Combinatorial Design of Key Distribution
Mechanisms for Wireless Sensor Networks

Seyit A. Camtepe!, Biilent Yener!

Technical Report 04-10
Department of Computer Science, Rensselaer Polytechnic Institute
Troy, NY 12180, USA
{camtes,yener}@cs.rpi.edu
April 12, 2004

Abstract. Key distribution is one of the most challenging security issues
in wireless sensor networks where sensor nodes are randomly scattered
over a hostile territory. In such a sensor deployment scenario, there will be
no prior knowledge of post deployment configuration. For security solu-
tions requiring pairwise keys, it is impossible to decide how to distribute
key pairs to sensor nodes before the deployment. Existing approaches to
this problem are to assign more than one key, namely a key-chain, to
each node. Key-chains are randomly drawn from a key-pool. Either two
neighboring nodes have a key in common in their key-chains, or there
is a path, called key-path, among these two nodes where each pair of
neighboring nodes on this path has a key in common. Problem in such
a solution is to decide on the key-chain size and key-pool size so that
every pair of nodes can establish a session key directly or through a path
with high probability. The size of the key-path is the key factor for the
efficiency of the design. This paper presents novel, deterministic and hy-
brid approaches based on Combinatorial Design for key distribution. In
particular, several block design techniques are considered for generating
the key-chains and the key-pools.

Comparison to probabilistic schemes shows that our combinatorial ap-
proach produces better connectivity with smaller key-chain sizes.

1 Introduction and Problem Definition

In this work, we consider a sensor network in which sensor nodes need to com-
municate with each other for data processing and routing. We assume that the
sensor nodes are distributed to the target area in large numbers and their lo-
cation within this area is determined randomly. These type of sensor networks
are typically deployed in adversarial environments such as military applications
where large number of sensors may be dropped from airplanes.

In this application, secure communication among sensor nodes requires au-
thentication, privacy and integrity. In order to establish this, there must be a
secret key shared between a pair of communicating sensor nodes. Because the
network topology is unknown prior to deployment, a key pre-distribution scheme



Fig.1. A Wireless Sensor Network

is required where keys are stored into ROMs of sensors before the deployment.
The keys stored must be carefully selected so to increase the probability that
two neighboring sensor nodes have at least one key in common. Nodes that do
not share a key directly may use a path where each pair of nodes on the path
shares a key. The length of this path is called key-path length. Average key-path
length, is an important performance metric and design consideration. Consider
sample sensor network given in Figure-1. Assume that only sensor nodes a and b
don’t share a key. Nodes a and ¢ can establish secure communication where the
key-path length is one. Node ¢ and b also have key-path length of one. However,
nodes a and b can only use the path a-c-b to communicate securely with key-path
length of two.

The common approach is to assign each sensor node multiple keys, randomly
drawn from a key-pool, to construct a key-chain to ensure that either two neigh-
boring nodes have a key in common in their key-chain, or there is a key-path.
Thus the challenge is to decide on the key-chain size and key-pool size so that
every pair of nodes can establish a session key directly or through a path. Key-
chain size is limited by the storage capacity of the sensor nodes. Moreover, very
small key-pool increases the probability of key share between any pair of sensor
nodes by decreasing the security in that, the number of the keys needed to be
discovered by the adversary decreases. Similarly, very large key-pool decreases
the probability of key share by increasing the security.

Eschenauer et al. in [13] propose a random key pre-distribution scheme where
tens to hundreds of keys are uploaded to sensors before the deployment. In their
solution, initially a large key pool of P and their identities are generated. For each
sensor, k keys are randomly drawn from the key-pool P without replacement.
These k keys and their identities form a key-chain which is loaded to the memory
of the sensor node. Two neighboring nodes compare the list of identities of keys
in their key-chains. Since only the identities are exchanged, this process can take



place without any privacy mechanism. Eschenauer et al. also propose to employ
Merkle Puzzle [19] similar approach to secure key identities which requires too
much processing and storage for a resource limited sensor node. After key identity
exchange, common keys are used to secure the link in between two sensor nodes.
It may be the case that some of the neighboring nodes may not be able to find
a key in common. These nodes may communicate securely through other nodes,
through other secured links. Eschenauer et al. shows that, for the key-pool size
of 10,000 keys, only 75 keys are needed in key-chains so that probability of
key share between any two nodes is 0.5. Later in results section, we will show
that our deterministic algorithms provides better probability of key share than
random key pre-distribution scheme for the same key-chains size. Chan et al. in
[5] propose a modification to the basic scheme of Eschenauer et al. They increase
the amount of key overlap required for key-setup. That is, ¢ common keys are
needed instead of one to be able to increase the security of the communication
between two neighboring nodes. Their proposal requires larger key-chains and
smaller key-pools than the original proposal of Eschenauer et al. In [32], common
keys in the key-chains are used to establish multiple logical paths over which
costly threshold key sharing scheme is used to agree on a new secret.

Random-pairwise key scheme in [5] is a modification of the pairwise key
scheme. It is based on Erdos and Renyi’s work; to achieve probability p of any
two nodes are connected, in a network of n nodes, each node needs to store
only a random set of np pairwise keys instead of n — 1. This scheme provides
perfect resilience since each one of the pairwise keys are distinct, but it can not
support large networks because key-chain size is linearly dependent to network
size. Slijepcevic et al. in [23] propose that each sensor node shares a list of
master keys, a random function and a seed. Every sensor uses shared random
function and shared seed to select a network-wise or group-wise master key.
In [3,17], polynomial-based key pre-distribution protocol proposed for group
key pre-distribution. In [18], polynomial pool-based key pre-distribution is used
for pairwise key establishment. For each sensor, random or a grid based pre-
distribution scheme is used to select set of polynomials from a pool.

In [2], Blom proposes a k-secure key pre-distribution system where a public
Vandermonde matrix P and a private symmetric matrix S over a finite field
GF(q) is used. The idea is to provide each node relatively small secret and
public data from which they can derive a key for their neighbors. Thus, rows of
the matrix A = (S.P)T and columns of matrix P are distributed to the nodes
(i.e. node i stores row; of matrix A and col; of matrix P). Since matrix P is
Vandermonde matrix, it is sufficient to store column generater instead of whole
column. Symmetric matrix X = A.P is the key matrix. A pair of nodes, say
nodes ¢ and j, first exchanges their col; and col;, then multiplies row; of matrix
A and col; of P to calculate key K;; = K,,; (partial matrix multiplication
K = A.P). Blom’s scheme is a deterministic scheme where any pair of nodes can
calculate common secret key, that is, probability of key share and key path length
are both one. Blom’s scheme stores small amount data to nodes but requires
nodes to calculate the keys whenever required. That is, Blom’s scheme requires



resource limited sensor nodes to perform costly multiplication operations on large
numbers. Blom’s scheme can resists capture of at most k£ nodes, credentials stored
in k41 nodes are enough to recover all the keys used in the network. Increase in
k (size of the stored row of matrix A) increases the resilience but it means more
storage and more computation for a sensor node. For the same key-chain size k,
our symmetric block design algorithm provides the same probability of key share
and better resilience with the same storage requirements, but without any costly
multiplication operations. Du et al. in [8] uses Blom’s scheme with w spaces to
increase resilience. They use more then one key space, that is w of the matrix
S and generate As = (S5.P)T for 1 < § < w. Each node is randomly assigned
rows from 7 spaces out of w spaces. It may be the case that two neighboring
nodes do not share a key space. Therefore, as 7/w ratio decreases, probability
of key share decreases rapidly. Unlike Du et al., we use smaller key chains and
generalized quadrangles block design to improve the resilience. In [9], Du et al.
first model a node deployment knowledge in a wireless sensor network and then
develop a key pre-distribution scheme based on this model.

