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Abstract: 

In this paper, we investigate the properties of the cell-graphs by using the spectral graph 

theory. The spectral analysis is performed on (i) the adjacency matrix of a cell-graph, and (ii) the 

normalized Laplacian of the cell-graph. We show that the spectra of the cell-graphs of cancerous 

tissues are unique and the features extracted from these spectra distinguish the cancerous 

(malignant glioma) tissues from the healthy and benign reactive/inflammatory processes. Our 

experiments on 646 brain biopsy samples of 60 different patients demonstrate that by using 

spectral features defined on the normalized Laplacian of the graph, we achieve 100% accuracy in 

the classification of cancerous and healthy tissues. In the classification of cancerous and benign 

tissues, our experiments yield 92% and 89% accuracy on the testing set for the cancerous and 

benign tissues. We also analyze graph spectra to identify the distinctive spectral features of the 

cancerous tissues to conclude that (i) the features representing the cellular density are the most 

distinctive features to distinguish the cancerous and healthy tissues, (ii)  and the number of the 

eigenvalues in the normalized Laplacian spectrum that have a value of 0 is the most distinctive 

feature to distinguish the cancerous and benign tissues.  
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1. Introduction  

In traditional cancer diagnosis, pathologists manually examine biopsies to make diagnostic 

assessments. The assessments are largely based on visual interpretation of cell morphology and 

tissue distribution, lacking of quantitative measures. Therefore, they are subject to considerable 

inter-observer variability [1-3]. To circumvent this problem, numerous studies aim at quantifying 

the characteristics of cancerous cells and tissues that distinguish them from their counterparts. 

Such quantification facilitates to design automated systems that operate on quantitative 

measures, and in turn, to reduce the inter-observer variability. However, this is not a 

straightforward task because a biological sample consists of a large variability due to its nature 

and because it may consist of a large amount of noise due to its staining process.  

There are mainly four different approaches to quantify the characteristics (features) of cells 

and tissues. The first approach makes use of morphology to quantify the size and shape of a cell 

or its nucleus [4–8]. Since this approach computes the features on individual cells, it necessitates 

segmenting the image into cells/nuclei prior to feature extraction. In segmentation, the exact 

boundary of a cell or its nucleus is determined using the intensity values of pixels and/or their 

gradients. Therefore, segmentation requires higher magnification images to resolve the cell 

details. The second approach employs the distribution of the intensity values of pixels [9–12] to 

define features. Since this approach directly derives features from the intensity values, these 

features are more sensible to the noise that arises from staining. Both of these two 

aforementioned approaches utilize the intensity values of pixels without considering the 

interdependency between them. The third approach also makes use of spatial relationships 

between the intensity values to quantify the smoothness, regularity or coarseness of the image 

[13–18]. For that, it exploits the textural descriptors such as the contrast extracted from the co-
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occurrence matrix [19] and the short run emphasis extracted from the run-length matrix [20] as 

its features. The fourth approach uses spatial dependency between the cells rather than the 

intensity values. It constructs a graph of cells from a tissue image and compute graph-

theoretical features that quantify the cell distribution over the tissue [21–25]. 

In graph-theoretical approach, one way of constructing a graph is to represent nuclei as 

vertices and define edges as to encode the interdependency between nearby nuclei. This is 

achieved by constituting the Voronoi diagram of the image and building its Delaunay 

triangulation [21–23]. The features are then computed on the Delaunay triangulation graph 

and/or its corresponding minimum spanning tree. This graph construction method only 

represents the relationships between closely located nuclei since the Delaunay triangulation 

allows the existence of edges between only the adjacent vertices. Moreover, prior to graph 

construction, this method necessitates carrying out the segmentation for each nucleus.  

Recently, we have proposed a new method to construct generic cell-graphs that also allows 

representing the interdependency between the distant cells [24, 25]. For that, we statistically 

establish an edge between any two vertices; the probability of being an edge between two 

vertices exponentially decays with the increasing Euclidean distance between them. Furthermore, 

in this graph-construction method, a vertex corresponds to a cell cluster rather than a single cell, 

eliminating the necessity to determine the exact location of each cell. We have demonstrated that 

the features computed on these cell-graphs successfully distinguish the cancerous structures from 

their non-cancerous counterparts, both at the cellular [24] and tissue levels [25].  

