > 1, then hα−1 < γ. We would like to find xiα . Note that if all
the levels are < γ, then xiα does not exist, in which case we can default to iα = n + 1. We
know from Lemma 2.3 that it is necessary for xiα to satisfy two conditions:

i. for every sequence S begining at xiα , M(S) ≥ hα ≥ γ;

ii. for every sequence S ′ ending at xiα−1, M(S ′) ≤ hα−1 < γ.

The content of the next proposition is that these conditions are also sufficient.

Theorem 2.6 Let C be the isotonic regression. Given γ, let Iα be the first level set with
hα ≥ γ. Then, xi is the first point in Iα (i.e., xi = xiα) if and only if for any sequence S
begining at xi and any sequence S ′ ending at xi−1, M(S ′) < γ ≤M(S).

Proof: It only remains to prove that if M(S ′) < γ ≤ M(S) for any two sequences as
described, then i = iα. We know that i must belong to one of the level sets, i ∈ Iβ for some
β with 1 ≤ β ≤ K. We need to show three things: (i) hβ ≥ γ; (ii) i = iβ ; (iii) hβ−1 < γ.

(i) Suppose that hβ < γ. Then, consider S = {xi, . . . , xjβ
}. By Lemma 2.3, M(S) ≤

hβ < γ. By construction of xi, M(S) ≥ γ, a contradiction.
(ii) Suppose that i is not the first point in Iβ. Then consider S ′ = {xiβ , . . . , xi−1}. By

Lemma 2.3, M(S ′) ≥ hβ ≥ γ (by (i)). By construction of xi, M(S ′) < γ, a contradiction.
(iii) Suppose that hβ−1 ≥ γ. Consider S ′ = {xiβ−1

, . . . , xi−1}. From (ii), this is exactly
Iβ−1. By construction of xi, M(S ′) = M(Iβ−1) = hβ−1 < γ, a contradiction.
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Thus to find the first point of the first level set with height at least a given γ, we only need
to search for an xi that satisfies the conditions of Theorem 2.6. The remainder of this section
is devoted to developing a linear time algorithm to find this point. This algorithm will be
the basis of our isotonic regression algorithms that we discuss in the next section.

Define the following three quantities for any interval [i, j].

N+(i, j): the number of points ≥ γ in the set S[i,j] = {xi, . . . , xj}.
N−(i, j): the number of points < γ in the set S[i,j] = {xi, . . . , xj}.
∆r(i, j): min

t∈[i,j]
(N+(i, t)−N−(i, t)).

∆l(i, j): max
t∈[i,j]

(N+(t, j)−N−(t, j)).

Note that the median of the set S[i,j] is ≥ γ if and only if N+(i, j)−N−(i, j) > 0. From this
observation, we get the following lemma.

Lemma 2.7 xk satisfies the conditions of Theorem 2.6 if and only if one of the following
hold:

i. k = 1 and ∆r(k, n) > 0;

ii. k > 1, ∆r(k, n) > 0 and ∆l(1, k − 1) ≤ 0.

If no such xk exists, then the levels of all the level sets are < γ.

We show how to find such an xi in linear time. Start two pointers pl = 0 and pr = n + 1.
The initial conditions of the algorithm are:

N+(pr, n) = 0; N−(pr, n) = 0,
N+(1, pl) = 0; N−(1, pl) = 0.

Let xl = x[1, pl], xr = x[pr, n], and S = x[pl + 1, pr − 1]. Initially, xr = xl = {}, and S = x.
If M(S) ≥ γ, then we know that xpr

is not our solution, so we decrement pr by 1 and update
xl,xr, S. On the other, if M(S) < γ, then xpl+1 is not our solution, so we increment pl

by 1 and update xl,xr, S. We continue this process of decreasing pr or increasing pl until
pr = pl + 1. We now prove that this algorithm correctly computes the pivot point. The
nature of the algorithm is to move pr (resp. pl) until M(S) switches from ≥ γ (resp. < γ)
to < γ (resp. ≥ γ). Denote a phase in the algorithm as the period when one of the pointers
begins to move and then stops.

Lemma 2.8 The following invariants are maintained at the end of every phase.

i. The median of every prefix of xr is ≥ γ.

ii. The median of every suffix of xl is < γ.
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Proof: We prove the claim by induction on the phase number. Initially the invariants hold
by default since xr and xl are empty. Suppose the invariants hold up to some phase, and
consider the next phase, i.e., pl + 1 < pr.