In [22,29,10,11, 6,4, 33] a network architecture where there are one or more
base-stations is considered. These base-stations are considered as powerful in
resource and sensor nodes are clustered around them. Each sensor node shares
a key with each base-station to secure sensor node to base-station and base-
station to sensor node unicast communication. Authentication mechanism for
the broadcasts from base-station to sensor nodes is addressed in [22,10,11, 16,
6]. They propose modified versions of TESLA where a verifiable key, which is
used to encrypt a message, is disclosed later then the message was broadcasted.

1.1 Our Contributions and Organization of this Work

The main contribution of this work is the deterministic and hybrid approaches
to the key distribution problem. In particular, we bring in a novel construction
methodology from Combinatorial Design Theory to address this problem. Al-
though there are some applications of Combinatorial Designs in cryptography
[25—27], and in network design [31, 28], best to our knowledge this work is the
first to apply design theory to key distribution. Our analysis indicate that de-
terministic approach has strong advantages over the randomized one since it
(i) increases the probability that two nodes share a key, and (ii) decreases the
key-path length.

This paper is organized as follows: In Section 2 we provide a brief background
to the combinatorial designs used in this work without exceeding the scope of
this paper. In Section 3 we introduce our key distribution construction and
explain the mapping from design theory to this practical problem. In Section 4 we
address scalability issues. In Section 5, we present our analysis and comparison
with randomized methods. Finally, in Section 6 we conclude.



2 Background on Combinatorial Designs

A Balanced Incomplete Block Design (BIBD) is an arrangement of v distinct
objects into b blocks such that each block contains exactly k distinct objects,
each object occurs in exactly r different blocks, and every pair of distinct objects
occurs together in exactly A blocks. The design can be expressed as (v, k, A), or
equivalently (v,b,r, k,A), where: A (v—1) = r (k—1) and bk = vr.

2.1 Symmetric BIBD

A BIBD is called Symmetric BIBD or Symmetric Design when b = v and
therefore r = k [7,1,14,30]. A Symmetric Design has four properties: every
block contains k = r elements, every element occurs in r = k blocks, every pair
of elements occurs in A blocks and every pair of blocks intersects in A elements.

Ezample 1: Consider (v,k,\) = (7,3,1), or equivalently (v,b,r,k,\) =
(7,7,3,3,1), Symmetric Design. Let S = {1,2,3,4,5,6,7} be the set of |S| =
v = 7 objects. There are b = 7 blocks and each block contains k = 3 objects.
Every object occurs in r = 3 blocks. Every pair of distinct objects occurs in
A =1 blocks and every pair of blocks intersects in A = 1 objects. The blocks of
the Symmetric Design are:

{1,2,3} {1,4,5} {1,6,7} {2,4,6} {2,5,7} {3,4,7} {3,5,6} .

In this paper, we are interested in a subset of Symmetric Designs, called a
Finite Projective Plane. A Finite Projective Plane consists of a finite set P of
points and a set of subsets of P, called lines. For an integer n where n > 2, Finite
Projective Plane of order n has four properties: (i) every line contains exactly
n+ 1 points, (ii) every point occurs on exactly n+ 1 lines, (iii) there are exactly
n? +n+ 1 points, and (iv) there are exactly n? +n+ 1 lines. If we consider lines
as blocks and points as objects, then a Finite Projective Plane of order n is a
Symmetric Design with parameters (n? +n+1,n+1,1) [7,1].

Given a block design D = (v, k, \) with a set S of |S| = v objects and B =
{Bi,Ba, ..., By} of |B] = b blocks where each block includes exactly k objects,
Complementary Design D has the complement blocks B; = S — B; as its blocks
for 1 <4 < b. D is a block design with parameters (v,b,b —r,v — k,b — 2r + \)
where (b—2r+ X > 0) [1, Theorem 1.1.6]. If D = (v, k, \) is a Symmetric Design,
then D = (v,v — k,v — 2r + \) is also a Symmetric Design [1, Corollary 1.1.7].

Ezample 2: Consider Symmetric Design D = (v, k, \) = (7, 3,1) of Ezample-
1. Complementary Design of this design is D = (v,v — k,b—2r + \) = (7,4,2).
Given the same set S of |S| = v = 7 objects, there are b = 7 blocks and each
block contains v — k = 4 objects. Every object occurs in b — r = 4 blocks. Every
pair of distinct objects occurs in b — 2r + A = 2 blocks and every pair of blocks
intersects in b — 2r + A = 2 objects. The blocks of the Complementary Design
are:

{47 57 67 7} {27 37 67 7} {27 37 47 5} {17 37 57 7} {17 37 47 6} {17 27 57 6} {17 27 47 7} *



2.2 Finite Generalized Quadrangle

A Finite Generalized Quadrangle (GQ) is an incidence structure S = (P, B, I)
where P and B are disjoint and nonempty sets of points and lines respectively,
and for which I is a symmetric point-line incidence relation satisfying the fol-
lowing axiom:

1. Each point is incident with ¢t + 1 lines (¢ > 1) and two distinct points are incident
with at most one line,

2. Each line is incident with s + 1 points (s > 1) and two distinct lines are incident
with at most one point,

3. If z is a point and L is a line not incident (I) with x, then there is a unique pair
(y,M) € PXB for whiche I M Iy I L.

In this work, we are interested in three known GQ’s as defined in [20,12, 15,
21]: two GQs are from the Projective Space PG(4,q) and PG(5,q) of order g,
third one is from PG(4,¢?) of order ¢2. Let function f be an irreducible binary
quadratic, then the three GQs can be defined as follows:

1. GQ(S, t) = GQ(q,q) from PG(4,q) with canonical equation 3 + 122 4+ x3z4 = 0 :
@,)észt—%v—b—@+1W1+U
2. GQ(s,t) = GQ(q,q*) from PG(5,q) with canonical equation f(zo,z1) + zoxs +
X4y = 0:

GQ(q,¢°) = s=q,t=¢" v=(g+1)(¢"+1),b= (" +1)(¢’ +1) .

3. GQ(S t) = GQ(q* ¢*) from PG(4,q*) with canonical equation zd*" + 29" ... +
:cd =0:
GQ*d") = s=d" t=¢", v=(+1)(¢"+1),b=(¢" +1)(¢" +1) .