In this paper, we investigate the spectral decomposition (i.e., eigenvalue decomposition) of 

the cell-graphs. Our motivation is the fact that the eigenvalue decomposition of a graph and its 

structural properties are strongly related [26, 27]. Besides this relationship, there is a strong 
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theoretical work and a large literature behind this mathematical field and it is applied in several 

research fields such as chemistry, physics, and communication networking. The main 

contribution of this paper is the demonstration of the difference between the characteristics of the 

graph spectra of cancerous and non-cancerous tissues. We believe that this will open up the 

possibility to explore the characteristics of cancerous tissues with a strong and well-studied 

mathematical tool, and hence, this paper could stimulate further investigation of the spectral 

graph theory into this area. 

2. Background 

The spectrum of a graph is the set of all eigenvalues of its adjacency matrix or its Laplacian 

transformation. The eigenvalues of a graph are known to be closely related to major graph 

invariants [26, 27].  

Let ),( EVG =  be an undirected and unweighted graph without loops and edges, with V and 

E being the sets of vertices and edges of the graph G. The adjacency matrix of G is defined by 
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Although the adjacency matrix of a graph was much more studied in the past, the eigenvalues 

of the Laplacian relate to the graph invariants better than the eigenvalues of the adjacency matrix 
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[27, 28]. For instance, the number of the connected components in a graph is equal to the number 

of eigenvalues of its normalized Laplacian that have a value of 0. Moreover, as the eigenvalues 

of the normalized Laplacian lie in the range of [0,2], it is easier to quantify the properties on the 

Laplacian spectra of the graphs with different sizes, and in turn, to compare the Laplacian spectra 

of such graphs. 

In this work, we define the spectral properties to characterize the eigenvalue distributions of 

(i) the adjacency matrix and (ii) the normalized Laplacian of the cell-graphs and analyze these 

properties in terms of their power to distinguish the different types of tissues. We will explain the 

construction of a cell-graph and its spectral properties in Section 3. 

3. Our methodology 

3.1. The cell-graph generation 

The cell-graph representation encodes how the cells are clustered and distributed within the 

tissue. In the generation of cell-graphs, we represent the cell clusters as the vertices and the 

spatial interdependency between these clusters as the edges of the graph. Here, we have three 

steps: color quantization, vertex identification, and edge establishing. We explain each of these 

steps briefly; the details can be found elsewhere [24]. 

The color quantization step classifies the pixels of an image as cell or backgorund. Here, 

first, we learn how to identify the pixels on the training samples. For this, we cluster the intensity 

values of the pixels into k clusters by using k-means algorithm [29]. The number of the clusters 

(the value of k) should be selected large enough as to represent all different parts of tissues such 

as nuclei, cytoplasm, and blood vessels. After clustering the intensity values, our pathologist 

assigns each of these clustering vectors to be either “cell” or “background” class. Then, for a 
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given test sample, we classify each of its pixels by using the clustering vectors and their 

corresponding class assignments 

The vertex identification step determines the vertices of the cell-graph by making use of the 

class assignments of the pixels obtained in the previous step. For this, we embed a grid on the 

tissue image, and compute the probability of being a cell cluster for each grid entry. Assigning 1 

to the pixels of cell class and 0 to the pixels of background class, the probability of being a cell 

cluster is computed as the average of the values of the pixels located in this particular grid entry. 

A grid entry is identified as a vertex of the cell-graph, if it has a probability greater than a 

threshold value. 

The edge establishing step defines the edges between the vertices identified in the previous 

step. We establish an edge between any two vertices with a probability exponentially decaying 

with the increasing Euclidean distance between them. In this work, we use a probability function 

of α),(),( vudvuP =  to establish an edge between the vertices u and v, with 0≤α . In this 

function, ),( vud  is the Euclidean distance between the vertices u and v and α  is the exponent 

that controls the number of the edges in the graph, i.e., the connectivity level of the graph. 

3.2. Spectral features  

After generating the cell-graphs as explained in Section 3.1, we compute the spectrum of each 

cell-graph by computing the eigenvalues of its adjacency matrix and its normalized Laplacian. 

Next, we define a set of features based on the eigenvalues of the adjacency and normalized 

Laplacian matrices to characterize their spectra. These features are used as metrics to distinguish 

different cell-graphs in particular we show that the spectra of cell-graphs of cancerous tissues are 

different than those of healthy and benign tissues. 
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Adjacency matrix 

Let 110 −≤≤≤ nλλλ K  be the eigenvalues of the adjacency matrix of a graph G with n vertices.  