Suppose that pl → p′l and xl → x′
l in this phase. By construction, M(x[k, pr − 1]) < γ

for pl + 1 ≤ k ≤ p′l. Since pl stopped moving, there are two cases. (i) p′l = pr − 1, in
which case the median of every suffix of x[pl + 1, p′l] is < γ. (ii) p′l < pr − 1, in which case
M(x[p′l + 1, pr − 1]) ≥ γ. But since M(x[k, pr − 1]) < γ for pl + 1 ≤ k ≤ p′l, it follows that
M(x[k, p′l]) < γ, or once again, the median of every suffix of x[pl + 1, p′l] is < γ. Every suffix
of x′

l is either a suffix of x[pl + 1, p′l] or the union of x[pl + 1, p′l] with a suffix of xl. Since
M(S1) < γ and M(S2) < γ implies M(S1∪S2) < γ for any S1, S2, invariant (ii) now follows,
i.e., the median of every suffix of x′

l is < γ. Since pr did not move in this phase, invariant
(i) was unchanged.

Similarily, suppose instead that pr → p′r and xr → x′
r in this phase. This means that

M(x[pl + 1, k])geγ for p′r ≤ k ≤ pr − 1. Once again, there are two cases, p′r = pl + 1 and
p′r > pl + 1. In both cases it follows using similar arguments that the median of every prefix
of x[p′r, pr − 1] is ≥ γ. Invariant (i) follows from the facts that any prefix of x′

r is the union
of prefixes of x[p′r, pr − 1] and xr, and M(S1) ≥ γ, M(S2) ≥ γ =⇒ M(S1 ∪ S2) ≥ γ. Since
pl did not move in this phase, invariant (ii) was unchanged.

Thus when the algorithm concludes, ∆r(pr, n) > 0 and ∆l(p1, l) ≤ 0 and we have the pivot
point. The efficiency of the algorithm hinges on being able to determine if M(S) is larger
or smaller than γ. Since M(x[i, j]) ≥ γ if and only if N+(i, j) − N−(i, j) > 0, we need
to maintain N±(pl + 1, pr − 1). The following update rules allow us to do this efficiently.
Suppose we have computed N±(i, j) for 1 ≤ i < j ≤ n

N+(i + 1, j) = N+(i, j)− 1; N−(i + 1, j) = N−(i, j) if xi ≥ γ.
N+(i + 1, j) = N+(i, j); N−(i + 1, j) = N−(i, j)− 1 if xi < γ.

N+(i, j − 1) = N+(i, j)− 1; N−(i, j − 1) = N−(i, j) if xj ≥ γ.
N+(i, j − 1) = N+(i, j); N−(i, j − 1) = N−(i, j)− 1 if xj < γ.

The entire algorithm is summarised in Algorithm 1.
We define an operation as a comparison, a floating point operation or an assignment.

Step 3 can be computed in 3n operations. An update (steps 6,8) takes 6 operations, and n
updates need to be made. We thus have the following theorem.

Theorem 2.9 Given x = {xi|i ∈ [1, n]} and γ ∈ R, the pivot point for γ can be found using
at most Cn operations, where C ≈ 9.

Summary. The pivot point xi for any value γ can be found in linear time. x can then be
partitioned into two disjoint subsets, xl = x[1, i−1] and xr = x[i, n]. The isotonic regression
Cl of xl will have level sets all of whose levels are < γ, and the isotonic regression Cr of xr

will have level sets all of whose levels are ≥ γ. Further, the isotonic regression C of x is given
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Algorithm 1 Algorithm to compute a pivot point.

1: //Input: x = {xi|i ∈ [1, n]} and γ ∈ R.
2: //Output: i such that xi is the pivot point for ≥ γ.
3: Set pl = 0, pr = n + 1 and using a single scan compute N±(pl + 1, pr − 1);
4: while pl + 1 6= pr do

5: if N+(pl + 1, pr − 1)−N−(pl + 1, pr − 1) > 0 then

6: pr ← pr − 1, and update N±(pl + 1, pr − 1);
7: else

8: pl ← pl + 1, and update N±(pl + 1, pr − 1);
9: end if

10: end while

11: return pr;{pr = n + 1 if all levels are < γ.}

by C = Cl ∪ Cr. This result already has applications. Suppose we would simply determine a
threshold x where the response function exceeds a given value, γ. This can be accomplished
by finding the pivot point for γ.