Consider GQ(s,t) = GQ(q, q) in which lines are mapped to blocks and points
to objects. Thus, there are v = b = (q + 1)(¢® + 1) blocks and objects where
each block contains s + 1 = ¢+ 1 objects, and where each object is contained in
t+ 1= q+ 1 blocks.

Ezample 3: Consider GQ(s,t) = GQ(2,2) for ¢ = 2. There are v = b = 15
blocks and objects where each block contains s + 1 = 3 objects, and where
each object is contained in ¢ + 1 = 3 blocks. Assume the set of objects S =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14}, then the blocks are:

{0,3,4} {0,7,8} {0,11,12} {1,3,5} {1,7,9} {1,11,13} {2,3,6} {2,7,10} {2,11,14}
{4,9,14} {4,10,13} {5,8,14} {5,10,12} {6,8,13} {6,9,12} .

Blocks {0,3,4} and {1,7,9} don’t share an object, but there are three other
blocks that share an object with both: (i) block {0,7,8} by sharing objects 0
and 7, (ii) block {1, 3,5} by sharing objects 3 and 1, and (iii) block {4,9, 14} by
sharing objects 4 and 9.

Ezample 4: Complementary Design GQ(s,t) = GQ(2,2) of Example-3 will
have b = 15 blocks where each block has v — s — 1 = 12 objects.



|Key Distribution

Key-Pool (P)

Key-Pool Size (|P|)

Key-Chains

# Key-Chains (N)

# Sensor Nodes (N)

# Keys in a Key-Chain (K)

# Key-Chains that a Key is in
Two Key-Chains share (x) Keys

|Symmetric Design

Object Set (S)

Object Set Size (|[S|=v=n"+n+1)
Blocks

# Blocks (b=n"+n+1)

# Blocks (b=n>+n+1)

# Objects in a Block (k=n+1)

# Blocks that an Object is in (r =n + 1)
Two Blocks share (A = 1) Objects
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Table 1. Mapping from Symmetric Design to Key Distribution

{1,2,5,6,7,8,9,10,11,12,13, 14} {1,2,3,4,5,6,9,10, 11,12, 13,14}
{1,2,3,4,5,6,7,8,9,10, 13,14} {0,2,4,6,7,8,9,10,11, 12,13, 14}

{0,2,3,4,5,6,8,10,11,12,13,14} {0,2,3,4,5,6,7,8,9,10,12, 14}

{0,1,4,5,7,8,9,10,11,12,13,14} {0,1,3,4,5,6,8,9, 11,12, 13, 14}
{0,1,3,4,5,6,7,8,9,10,12,13} {0,1,2,3,5,6,7,8,10, 11, 12,13}
{0,1,2,3,5,6,7,8,9,11,12, 14} {0,1,2,3,4,6,7,9,10,11, 12,13}
{0,1,2,3,4,6,7,8,9,11,13,14} {0,1,2,3,4,5,7,9,10,11, 12,14}

{0,1,2,3,4,5,7,8,10,11,13, 14} .

3 Combinatorial Design to Key Distribution

In the following two sections, we describe how Symmetric Designs and Gener-
alized Quadrangles are used to generate key-chains for the sensors in a sensor
network.

3.1 Mapping from Symmetric Design to Key Distribution

In this work, we are interested in Finite Projective Plane of order n which is a
Symmetric Design (Symmetric BIBD) with parameters (n®> +n+1,n+1,1).

Mapping: We assume a distributed sensor network where there are N sensor
nodes. Sensor nodes communicate with each other and require pairwise keys to
secure their communication. Each sensor has a key-chain of K keys which is
stored to its ROM before the deployment. Keys are selected from a set P of key-
pool. To secure the communication between them, a pair of sensor nodes need
to have x keys in common in their key-chains. Based on this, we define mapping
given in Table-1

For a sensor network of N nodes, with total of N key-chains, a Symmetric
Design with b > N blocks needs to be constructed by using set S with |S|=v =b
objects. That means, b = v = n?> + n+ 1 > N for a prime power n [7,1]. Each
object in S can be associated with a distinct random key, and each block can be
used as a key-chain. That provides b > N key-chains each having K =k =n+1



keys. Symmetric Design guarantees that any pair of blocks has A objects in
common, meaning that any pair of key-chains, or equivalently sensor nodes, has
X = A keys in common.

Construction: There are several methods to construct Symmetric Designs of
the form (n? +n + 1,n 4+ 1,1). In this project, we use a complete set of (n — 1)
Mutually Orthogonal Latin Squares (MOLS). A Latin Square on n symbols is
an n x n array such that each of the n symbols occurs exactly once in each
row and in each column. The number n is called the order of the square. If
A = (a;5) and B = (b;;) are any two n x n arrays, the join of A and B is a
n x n array whose (7, j)!" element is the pair (a;j, b;;). The Latin Squares A and
B of order n are Orthogonal if all entries of the join of A and B are distinct.
Latin Squares A, Ag, ..., A, are Mutually Orthogonal Latin Squares (MOLS)
if they are orthogonal in pairs. For prime power n, a set of (n — 1) MOLS of
order n is called a Complete Set [7,1]. A complete set of (n — 1) MOLS can be
used to construct Affine Plane of order n which is an (n?,n, 1) design. Affine
Plane of order n can be converted to Projective Plane of order n which is a
(n? +n+ 1,n + 1,1) Symmetric Design. The construction algorithm can be
summarized as follows:

. Given a network size of N, find a prime power n where n> +n+1 > N,

. Generate a complete set of (n — 1) MOLS of order n [1, Theorem 5.1.1],

. Construct the Affine Plane of order n from the MOLS [1, Theorem 1.3.5],

. Construct the Projective Plane of order n from the Affine Plane [1, Theorem 1.2.5].

=W N =

Analysis: Symmetric Design has a very nice property that, any pair of blocks
shares exactly one object. Probability of key share between any pair of nodes is
Psyy =1, so that Average Key Path Length is 1.

Resilience is an important metric for the security. Attackers might be captur-
ing nodes selectively or randomly. In the case of selective capture, we may simply
assume that attacker has ability to monitor whole network and selects the nodes
wisely. Since key-chain size is n+ 1 for a symmetric design with n? +n+ 1 nodes
and keys, attacker will need at least n + 1 key-chains to be able to recover all
the keys. A wise attacker may select to capture the nodes which have the same
specific key in their key-chains. From the properties of the symmetric design, we
know that there are n 4 1 such key-chains. Since every pair of keys can occur in
exactly one key-chain, then every n? 4+ n keys must be pairing with the specific
key in these m + 1 key-chains. But an unlucky attacker who selects the nodes
randomly might be capturing n? key-chains which do not include the specific
key. Therefore an unlucky attacker will need to capture n? + 1 key-chains to be
able to recover all the keys.