We identify the following features to be used as metrics: 

 The spectral radius, which is defined as a maximum absolute value of eigenvalues in the 

spectrum ( i
ni
λ

≤≤1
max ). 

 The eigen exponent is defined as the slope of the sorted eigenvalues as a function of their 

orders in log-log scale [31]. In this work, we use the eigen exponent computed on the first 

largest 50 eigenvalues of each graph. 

 The sum of the eigenvalues.  

 The sum of the squared eigenvalues. (This is referred as “energy” thereafter.) 

 The number of the eigenvalues, which is the number of vertices in the graph. (This is 

referred as “size” thereafter.) 

Remark that the range of these eigenvalues can vary according to the graph in contrast with 

the eigenvalues of the normalized Laplacian matrix. Thus we consider the Laplacian of a cell-

graph next. 

Normalized Laplacian 

Let  20 110 ≤≤≤≤= −nλλλ K  be the eigenvalues of the normalized Laplacian of a graph G 

with n vertices. We extract the following 8 features from these eigenvalues; the first 5 of them 

are illustrated on an exemplary cell-graph (Fig.1). 

 The number of the eigenvalues with a value of 0, which gives the number of connected 

components in the graph. 
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 The slope of the line segment representing the eigenvalues that have a value between 0 

and 1. For that, we first fit a line on these eigenvalues by using linear regression, and then 

we compute the slope of this line. (This is referred as “lower-slope” thereafter.) 

 The number of the eigenvalues with a value of 1. This feature was previously defined for 

the analysis of the Internet graphs [30]; it was used to compare the empirical data 

collected from the Internet and the data generated by the synthetic data generators. 

 The slope of the line segment representing the eigenvalues that have a value between 1 

and 2. (This is referred as “upper-slope” thereafter.) 

 The number of the eigenvalues with a value of 2. The value of this feature is only greater 

than 0 if and only if a connected component of the graph is bipartite and nontrivial [27]. 

 The sum of the eigenvalues. For a graph G, n
i

i ≤∑λ , where the equality holds for the 

graphs that have no isolated vertices (the vertices with a degree of 0). 

 The sum of the squared eigenvalues.  

 The number of the eigenvalues, which is the number of vertices in the graph.  

4. Experiments 

4.1. Data set preparation 

We conduct our experiments on the microscopic images of brain biopsy samples of randomly 

chosen patients1 from the pathology archives. Each of these samples consists of a 5-6 micron-

thick tissue section stained with hematoxylin and eosin technique and mounted on a glass slide. 

                                                 
1 These patients were adults with both sexes included. The identifiers were removed, and slides were numerically 
recoded corresponding to diagnostic categories by the pathologist, prior to obtaining digital images of the tissues. 
Therefore, the remaining two authors had access to images and diagnoses only, without retraceable personal 
identifiers. 
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Images of the samples are taken with a magnification of 100X in RGB color space. Prior to color 

quantization, we convert the RGB values of pixels to their corresponding La*b* values. In our 

experiments, using La*b* values yield better quantization results, since La*b* is a uniform color 

space and the color and detail information are completely separate entities. 

We work on a data set consisting of 646 sample images of 60 different patients. This data set 

consists of 329 samples of 41 cancerous (malignant glioma) (e.g., Fig.2a), 210 samples of 14 

healthy (e.g., Fig.2b), and 107 samples of 9 benign reactive/inflammatory (e.g., Fig.2c) 

processes; for 4 of these patients, we have both samples of cancerous and healthy tissues. We 

split these biopsy samples into the training and test data sets. The training data set consists of 211 

sample images of 22 different patients. The test data set consists of 435 sample images of the 

remaining 38 patients; the images of these patients are not used in training at all. 

4.2.Parameter selection 

In the generation of cell-graphs, we have 4 control parameters: (i) the value of k, (ii) the grid 

size, (iii) the probability threshold, and (iv) the exponent value of α. The value of k in k-means 

algorithm should be large enough to represent all of the different tissue parts in the biopsy 

sample. We set the value of k to 16, since we observe that the greater values of k do not 

significantly improve the quantization results. In identification of the nodes, we select the grid 

size to be 6 and the probability threshold to be 0.25. The grid size of 6 matches the size of a 

typical cell in the magnification of 100X. The threshold value of 0.25 eliminates the noise that 

arises from staining without resulting in significant information lost on the cells for the selected 

grid size. In our analyses, we fix the values of the first three parameters as explained above and 

use different exponent values of α ranging between -4.8 and -2.0 as the increments of 0.4. The 
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value of α determines the connectivity level of the cell-graph. Increasing the values of α towards 

0 yields denser graphs, whereas decreasing it towards -∞ produces sparser graphs. 