2.1 L1-Isotonic Regression: Algorithms

The importance of Proposition 2.4 and Theorem 2.9 from the algorithmic point of view can
be summarised as follows. Suppose we have the input x for which the isotonic regression can
only have levels in the set {m1 < m2 < · · · < mK} – for example, this would be the case if xi

can only take values in this set. Let p be the index of the pivot point for γ = mi, i ∈ [1, K].
This pivot point, which can be found in linear time, partitions x into xl = x[1, p − 1] and
xr = x[p, n] (one of these may be empty). By Proposition 2.4, it then suffices to recursively
compute the isotonic regressions for xl and xr. Further, by construction of p, all the levels
in xl will be < γ = mi, and all the levels in xr will be ≥ γ. We obtain an efficient algorithm
by choosing γ to be the median of the available levels each time in the recursion. The full
algorithm is given in Algorithm 2.

The correctness of this algorithm follows from the results in the previous section, specif-
ically Proposition 2.4. What remains is to analyse the run time. It is enough to analyse
the runtime of ISOTONIC(x,m, [i, j], [k, l]). Let T (n, K) be the worst case runtime when
|[i, j]| = n and |[k, l]| = K. Then in the worst case, the algorithm will call itself on a left
set of size δ with dK/2 e levels and on a right set of size n− δ with bK/2 c levels, for some
0 ≤ δ ≤ n. As already discussed, the pivot step to perform this partition takes at most Cn
operations (step 9), so we have the following recursion for T (n, K):

T (n, K) ≤ max
δ∈[0,n]

(

T (δ,
⌈

K
2

⌉

) + T (n− δ,
⌊

K
2

⌋

)
)

+ Cn.

For K = 2l, a straight forward induction shows that T (n, K) ≤ Cn log K. By monotonicity,
T (n, K) ≤ T (n, 2d log K e), which gives T (n, K) ≤ Cnd log K e, yielding the following theorem.
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Algorithm 2 Algorithm to perform the full isotonic regression.

1: // Wrapper to call the recursive function.

2: //Input: x = {xi|i ∈ [1, n]} and m = {m1 < m2 < · · · < mK}.
3: //Output: Isotonic regression, C = {(Iα, hα)}
4: Call ISOTONIC(x,m, [1, n], [1, K]);

1: ISOTONIC(x,m, [i, j], [k, l])
2: //Output: Isotonic regression C = {(Iα, hα)} for x[i, j], given all levels are in m[k, l].
3: if j < i then

4: return {};
5: else if k = l then

6: return {([i, j],m[k])}
7: else

8: Let q = k + 1 +
⌊

l−k
2

⌋

; {q is 1+the median of [k, l]}
9: Let p=index of pivot point for x[i, j] with γ = m[q];

10: Cl =ISOTONIC(x,m, [i, p− 1], [k, q − 1]); Cr =ISOTONIC(x,m, [p, j], [q, l]);
11: return Cl ∪ Cr;
12: end if

Theorem 2.10 The isotonic regression for n points with K possible levels can be obtained
in O(n logK) time.

If the K levels are not known ahead of time, they can be determined and sorted using
standard data structures, such as a balanced binary seach tree in O(n log K) time, [3]. This
does not affect the asymptotic running time. In the worst case, K = n and our algorithm
is no worse than existing algorithms. However, there can be significant improvement in the
efficiency when K is fixed and small.

Approximate isotonic regression. The algorithm that we have given can be run with
any set of levels supplied – the pivot point is defined for any γ. It is not required that the
true isotonic regression levels all be from this set in order to run the algorithm. Ofcourse,
if the true levels are not from the set of levels supplied to the algorithm, then the result
cannot be the true isotonic regression. If the levels chosen are close to the true levels, then
the approximate isotonic regression should be close to the true one.