Symmetric Design of the form (n?+mn+1,n+1,1) is not a scalable solution
itself. Given a fixed key-chain size k = n + 1, it can support network sizes of NV
where N < n? + n + 1. For networks of size N < n? + n + 1, simply some of
blocks may not be used still preserving key sharing probability Psyas = 1. For
the networks where N > n? + n + 1, key-chain size must be increased, that is,
n must be increased to next prime power. Due to the memory limitations of a
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Table 2. The GQ(s,t) parameters.

|Genera1ized Quadrangle GQ(s, t)

Point Set (P)

Point Set Size (|S|=v = (s+1)(st+ 1))
Line Set (B)

# Lines (|B| =b= (t+ 1)(st + 1))

# Lines (|B| =b= (t+1)(st + 1))

# Points on a Line (s + 1)

# Lines that a Point is incident (¢ + 1)
Two Lines share (< 1) points

|Key Distribution

Key-Pool (P)

Key-Pool Size (|P|)

Key-Chains

# Key-Chains (N)

# Sensor Nodes (N)

# Keys in a Key-Chain (K)

# Key-Chains that a Key is in
Two Key-Chains share (x) Keys
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Table 3. Mapping from GQ to Key Distribution

sensor node, this may not be a good solution. Moreover, such an increase in n
may produce designs which can support much bigger networks than required.
In probabilistic key distribution schemes, it is always possible to increase size
of key-pool for a fixed key-chain size to increase the possible number of distinct
key-chains. But, such an approach sacrifices the key share probability and re-
quires better connectivity at underlying physical network. It is possible to merge
deterministic and probabilistic designs to inherit advantages of both. Later in
Section-4, we propose Hybrid of Symmetric and Probabilistic Designs to cope
with scalability problems. Basically, we use n2 4+ n + 1 blocks of the Symmetric
Design and select uniformly at random remaining N — (n? +n+ 1) blocks among
the (k = n + 1)-subsets of the Complementary Symmetric Design.

3.2 Mapping from Generalized Quadrangles to Key Distribution

In this work, we are interested in three known GQ(s,t): GQ(q, q), GQ(q,¢?) and
GQ(q?, ¢%). Table-2 gives details about their parameters.

Mapping: Consider a sensor network of N nodes where each node requires a
key-chain having K keys coming from a key-pool P. Assume also that, not all
pairs of neighboring nodes need to share a key directly, they can communicate
through a secure path on which every pair of neighboring nodes shares a key.
GQ can be used to generate key-chains for such networks. Namely, points in GQ
can be considered as the keys and lines as the key-chains. Mapping between GQ
and Key Distribution is given in Table-3.



| GQ | PG | Points | Canonical Equation for PG |

GQ(q,9) | PG(4,9)| (wo, 1,2, 3, 74) @3 + z1w2 + w374 = 0
GQ(q,4°) | PG(5,q) |(wo, x1, w2, 23, T4, 5) f(xo, 1) + 2223 + Taw5 = 0
GQ(q27 qS) PG(47 q2) ($07 $17$27$37$4) ZCS+1 + ZC({+1 + ‘rngl + :Cg+1 + ‘rZJrl =0

Table 4. Projective Space Equations

In GQ, there are t+1 lines passing through a point, and a line has s+1 points.
That means, a line shares a point with exactly ¢(s + 1) other lines. Moreover,
if two lines, say lines A and B, do not share a point, then for each point pt
on line A, there is a point ptg on line B such that there exist a line C passing
through both points pt 4 and ptp. That means, if two lines A and B do not share
a point, there are s 4+ 1 distinct lines which share a point with both lines A and
B. In terms of Key Distribution, meaning that, a block shares a key with ¢(s+1)
other blocks. Additionally, if two blocks do not share a key, there are s+ 1 other
blocks sharing a key with both.

Construction: The three GQ(s,t)’s used in this work are incidence relations
between points and lines in a Projective Space PG(d,q) and PG(d,q?) with
dimension d. Points of the space are vectors with d + 1 elements of the form
(70, 71,2, ...,7q4) where z; < q for PG(d,q) and x; < ¢* for PG(d, ¢?). They
hold the projective plane equations given in Table-4.We use irreducible binary
quadratic f(zg,z1) = dzd + zoz1 + 23 for GQ(q,q?) as given in Table-4. Our
construction algorithm can be summarized as follows:

1. Given network size of N, find a prime power q where:
b=¢+¢*+q+1 > N for GQ(q,q) .
b=¢"+¢*+¢+1 > N for GQ(q,q°) -
b=¢"+¢"+¢*+1 > N for GQ(¢*,¢%) .

2. Find all points in Projective Space PG(4,q) for GQ(q,q), PG(5,q) for GQ(q,q?)
and PG(4,¢*) for GQ(q?, ¢®). That is, find all points holding given canonical equa-
tion.

3. Construct bilinear groups of size s+ 1 from v points, that is, find s+ 1 points which
are on the same line. Note that each point is incident to ¢ 4+ 1 lines.

Analysis: In a GQ(s,t), there are b = (t+ 1)(st + 1) lines and a line intersects
with ¢(s+ 1) other lines. Thus, in a design generated from a GQ, a block shares
an object with ¢(s 4+ 1) other blocks. Probability Pgg that two blocks share at
least one object, or equivalently, probability Pgg that a pair of nodes shares at
least one key is:

P _ M) __ tst1)
T Ty T G+ D(st+1)

Table-5 lists key share probabilities for the three GQs.



| GQ |Pairwise Key Sharing Probability|

2
GQ(g,9) Poq = q3+qq—2iqq+1
2 3 2
GQ(g, ") Pog» = giipigm
2 3 +
GQd,q7) P22 = g

Table 5. Pairwise Key Sharing Probabilities

| |I|II|III|IV|
GQ(q,q) [2|3]3 |2
GQ(g,4°) |3[2
GQ(¢, )41
Symmetric|1|4

114
23
411

Table 6. Comparison of GQ and Symmetric Designs

GQ(s,t) provides better resilience than the symmetric design. An unlucky
attacker may need to capture st(t + 1) blocks before selecting a block which
includes a specific point. Therefore, an unlucky attacker needs to capture st 4+
st + 1 nodes to recover all the keys. For example, with the key-chain size of
g+ 1in GQ(s,t) = GQ(q,q?) design, an unlucky attacker will need to capture
q° + ¢+ 1 nodes before recovering all the keys. A wise attacker who is capturing
nodes having the same specific key will capture ¢+ 1 nodes. Attacker will be able
to recover ts+s+1 out of ts?+ts+s+1 keys this time. With GQ(s,t) = GQ(q, ¢*)
design, a wise attacker only capturing ¢? 4+ 1 nodes having the same specific key
will be able to recover ¢® + ¢ + 1 keys out of ¢* + ¢> + ¢ + 1 keys.

Comparison of Symmetric and GQ Designs for Key Distribution: We
are interested in four metrics when comparing the designs: (I) probability of
object share between any pair of blocks, (II) block size which is the number of
the objects in a block, (III) number of blocks generated by the design, and (1V)
complezity of the design. Object-pool size, which is the number of the objects in
the key-pool, might be another metric. But, object-pool size metric shows same
characteristics as number of blocks metric.