4.3. Results 

After constructing the cell-graphs, we compute the spectral properties explained in Section 3.2 

and use these properties in the design of our classifier. In this work, we design a hierarchical 

classifier that consists of two layers. In the first layer, the classifier is used to decide whether a 

given sample is healthy or not. If the classifier outputs the sample as healthy, no further classifier 

is used. Otherwise, if the classifier outputs the sample as unhealthy, the classifier in the second 

layer is used to decide whether the sample is benign or malignant (i.e., whether it is an 

inflammatory process or a cancerous tissue). We train each classifier separately by using 

multilayer perceptrons; the number of hidden units for each classifier is selected to be 4. We 

train each of these classifiers in 10 different runs and we report the average results over these 

runs in the following tables and figures. 

For the normalized Laplacian spectra of the cell-graphs, we report the average accuracy 

values obtained over 10 runs and their standard deviations in Table 1. In this table, we also report 

the accuracies obtained when different exponent values (i.e., α) are used in the construction of 

cell-graphs. This table illustrates that the first layer classifier distinguishes the healthy and 

unhealthy samples successfully regardless of the exponent values. For the unhealthy samples and 

the healthy training samples, it yields 100% accuracy. For the healthy test samples, it yields 

accuracy greater than 97%. The accuracy of the second layer classifier depends on the exponent 

value that is used in constructing the cell-graphs. For the values of α less than -2.4, we obtain the 

average accuracy greater than 85% for both malignant and benign tissues. Since no further 

classifier is used when a sample is classified as healthy, the accuracy of the hierarchical classifier 
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for the healthy samples is the same with that of the first classifier. Since the first layer classifier 

always classifies the unhealthy samples correctly, the accuracy of the hierarchical classifier for 

the cancerous (malignant) tissues and the inflammatory (benign) processes are the same with 

those reported by the second classifier. In our further analysis, we will use the exponent of -4.0, 

which leads to the least false negative ratio. 

Similarly, we report the average accuracy values and the standard deviations for the 

adjacency spectra of the cell-graphs in Table 2. This table shows that, the first layer classifier 

successfully distinguishes the healthy and unhealthy samples similar to the case of the 

normalized Laplacian spectra. However, the second layer classifier yields worse results 

compared to the results obtained when the normalized Laplacian spectra are used. For the 

adjacency spectra, the classification accuracy of the cancerous tissues in the testing set is 88.15% 

at most, where the corresponding accuracy of the inflammatory processes is 75.00%; for the 

normalized Laplacian spectra, these accuracies are 92.21% and 89.38%, respectively. We think 

that the decrease in the accuracies is the result of the difficulty to relate the adjacency 

eigenvalues to the invariants of graph. For this reason, we will use the normalized Laplacian 

spectra of the cell-graphs in our further analysis. 

Analysis of the individual features 

In our experiments, we also analyze the spectral properties of the cell-graphs to identify the 

most distinctive features. For that, we train each classifier by using a single feature. For the 

normalized Laplacian spectra, we report the average accuracy results and the standard deviations 

in Table 3. For the first classifier, we observe that the properties reflecting the cellular density 

level (i.e., sum, energy, and size) lead to the same accuracy results when all spectral features are 

used together. The lower-slope and the upper-slope also yield higher accuracy results for both 



Technical report, Rensselaer Polytechnic Institute, Department of Computer Science, TR-04-17. 
 

 12

training and test samples. On the other hand, when the number of the eigenvalues with a value of 

0, 1, or 2 (i.e., # of connected components, # of 1s or # of 2s) is used alone, the classifier cannot 

identify the healthy samples; the average accuracy is 40-55% for the healthy testing samples. 

For the second layer classifier, the density related features fail to distinguish the malignant 

and benign tissues as opposed to the case of the first classifier. Although these features yield 

high accuracy results for the malignant (cancerous) tissues, it yields very low accuracy results for 

the benign (inflamed) tissues. This indicates that the classifier cannot learn how to distinguish 

these two classes by using a density related feature and it assigns the cancerous class to almost 

every sample. 