In particular, suppose that a ≤ xi ≤ b for all i ∈ [1, n]. Consider the levels mi = a + iε,
where ε = (b−a)/K and i ∈ [0, K]. Suppose that [iα, jα], hα is a (non-empty) level set output
by the algorithm, hα = a + iαε. Then xiα is a pivot point, for which all the levels of the true
isotonic regression to the right are ≥ hα. Further, all the levels to the left of the next level
set that is output are < hα + ε. Therefore, the error of a point from its corresponding level
output by the algorithm differs from its error with respect to the true isotonic regression
level by at most ε. Thus, the additional error contributed by every point is at most ε, for
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a total error increase of at most nε, increasing E1 by at most ε. Further, the runtime is
O(n log K) = O(n log((b− a)/ε)), establishing the following theorem.

Corollary 2.11 Suppose that a ≤ xi ≤ b for i ∈ [1, n] and let w be the isotonic regression.
Then, an approximate isotonic regression w′ can be computed in O(n log((b − a)/ε)) time
with E1(w

′)− E1(w) ≤ ε.

3 L∞-Prefix-Isotonic Regression

In this section, we will refer to the L∞-optimal isotonic regression more simply as the isotonic
regression (which is not necessarily unique). For any sequence of points x = [x1, x2, ..., xn],
define a Maximally Violating Pair (MVP) to be a pair of points that maximally violates the
monotonicity requirement, i.e., an MV P is a pair (xl, xr) with l < r, xl > xr, and ∀i < j,
xl−xr ≥ xi−xj . If xi ≤ xj for all i < j, then no such pair exists. If x has an MV P (xl, xr),
we define the distortion of x, D(x), to be (xl − xr), and D(x) = 0 if x does not have an
MV P . Note that by definition of an MV P , xi ≤ xl for all i < r and xj ≥ xr for all j > l.

Let C be an isotonic regression for x and let (xl, xr) be an MV P . Either wl ≤ (xl +xr)/2
or wr ≥ wl > (xl + xr)/2, so we conclude that E∞(C) cannot be less that D(x)/2. The next
proposition shows that this lower bound is achievable.

Proposition 3.1 Let C be an isotonic regression for x. Then E∞(C) = D(x)/2. Further, if
(xl, xr) is an MV P , then wl = wr = (xl + xr)/2.

Proof: If D(x) = 0, then x is a monotonically nondecreasing sequence. wi = xi is the
optimal regression with E∞ = 0. Suppose that D(x) > 0. We will construct (by induction) an
isotonic regression with error D(x)/2. It then follows immediately that wl ≥ (xl+xr)/2 ≥ wr,
and by monotonicity, wr ≥ wl from which we get wl = wr = (xl + xr)/2.

The induction basis is when x = {}, x = [x1] or x = [x1, x2], in which cases the claim is
obvious. Suppose that an optimal regression exists with error D(x)/2 whenever |x| ≤ N , and
consider any sequence x with |x| = N +1 and D(x) > 0. Let (xl, xr) be an MV P , and define
the left and right sequences: xl = [x1, x2, . . . , xl−1]; and xr = [xr+1, xr+2, . . . , xN+1]. Note
that D(xl) ≤ D(x) and D(xr) ≤ D(x). Let Cl and Cr be the isotonic regressions for xl and xr

respectively. Since the left and right sequences are strictly shorter than x, by the induction
hypothesis, we have that E∞(Cl) = D(xl)/2 ≤ D(x)/2 and E∞(Cr) = D(xr)/2 ≤ D(x)/2.

We now show how to construct the isotonic regression for x with error D(x)/2 from Cl, Cr
and one additional level set C∗ = {(I = [l, r], h = (xl + xr)/2)}. Consider all level sets in Cl
with level ≥ h. Reduce all these levels to h, and call this new isotonic regression C′l . We claim
that E∞(C′l) ≤ D(x)/2. We only need to consider the level sets whose levels were altered.
Let x be any point in such a level set with height h′ ≥ h. x ≤ xl by definition of the MV P
(xl, xr). x ≥ xr, because if x < xr, then D(xl)/2 ≥ h′ − x > h − xr = D(x)/2 ≥ D(xl)/2,
which is a contradiction. Thus xr ≤ x ≤ xl and so the error for any such point is at most
D(x)/2 for the regression C′l . The error for all other points has remained unchanged and
was originally at most E∞(Cl) = D(xl)/2 ≤ D(x)/2, so we conclude that E∞(C ′

l) ≤ D(x)/2.
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Similarily, consider all level sets of Cr with level ≤ h. Increase all these levels to h and call
this new isotonic regression C′r. Once again any point x in any level set with a level change
must satisfy xr ≤ x ≤ xl and so we conclude that E∞(C′r) ≤ D(x)/2.