Table-6 compares GQ and Symmetric designs based on these four metrics.
Rows are the designs and columns are the metrics. Table entry for row — i
and column — j is the rank of the design in row — i, based on the metric in
column — j. Designs are ranked from best (rank 1) to worst (rank 4) in each
column. Symmetric Design is the simplest design and provides highest number
of object share. GQ(q, ¢) provides highest number of blocks for the fixed block
size. GQ(q?, ¢*) provides smallest block size for the fixed number of blocks. The
table can be used to decide on the proper design to generate networks with given
objectives (connectivity, size, storage limits, etc.)



|Design |k |r |b |v

Symmetric n+l [n+1 [n*4+n+1 n4+n+1
Complementary Symmetric|n? n? n’4+n+1 n®+n+1
GQ(n,n) n+l n+1 [PP+n+n+1 [P +n+n+1
Complementary GQ(n,n) |n°> +n?n®> +nn® +n+n+1 |[n*+n>+n+1
GQ(n,n?) n+1l [n+1 [P+ +n+1n* +n¥ +n+1
Complementary GQ(n,n?) [n* +n?n°> +n’n®> +n° +n? +1n* +n° +n+1
GQ(n*,n?) 24+ 1 [P+ 1 [P+’ +1n" +n° + 07 + 1
Complementary GQ(n*,n3) [n” + n®[n® + n’n® +n® + 03+ 1n" +n°> +n? +1

Table 7. Parameters k, r, v, b for Symmetric, GQ and their Complementary Designs

Probabilistic key distribution is the simplest and most scalable solution when
compared with GQ and Symmetric Designs. Next, in Section-4, we propose Hy-
brid Symmetric and GQ Designs which provide solutions as scalable as proba-
bilistic key distribution schemes, yet taking advantages of underlying GQ and
Symmetric Designs.

4 Hybrid Designs for Scalable Key Distributions

The main drawback of the combinatorial approach comes from the difficulty of
their construction. Given a desired number of sensor nodes or a desired number
of keys in the pool, we may not be able to construct a combinatorial design for
the target parameters.

In this work, we present a novel approach called Hybrid Design which com-
bines deterministic core and probabilistic extensions. We will consider two Hy-
brid Designs: Hybrid Symmetric Design and Hybrid GQ Design. By using Sym-
metric or GQ Design and its complement, we preserve nice properties of combi-
natorial design yet take advantages of flexibility and scalability of probabilistic
approaches to support any network sizes.

4.1 Mapping

Consider a sensor network where there are N nodes, therefore N key-chains
are required. Due to memory limitations, key-chains can store at most K keys
coming from key-pool P. We can employ Hybrid Design for the cases where there
is no known combinatorial design technique to generate design with N nodes for
the given key-chain size K. Basically, Hybrid Design finds largest prime power
n such that k¥ < K and generates N blocks of size k where objects come from
object set S of size |S| = v. The b of N blocks are generated by base Symmetric
or GQ Design and N — b blocks are randomly selected among k-subsets of the
Complementary Design blocks. We define mappings as in Table-8.



|Hybrid Symmetric Design | |Key Distribution

Object Set (S) —|Key-Pool (P)

Object Set Size (S| = v) —|Key-Pool Size (|P])

Blocks of base design and selected —|Key-Chains

(k)-subsets from Complementary Design

# Dblocks from base design (b) + — |# Key-Chains (V)

# selected (k)-subsets (N — b)

# Dblocks from base design (b) + —|# Sensor Nodes (N)

# selected (k)-subsets (N — b)

# Objects in a Block (k < K) —|# Keys in a Key-Chain (K)
Two Blocks share zero or more Objects |—|Two Key-Chains share (x) Keys

Table 8. Mapping from Hybrid Design to Key Distribution

4.2 Construction

For a given key-chain size K and network size IV, Hybrid Design first generates
the Base Symmetric or GQ Design with largest possible prime power n where
k < K. Base Symmetric or GQ Design has b blocks of size k. Table-7 lists the
relations between block size k and number of blocks b for the prime power n. Next
step is to generate Complementary Design where there are b blocks of size v — k.
Table-7 lists the parameters of the Complementary Designs. Due to the fact that
v — k >k for Symmetric and GQ designs, Complementary Design blocks can’t
be used as the key-chains, but their subsets can. To scale the base design up
to given network size, Hybrid Design randomly selects remaining N — b blocks
uniformly at random among k-subsets of the Complementary Design blocks.
Selected k-subsets along with the blocks of the base design form blocks of the
Hybrid Design. Algorithm can be summarized as follows:

1. Given N sensor nodes where each can store a key-chain of size K, find largest
possible prime power n such that k£ < K for k values given in Table-7.

2. Generate the base design (Symmetric or GQ):

— Generate an object pool P = {a1, az, ..., a, } of size v,
— Generate the blocks B = {B1, Bs, ..., By} where |B;| =k for 1 < ¢ < b and
B, CP.

3. Generate Complementary Design from the base design:

— Generate blocks B = {B_17B_27 .. ,E} where B; = P — B; and |E| =v—k
for 1 <i<b.

4. Generate N — b hybrid blocks H={H1, Hs, ..., Hy_p} of size |H;| =k (1 <i <
N —b) from the Complementary Design B = {B_17B_27 . ,E}. Use variable s; to
hold index of the block in B from which the block H; is obtained:

— Consider all k-subsets of all blocks in B,
— Randomly select N — b distinct k-subsets to generate the set H,
— For each selected k-subset H; (1 <i < N —b), find the block B; € B (1< j <
b) from which block H; is obtained. Set s; = j.
5. Blocks of the Hybrid Design are B U H.



Example 5: Assume that we would like to generate key-chains for a net-
work with N = 10 nodes. Assume also that nodes have very limited memo-
ries, so that they can store at most K = 3 keys in their key-chains. Hybrid
Symmetric Design can be used to generate design for this network. Symmetric
Design (v,k,A\) = (7,3,1) of Ezample-1 can be used as the base design to gen-
erate b = 7 blocks out of v = 7 objects where block size is k = 3. Blocks of
Symmetric Design form the set B={{1,2,3}, {1,4,5}, {1,6,7}, {2,4,6}, {2,5,7},
{3,4,7}, {3,5,6} }. Remaining N — b = 3 blocks are selected uniformly at random
among the 3-subsets of the Complementary Symmetric Design B = {{4,5,6,7},
{2,3,6,7}, {2,3,4,5}, {1,3,5,7}, {1,3,4,6}, {1,2,5,6}, {1,2,4,7}}. Assume that se-
lected blocks are {4,5,6}, {2,3,6} and {1,5,7} which are the 3-subsets of the sets
{4,5,6,7}, {2,3,6,7} and {1,3,5,7} respectively. These blocks (3-subsets) form the
set H={{4,5,6}, {2,3,6}, {1,5,7}}. The blocks of the Hybrid Symmetric Design
are then B U H= {{1,2,3}, {145}, {1,6,7}, {2,4,6}, {2,5,7}, {3.4,7}, {3,5.6},
{4,5,6}, {2,3,6), {1,5,7}}.