Consider the regression C′ = C′l ∪ C
∗ ∪ C′r. E∞(C′) = max{E∞(C′l), E∞(C∗), E∞(C′r)} =

D(x)/2. The isotonic regression C is constructed from C′ by taking the union of all level sets
with the height h (these must be consecutive level sets), which does not alter the error.

Proposition 3.1 immediately yields a recursive algorithm to compute the isotonic regression.
Unfortunately, this recursive algorithm would have a run time that is quadratic in n. We
now show how to construct this regression from left to right, using a single pass. This will
lead to a linear time algorithm for the prefix-isotonic regression problem. Let xi = x[1, i].
Let Ci be an isotonic regression for xi. The prefix-isotonic regression is given by {Ci}

n
i=1.

Note that E∞(Ci+1) ≥ E∞(Ci) since D(xi+1) ≥ D(xi). We will construct Ci+1 from Ci.
Let Ci = {Iα = [iα, jα], hα}

K
α=1. Let infα = mink∈Iα

xk, and supα = maxk∈Iα
xk. Define

the distortion of level set Iα, D(Iα) as the distortion of the sequence x[iα, jα]. The Ci that
we construct will all satisfy the following properties:

P1: ∀α ∈ [1, K], hα = 1
2
(supα + infα).

P2: ∀α ∈ [1, K], D(Iα) = supα− infα.

P3: ∀α ∈ [2, K], hα−1 < hα.

Property P3 is just a restatement of the monotonicity condition. From property P2 it follows
that for any i ∈ Iα, |xi − hα| ≤ D(Iα)/2. Since D(Iα) ≤ D(x), it follows from Proposition
3.1 that any regression that has properties P2 and P3 is necessarily optimal. Therefore,
properties P1-P3 are sufficient conditions for an isotonic regression. Suppose that Ci has
been constructed, satisfying P1-P3. Now consider adding the point xi+1. Let IK+1 = {i+1},
hK+1 = xi+1. Note that D(IK+1) = 0, and by construction, IK+1 satisfies P1 and P2.

Lemma 3.2 If hK+1 > hK , let Ci+1 = Ci ∪ {(IK+1, hK+1)}. Then Ci+1 satisfies P1-P3.

If hK+1 ≤ hK , then to get Ci+1, we merge IK+1 with IK . We need to ensure that properties
P1 and P2 continue to hold. We will prove this in general for any two consecutive level sets.
Suppose that (Ik, hk) and (Ik+1, hk+1) both satisfy properties P1 and P2, and suppose that
hk+1 ≤ hk. Define the new level set I ′

k by

I ′
k = Ik ∪ Ik+1 inf ′k = min(infk, infk+1) sup′

k = max(supk, supk)
h′

k = 1
2
(inf ′k + sup′

k)

Lemma 3.3 I ′
k satisfies properties P1 and P2.

Proof: By construction, P1 is satisfied. We show that D(I ′
k) = sup′

k − inf ′k, from which
P2 follows.

Suppose that infk+1 ≤ infk. Thus, inf ′k = infk+1. Since the first maximum in Ik+1 occurs
before the last minimum in Ik+1 (as Ik+1 satisfies P2), and the maximum in Ik occurs before
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any point in Ik+1, it follows that the first maximum in I ′
k occurs before its last minimum,

thus I ′
k satisfies P2.

Suppose, on the other hand, that infk+1 > infk. Thus, inf ′k = infk. Since hk+1 ≤ hk, we
have that supk+1 + infk+1 ≤ supk + infk =⇒ supk+1 < supk, and so sup′

k = supk. Thus,
the first maximum in I ′

k is the first maximum in Ik and the last minimum in I ′
k is the last

minimum in Ik. Since Ik satisfies P2 then so does I ′
k.

The idea of the algorithm should now be clear. The addition of a new point creates a new
level set satisfying P1 and P2. If this new level set also satisfies P3, then we are done, and
have constructed the isotonic regression for the sequence augmented by this one point. If
not, then we merge the last two level sets, maintaining P2 and P3, and not altering any of
the other level sets. We continue to merge until P3 is satisfied for the last level set, which
must eventually happen. At this point we have a regression that satisfies P1-P3 and so it is
the isotonic regression for the augmented sequence.

Note that IK is the right most level set of Ci, i.e., IK = [iK , i]. This rightmost level set is
the union of i with some number (possibly zero) of the level sets (from right to left) of Ci−1.
The remaining level sets of Ci will be the level sets of Ci−1 that remain after the merging. In
fact, the remaining level sets will be exactly the level sets of CiK−1, where it is understood
that CiK−1 = {} if iK = 1.

Proposition 3.4 Ci=CiK−1 ∪ {IK , hK}.

Proof: If i = 1, there is nothing to prove. Assume that i > 1 and that the claim holds for
all Cj with j < i. Let Ci = {Iα = [iα, jα], hα}

K
α=1. By construction, Ci−1 is given by

Ci−1 = {(I1, h1), . . . , (IK−1, hK−1), (S1, h
′
1), . . . , (SM , h′

M)}, (*)

where M is possibly zero, and IK = ∪iSi ∪ {i}. Let Si = [αi, βi], where α1 = iK and
βM = i− 1. By the induction hypothesis,

Ci−1 = CαM−1 ∪ {SM , h′
M},

CαM−1 = CαM−1−1 ∪ {SM−1, h
′
M−1},

CαM−1−1 = CαM−2−1 ∪ {SM−2, h
′
M−2},

...

Cα2−1 = Cα1−1 ∪ {S1, h
′
1}.

Combining these equalities and using the fact that α1 = iK , we get that

Ci−1 = CiK−1 ∪i {Si, h
′
i}.

using (*), we identify that CiK−1 = {(I1, h1), . . . , (IK−1, hK−1)}, concluding the proof.
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Algorithm 3 Algorithms for L∞ prefix-isotonic regression.

1: // Algorithm to perform L∞-Prefix-Isotonic Regression.

2: // Input: x = {xi|i ∈ [1, n]}.
3: // Output: L, H, D. {L[i] = li, H [i]=level of [li, i] in Ci, D[i]=distortion of xi}
4: I1 = [1, 1], inf1 = x1, sup1 = x1, h1 = x1, K = 1; {Initialization}
5: L[1] = 1, H [1] = h1, D[1] = 0; {Initialization of outputs}
6: for i = 2 to n do

7: K ← K + 1
8: IK = [i, i], infK = xi, supK = xi, hK = xi, D[i] = D[i− 1];
9: while hK ≤ hK−1 and 1 < K do

10: IK−1 ← IK−1 ∪ IK ; infK−1 ← min(infK−1, infK); supK−1 ← max(supK−1, supK);
11: K ← K − 1; hK = 1

2
(infK + supK); D[i] = max(D[i], supK − infK);

12: end while

13: L[i]=left endpoint of IK ; H [i] = hK ;
14: end for

1: RECONSTRUCT (m)
2: // Output Cm, the isotonig regression for xm, assuming L, H are global.
3: if m = 0 then

4: return {};
5: end if

6: return RECONSTRUCT (L[m]− 1) ∪ {[L[m], m], H [m]};

3.1 L∞-Prefix-Isotonic Regression: Algorithms

Here, we will give the linear time algorithm for L∞-prefix-isotonic regression that follows from
the results of the previous section, along with the analysis of its run time. Our algorithm will
process points from left to right. After processing the new point xi, we will have constructed
the isotonic regression Ci as discussed in the previous section by merging the rightmost two
intervals until P1-P3 are satisfied.

By Proposition 3.4, to reconstruct Ci, we only need to know li, the index of the first
point of its rightmost level set, the level, hi, of this rightmost level set, and how to construct
Cli−1. This can be recursively achieved by only storing the parameters li and hi, for every
i. The algorithms are given in Algorithm 3. The correctness of this algorithm follows from
the results of the previous section, specifically Lemmas 3.2, 3.3. Further, E∞(Ci) is stored in
D[i]. By Proposition 3.4, the output of the algorithm stores all the necessary information to
extract Cm as shown in the recursive function RECONSTRUCT .