4.3 Analysis

In this section, we analyze some important properties of Hybrid Symmetric and
Hybrid GQ Designs. We will look for some useful properties coming from un-
derlying combinatorial design. Based on these properties, we will analyze object
share probabilities between any pair of blocks in Hybrid Design B U H, where
B is the set of blocks from the base (Symmetric or GQ) design and H is the
set of blocks which are uniformly at random selected among k-subsets of the
Complementary Design blocks B (variable s; holds index of the block in B from
which block H; € H is obtained). Proofs for the properties and theorems are
given in the appendix.

Hybrid Symmetric Design:
Property 1. Given Hybrid Design BUH,V 3 € Band € H,F3begbgd. O

Property-1 doesn’t hold among the blocks in H. To see that, consider two
such distinct blocks H; € H and H; € H where s; # s;. Complementary Design
of a Symmetric Design has the property that any pair of blocks has n2 —n objects
in common. For n > 2, when (n?—n) > (n+1), it can be the case that randomly
selected blocks (k-subsets) H; and H; of size k = n + 1 are equivalent.

Property 2. Given the key chain size k = n + 1, Hybrid Symmetric Design can
support network sizes up to:

2
(%) = (71 n-i:i-nl-i_l) . o

This is the maximum network size that the simple probabilistic key pre-
distribution scheme can support for the key-chain size k = n + 1 and the key-
pool size v = n? + n + 1. Probabilistic scheme can go beyond this limit by
simply increasing the key-pool size v for a fixed key-chain size k. To provide the



same scalability, we employ Hybrid GQ Designs which are analyzed in the next
section. For fixed key chain size k = n + 1, GQ(n,n?) will be able to generate

designs for networks up to:

(U) _ n4+n3+n+1
k n+1

This is the upper limit of our deterministic algorithms. Numerically, for key chain
size of 4, our Hybrid GQ(n, n?) Design supports network sizes up to 6, 210, 820. It
supports (2.54 x 10'4) nodes for k = 6, (8.08 x 10%?) nodes for k = 8, (1.18 x 1032)
nodes for k = 10, (5.78 x 10*!) nodes for k = 12 and so on.

Consider blocks B U H of the Hybrid Symmetric Design. Any pair of blocks
(8, 0) selected from the set B U H can be either one of the four types:

1. Type-BB: f € B and 0 € B.

2. Type-HH: 3 =H; € H and 0 = H; € H and s; # s;.
3. Type-H: B =H; € H and § = H; € H and s; = s;.
4. Type-HB: (B € Band § € H) or (8 € H and 6 € B).

Properties 3 to 6 below give probability of sharing at least one object for pairs
of the types BB, HH, H and H B respectively. Property-7 presents probabilities
that these types happen. Finally, Theorem-1 presents probability of object share
in Hybrid Symmetric Design.

Property 3. The probability Pgp that any pair of blocks (3,0) (where 8 € B
and 6 € B) of the base Symmetric Design has exactly one object in common is
Ppp =1. O
Property 4. The probability Py g that any pair of blocks (3, 6) where = H; €

H, 0= H; € H and s; # s; has at least one object in common approaches to 1
as n (block size) increases. O

Property 5. The probability Py that any pair of blocks (3, #) where = H; € H,
0 = H; € H and s; = s; has at least one object in common is :

n2_n-1
P _ 1 . n+1 ) |:|
" (7:}#21) '

Property 6. The probability Pyp that any pair of blocks (3,60) where (8 € B
and 0 € H) or (8 € H and 6 € B) has at least one object in common is:

sn’+8ntl n’+42 O
= n24n+1 °
Property 7. Consider any pairing between N blocks of B U H of Hybrid Sym-
metric (or GQ) Design. Any pair of blocks selected from this set can be either
one of the four types: BB, HB, H or HB. Probability @), that a pair of blocks

is Type-a for « € {BB, HB, H, HB} is:
b(b—1 2b(N—b N—b)(N—2b b—1)(N—b)?
QBB = NEN*%) aQHB = NEN*l) 7QH = ( bN()](Vfl) ) 7QHH = (bN)(g\ffl) .
where Qpp+Qup +Qu +Qur =1 . O

Thus we have the following theorem:

~—

Theorem 1. Probability Pysy v that any pair of blocks shares a key in Hybrid
Symmetric Design is:
Pysym = PepQpB + PupQub + PuQu + PunQup - O



Hybrid GQ Designs:

Property 8. Given key chain size k = n + 1, Hybrid GQ Design can support
network sizes up to:

(42) = (“72577) - 0

Consider blocks B U H of the Hybrid GQ Design. Any pair of blocks (53, 0)
selected from the set B U H can be either one of the four types: BB, HH, H
and H B. Properties 9 to 12 below give probability of sharing at least one object
between pairs of the types BB, HH, H and H B respectively. Finally, Theorem-2
presents probability of object share in Hybrid GQ Design.

Property 9. The probability Pgp, that any pair of blocks (5,6) (where 5 € B
and 6 € B) of the base GQ Design has exactly one object in common is given in
Table-5 for GQ(q.q), GQ(g.¢%) and GQ(¢?, ¢°). O

Property 10. The probability Py;; that any pair of blocks (3, 8) where 8 = H; €
H, 0 =H; € Hand s; # s; has at least one object in common approaches to 1
as n (block size) increases. O

Property 11. The probability Pj; that any pair of blocks (3,6) where § = H; €
H, 0= H; € H and s; = s; has at least one object in common is :
(e+1)(et-1))

Property 12. The probability P that any pair of blocks (3, 0) where (8 € B

and 0 € H) or (8 € H and 6 € B) has at least one object in common is:

(s+1)(t—s/241) (st—s+t+2)
(t+1)(st+1) < PIILIB < (t+1)(st+1) ° a

a

Theorem 2. Probability Ppgg that any pair of blocks shares a key in Hybrid
GQ Design is:
Prco = PppQe + PupQup + PyQu + Py Qum - 0

5 Computational Results

We have implemented Random Key Pre-distribution Scheme by Eschenauer et
al. [13], Symmetric Design, GQ(q,q), GQ(q,q?), Hybrid Symmetric Design, and
compared them with each other. In random key pre-distribution scheme, we
initially generate a large pool of P keys and their identities. For each sensor,
we uniformly at random draw k keys from the key-pool P without replacement.
These k keys and their identities form the key-chain for a sensor node.

Basically, for a network of size N, we generate N key-chains and assign
them to N sensor nodes. Then, we uniformly at random distribute N nodes
in to a 1 x 1 unit grid. Every wireless sensor has a coverage of radius r where
r = d (In N)/N, all nodes within this coverage area is accepted as neighbors.
Note that, parameter d can be used to play with radius r and therefore average
degree of the network.