What remains is to analyse the computational complexity of the algorithms. First con-
sider the prefix-isotonic regression. lines 7,8,13 constitute 8 operations, thus contributing
about 8n operations to the total run time. The merging while loop, lines 9-12, uses 6 oper-
ations. The maximum number of intervals is n. Each time a merge occurs, this maximum
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drops by 1. Since this maximum is bounded below by 1, this means that there are at most
n − 1 merges, so the total time spent merging is about 6n operations, and the condition
of the while loop is checked at most 2n times, so the runtime of this algorithm is bounded
by Cn where C ≈ 14. There are at most n level sets at any time, and each level set needs
to store 5 numbers, iα, jα, infα, supα, hα. The additional space for L, H, D is 3n, for a total
memory requirement bounded by C ′n, where C ′ ≈ 8.

It is not hard to analyse the recursion for RECONSTRUCT , and a straightforward
induction shows that the runtime is O(m).

4 L∞ Unimodal Regression

As pointed out in [14], a prefix-isotonic regression can easily be modified to yield the op-
timal unimodal regression. The next proposition shows that the crossover point in the L∞

unimodal regression can always be chosen at a maximum in the sequence (any maximum).
Thus, a simpler algorithm that follows directly from the prefix-isotonic regression is to first
find a maximum in x (linear time). Now perform isotonic regression on the sequence to the
left of the maximum and the reversal of the sequence to the right. More specifically, suppose
that the maximum is xm. Now consider the sequences xl = x[1, m], xr = x[m, n], and let xR

r

be the reversal of xr. Let Cl and CR
r be the isotonic regressions for xl and xR

r respectively.
Then the union, Cl ∪ Cr (where Cr is the reversal of CR

r ) is the unimodal regression, with the
merging of the last level set of Cl and the first level set of Cr, as they will have the same level,
equal to the maximum. All that remains is to prove that the crossover point can always be
chosen at a maximum.

Proposition 4.1 The crossover point in the unimodal regression of x can always be chosen
to be a maximum (any maximum) of x.

Proof: Let C be the unimodal regression, and let xi be the crossover point, so

w1 ≤ w2 ≤ · · · ≤ wi ≥ wi+1 ≥ · · · ≥ wn.

Let xl = x[1, i], xr = x[i, n]. Since w[1, i] is an isotonic regression for xl and wR[1, n− i+1]
is an isotonic regression for xR

r , the error of the regression is E∞(C) ≥ 1
2
max(D(xl), D(xR

r )).
Let xm be any maximum not equal to xi (if xi is a unique maximum, then we are done,
otherwise xm exists). Without loss of generality, since a unimodal regression for xR is CR,
we can suppose that m > i. Let x1 = x[1, m], let x2 = x[m, n], and let xc = x[i, m]. For the
unimodal regression constructed from the two isotonic regressions on x1 and xR

2 , xm will be
a crossover point. We show that the error of this regression cannot be more than the error
of C. The error of this regression is given by max(D(x1), D(xR

2 )). Since xm is a maximum,
D(xR

r ) = max(D(xR
c ), D(xR

2 )), so E∞(C) = max(D(xl), D(xR
c ), D(xR

2 )). D(x1) is given by

D(x1) = = max
1≤k≤m

{max(x[1, k])− xk}

= max

(

max
1≤k≤i

{max(x[1, k])− xk}, max
i≤k≤m

{max(x[1, k])− xk}

)
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The first term on the right hand side is D(xl). Since xm is a maximum, the second term is
bounded by maxi≤k≤m{xm − xk} = D(xR

c ). Thus D(x1) ≤ max(D(xl), D(xR
c )), and so

max(D(x1), D(xR
2 )) ≤ max(D(xl), D(xR

c ), D(xR
2 )) = E∞(C).

5 Conclusion

For L1-isotonic regression we presented an output sensitive algorithm whose running time is
linear in n when the number of possible values that the levels of the isotonic regression can
take is bounded by K. In the worst case, K = n and the algorithm is no worse than existing
algorithms. The open question that remains is whether the median isotonic regression can
be computed in linear time, or to prove that it cannot. Our algorithms can be extended
without much effort to the case of minimizing a weighted L1 error. In this case, all the
results remain true, with minor modifications, by replacing the standard median with the
weighted median.

For L∞ isotonic and unimodal regression, we have given simple (not requiring sophisti-
cated data structures) linear time algorithms. We are unaware of any other published results
relating to the L∞ regression.
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