Pool Key |Number [Random|Symmetric| Random [Symmetric| Avg.
Size | Chain | Sensor Avg. Key| Avg. Key | Node
(P) |Size (k)| Nodes | Prob. Prob. Path Path  |Degree
100807 318 100807 | 0.634 1.0 — 1.0 -
10303 102 10303 0.639 1.0 1.35 1.0 56
5113 72 5113 0.642 1.0 1.35 1.0 51
2863 54 2863 0.645 1.0 1.35 1.0 47
1407 38 1407 0.651 1.0 1.34 1.0 42
553 24 553 0.663 1.0 1.33 1.0 35

Table 9. Symmetric Design vs Random Key Pre-distribution

After the deployment, two neighboring nodes compare the keys in their key-
chains by using the key id’s. If they have a key in common, it is used to secure
the communication. If there is no key in common, they try to find a shortest
possible path where each pair of nodes on the path shares a key. Length of this
path is called Key Path Length where Key Path Length for two nodes directly
sharing a key is 1. Average Key Path Length is one of the metrics that we use to
compare random key pre-distribution scheme with our Deterministic and Hybrid
Design schemes.

Probability p that two key-chains share at least one key is another metric we
use in comparison. For random key pre-distribution scheme, for a given key-pool
size P and key-chain size k, Eschenauer et al. in [13] approximate probability p
as: (1 &)2(P—h+1/2)

Pranp = |1 - =25 P 7175

In Symmetric Design, Psyy = 1 since any pair of key-chains shares ex-
actly one key. In GQ(s,t), probability of key share Poq for GQ(q,q), Pog> for
GQ(q,¢*) and Pgags for GQ(g?, ¢*) is given in Table-5.

Probability of key share Ppgy s is given in analysis section of the Hybrid
Symmetric Design. Similarly, probability of key share Ppgg for Hybrid GQ
Design is given in analysis section of the Hybrid GQ Designs.

Tables 9, 10, 11, 12 and 13 summarize the computational results: (i) analytical
solution for probability p that two key-chains share at least one key, and (ii)
simulation results for Average Key Path Length.

Symmetric Design is compared with Random Key Pre-distribution scheme
in Table-9. For the same network size, key-chain size and pool-size, Symmetric
Design provides better probability of key share between any two key-chains. Sim-
ulation results for average key path length supports this advantage. In Random
Key Pre-distribution scheme, a pair of nodes requires to go through a path of
1.35 hops on average to share a key and communicate securely. This path length
is 1 for Symmetric Design.

GQ(q,q) is compared with Random Key Pre-distribution scheme in Table-
10. GQ(q,q) decreases key-chain size, causing a small decrease in key sharing
probability. Analytical solution shows that random key pre-distribution scheme



Pool| Key |Number [Random|GQ(q,q)| Random | GQ(q,q)| Avg.
Size | Chain | Sensor Avg. Key|Avg. Key| Node
(P) |Size (k)| Nodes | Prob. | Prob. Path Path |Degree
7240 20 7240 0.053 | 0.052 2.68 2.69 205
5220 18 5220 0.060 0.058 2.89 2.88 148
2380 14 2380 0.079 | 0.076 3.17 3.18 88
1464 12 1464 0.094 0.090 2.73 2.71 81
400 8 400 0.150 0.140 3.61 3.49 32
156 6 156 0.212 0.192 2.82 2.53 25

Table 10. Generalized Quadrangle GQ(q, q) vs Random Key Pre-distribution

Pool | Key [Number |[Random|GQ(q,q*)] Random |GQ(q,¢”)] Avg.
Size | Chain | Sensor Avg. Key|Avg. Key| Node
(P) |[Size (k)| Nodes | Prob. Prob. Path Path |Degree

15984 12 162504 | 0.0008 | 0.0089 - -

2753 8 17200 | 0.003 0.022 2.96 2.96 631
756 6 3276 0.010 0.045 3.12 3.22 179
112 4 280 0.056 0.128 5.63 5.49 29

27 3 45 0.190 0.266 2.23 2.14 15

Table 11. Generalized Quadrangle GQ(q, q2) vs Random Key Pre-distribution

provides slightly better probability of key share between key-chains, but GQ(g, q)
is still competitive to random key pre-distribution scheme. When two key-chains
do not share a key, GQ(q, q¢) guarantees existence of third one which shares a
key with both.

GQ(q,q?) is compared with Random Key Pre-distribution scheme in Table-
11. Generalized Quadrangle provides better key sharing probability and performs
better in simulation by producing shorter Average Key Path Lengths.

GQ(q?% ¢®) is compared with Random Key Pre-distribution scheme in Table-
12. Generalized Quadrangle provides much better key sharing probability, we ex-
pect that simulation results will produce much shorter Average Key Path Length
compared to random key pre-distribution scheme.

Hybrid Symmetric Design is compared with Random Key Pre-distribution
Scheme in Table-13. Hybrid Symmetric Design makes use of Symmetric Design,
yvet taking advantages of the scalability of probabilistic approach. Given tar-
get network size N and key chain size k for which there is no known design,
computational results shows that Hybrid Symmetric Design shows much better
performance than Probabilistic Design.



Pool |[Key Chain|Number [Random|GQ(q°, ¢°)
Size (P)| Size (k) | Nodes | Prob. Prob.

81276 6 393876 |0.000091| 0.008251
2440 4 6832 ]0.002340| 0.039519
165 3 297 10.030098| 0.134680

Table 12. Generalized Quadrangle GQ(q?, ¢*) vs Random Key Pre-distribution

Pool | Key |Number |Random|Hybrid Sym.| Random |Hybrid Sym.| Avg.
Size | Chain | Sensor Avg. Key| Avg. Key | Node
(P) |Size (k)| Nodes | Prob. Prob. Path Path Degree
10303 102 10500 0.632 0.99 1.36 1.01 56
5113 72 5250 0.632 0.99 1.35 1.01 51
2863 54 3000 0.628 0.98 1.35 1.03 47
1407 38 1500 0.627 0.97 1.34 1.04 42
553 24 750 0.547 0.89 1.33 1.15 37
183 14 250 0.563 0.89 1.31 1.14 29

Table 13. Hybrid Symmetric Design vs Random Key Pre-distribution

6 Conclusions

In this work we presented novel approaches to the key distribution problem in
large scale sensor networks. In contrast with prior work, our approach is com-
binatorial based on Combinatorial Block Designs. We showed how to map from
two classes of combinatorial designs to deterministic key distribution mecha-
nisms. We remarked the scalability issues in the deterministic constructions and
proposed hybrid mechanisms. Hybrid constructions combine a deterministic core
design with probabilistic extensions to achieve key distributions to any network
sizes.

The analysis and computational comparison to the randomized methods show
that the combinatorial approach has clear advantages: (i) it increases the prob-
ability of a pair of sensor nodes to share a key, and (ii) decreases the key-path
length while providing scalability with hybrid approaches.
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Appendix

Proof. (Property-1) From the definition of Symmetric Design. Since any pair
of blocks shares exactly one object, a block in B can not be the subset of the
complement of another block in B.

Given Hybrid Design BUH , consider any block H; € H where s; = [. Assume
that 3B; € B | H; = Bj. We know that, Vo, v € H; | z € B, and = ¢ B;. That
means, blocks B; and B; do not share an object, contradicting the fact that B;
and B; are blocks of Symmetric Design. Therefore, all blocks in H are distinct
from the blocks of the Symmetric Design.

Proof. (Property-2) This can be shown by using the definition of Symmetric
Design. For any set of k£ objects from the object pool P, if it is not one of the
blocks in B, there is an upper bound for the number of blocks in B that objects
of this set can appear in. This upper bound is less than the total number of
Symmetric Design blocks. There are blocks in B that this set does not share an
object, but is a subset of their complements.

Given Hybrid Design B U H, consider any set 3 of k objects where 3 ¢ B.
From the definition of Symmetric Design, we know that, any pair of elements of
object pool must be in exactly A = 1 block of the Symmetric Design. Moreover,
each object must be in r = k blocks. Consider the case where (8 shares one
or more objects with maximum possible number of blocks in B. This happens
when (3 shares k — 1 objects with one of the blocks in B. Remaining k" object
of 3 appears in the other » = n 4+ 1 blocks of B. Each of k£ — 1 objects must be
pairing with k" object A = 1 time. Therefore, k — 1 objects will appear alone in
r — 2 =n — 1 other blocks and 3 shares one or more objects with at most:

I+r+@r—1)(r—-2) =n*+2.

blocks in B. But, [B] = n* +n+ 1 and n* + n+1 > n® + 2 for n > 1. That
means, 30 € B and § € B| 6 N3 = () and 8 C 6. Therefore, Hybrid Symmetric
Design can generate every k-subset of the object set P.

Proof. (Property-3) This is direct result from definition of Symmetric Design.

Proof. (Property-4) Instead of finding the probability, we bound it. Given Hybrid
Design BU H, consider blocks H; and Hy, in H which are subsets of By, € B and
Bk € B respectively. Consider random variables X; and Y; for 1 <3 < n? —n.
X, takes on value 1 if i*" common element in By, is selected. Similarly, Y; takes
on value 1 if i*" common element in B is selected. We are interested in case
where X; and Y; both takes on value 1, meaning that the it is selected for both
blocks. We define new indicator Z; = X;.Y; where:

n2—n n2—mn
ElZ]= ) ElZ]= ) EIX]E]




E[Z] > 1 using Markov bound P(Z > 1) < E[Z] and after checking second mo-
ment which shows no significant variance, we conclude that P(Z > 1) approaches
to 1 as n increases.

Proof. (Property-5) Given Hybrid Design B U H, consider Complementary De-
sign B where blocks in H are picked uniformly at random among the k-subsets
of the blocks in B. Let Py be the probability that two k-subsets of a block 3 € B
have no objects in common. Then, Py = 1 — Py. Let L be the number of all
k-subsets of 0. Consider a k-subset o C 3, where « does not share an object
with all k-subsets of the set 8\ «. Let M be the all k-subsets of the set 5\ a. The
k-subset o may pair with L — 1 other k-subsets and does not share an object
with M of them. Therefore:

Proof. (Property-6) Given Hybrid Design B U H, from the definition of Sym-
metric Design, (i) H; may be sharing at most two objects with some blocks in
B, (ii) H; may be sharing k — 1 objects with exactly one of the blocks and share
one or two objects with some other blocks in B. In the first case, an object needs
to be coupled with k —1 objects in k — 1 different blocks and it needs to be alone
in r — k41 =1 block. Number of the blocks that H; shares an object with will
be:

n+1 . 1 2 3

(") +n+l=cn*+n+1.

2 2
From the discussion in proof of Property-2, in the second case, H; will be sharing
one or more objects with n?+2 blocks in B where |B| = b = n?+n+1. Therefore
PHB will be:
%n2+%n+1< n?+2
nan+l - TP nryaan

Proof. (Property-7) There are N blocks in block set BUH of Hybrid Symmetric
(or GQ) Design. Consider a pair of block uniformly randomly selected from this
set.

(1) probability @pp that both blocks come from B is:

(2) probability Qg p that one block comes from H (|H| = N —b) and other from
B (|B] =1b) is:

_B(N—b)  2b(N —b)
R R




Probability that both blocks are selected from H is:

("7") _ (NN -b-1)

) N(N —1)

(3) N — b blocks in H are uniformly at random selected among the k-subset of
the b blocks in B. That means, average (N — b)/b blocks are selected among the
k-subsets of each block in B. Therefore, probability @y that both blocks are
from H, and are subsets of the same block in B is:

v —pyv—p-1) (V")
N(N -1) (N;b)

Qu =

(N —2b)(N =)

bN(N —1)
(4) Probability Qg x that both blocks are from H and are subsets of the distinct
blocks in B is:

_W-pw-b-p | P (o)
QHH = N(N —1) - 2
_ (b—=1)(N — b)?
TTOWN(N 1)

Proof. (Theorem-1) Consider any pairing between N blocks of Hybrid Symmet-
ric Design B U H. Any pair of blocks selected from this set can be either one
of the four types given in Property-7 (with probabilities Qpgr, Qup, Qu and
Qum). Probability of sharing at least one object between the pairs of each type
is given in Properties 3, 4, 5 and 6 (Pgp, Pup, Py and Py ). Then, probability
Prsy n that any pair of blocks shares at least one object in Hybrid Symmetric
Design is:

Pysynm = PppQ@pe + PapQuB + Pu@QH + PHrQuH -

Proof. (Property-8) Similar to proof of Property-2. This can be shown by using
definition of GQ Design. For any set of k objects from the object pool P, if it is
not one of the blocks in B, there is an upper bound for the number of blocks in
B that objects of this set can appear in. This upper bound is less than the total
number of GQ Design blocks. There are blocks in B that this set does not share
an object, but is a subset of their complements.

Given Hybrid Design BU H, consider any set 3 of k objects from object pool
P where 8 ¢ B. Consider the case where (§ shares one or more objects with
maximum possible number of blocks in B. From the definition of GQ Design,
this happens when the set [ shares s objects with a block in B. Remaining
(s+1)*" object will appear in the other ¢+ 1 blocks of B. Each of s objects must



be pairing with (s + 1)** object once. Therefore, s object will appear alone in
t — 1 other blocks and (8 shares one or more objects with at most:

T+ (t+1)+st—1)= st+t—s+2.

blocks in B. But, there are (¢ 4 1)(st + 1) blocks in GQ Design and st* 4 st +
t+1>>st+t—s+2 That means, 3 € Band § € B|dNS =0 and 8 C 0.
Therefore, Hybrid GQ Design can generate any k-subset of the object set P.

Proof. (Property-10) From the discussion in property-4 it follows.
Proof. (Property-11) From the discussion in property-5 it follows.
Proof. (Property-12) From the discussion in property-6 it follows.

Proof. (Theorem-2) Similar to Theorem-1. From Properties 9, 10, 11, 12 and 7
it follows.