For this classifier, the most distinctive feature is the number of connected components in a 

cell-graph which is captured by the number of zero eigenvalues in the Laplacian. It leads to 

accuracy greater than 85% for the malignant class and accuracy greater than 78% for the benign 

class on the average. The connected components in a graph can be considered as the cell clusters 

in a tissue. Therefore, intuitively, this feature is an indicator of the pattern of the cluster 

formation in the cells. We will analyze this feature for different exponent values to clarify its 

effect on the second layer classifier.  

In Fig.3, for different exponent values, we plot the accuracies obtained when the second layer 

classifier uses only the connected component as its feature. In this figure, there is a drastic drop 

in the accuracy of benign samples for the exponents greater than -2.8; the classifier tends to 

classify every sample to be malignant. This observation is consistent with the accuracy when the 

classifier uses all the features (Table 1). In Fig.4, the distribution of the number of the connected 

components of the cell-graphs for malignant and benign classes is illustrated by using a box and 
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whisker plot2. This figure illustrates that the distributions of this feature are very similar for the 

malignant and benign classes for the exponent values greater than -2.8. As the exponent value 

increases, the graph construction method produces denser graphs with almost every vertex being 

connected to each other. Therefore, the number of connected components decreases towards 1 

for both malignant and benign tissues. We conclude that the cluster formation of the cells in 

malignant and benign tissues should be different, because the number of connected components 

is closely related to the formation of cell clusters in a tissue and because the classifier cannot 

correctly classify the samples when we remove the distinctive property of this feature by 

increasing the exponent. 

5. Conclusion 

This work analyzes the spectral decomposition of the cell-graphs. In this work, 1.) we design 

a hierarchical classifier with two layers by using the features extracted from graph spectra and 

2.).we analyze the distinctive features used by the classifiers at these two layers. 

In our experiments, we use the images of 646 archival brain biopsy samples taken from 60 

different patients. This data set consists of cancerous (malignant glioma) and non-cancerous 

(healthy and benign reactive/inflammatory processes) samples. Our experiments demonstrate 

that the spectra of the cell-graphs of cancerous tissues have different characteristics than those of 

healthy and benign tissues. Although both the adjacency and the normalized Laplacian spectra of 

these graphs successfully distinguishes the cancerous tissues from the healthy ones, the 

normalized Laplacian spectra perform better to distinguish the cancerous tissues from the benign 

ones. Using 8 different spectral properties defined on the normalized Laplacian of the cell-

                                                 
2 They are drawn by using boxplot function in Matlab. Each box in this figure shows the lower quartile, median, and 
upper quartile values and the whiskers show the extent of the rest of the data. 
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graphs, the first layer classifier that classifies the samples as healthy or unhealthy yields ~ 100% 

accuracy and the second layer classifier that classifies the unhealthy samples as malignant or 

benign yields > 89% accuracy. To identify the distinctive features for each classifier, we also 

study each feature separately. Our experiments on the normalized Laplacian spectra demonstrate 

that although it is sufficient to use the spectral properties reflecting the cellular density level for 

distinguishing the healthy and unhealthy tissues, the spectral properties reflecting the cluster 

formation in the cells should be used for distinguishing the malignant and benign tissues. 
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Table 1: For the Laplacian spectra, the average accuracy results and the standard deviations of 

the first and second layer classifiers for 10 different runs. 

 

Table 2: For the adjacency spectra, the average accuracy results and the standard deviations of 

the first and second layer classifiers for 10 different runs. 

 

Table 3: For the Laplacian spectra, the average accuracy results and the standard deviations of 

the first and second layer classifiers that use a single feature. The exponent is selected to be -4.0. 
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Table 1:  

1ST LAYER CLASSIFIER 2ND LAYER CLASSIFIER 

Training Test Training Test 

α 
healthy unhealthy healthy unhealthy 

malignant 

(cancerous) 

benign 

(inflamed) 

malignant 

(cancerous) 

benign 

(inflamed) 

-2.0 100.00  

(±0.00) 

100.00 

(±0.00) 

99.35 

(±0.00) 

100.00 

(±0.00) 

62.88 

(±19.38) 

86.53 

(±9.48) 

64.66 

(±19.44) 

74.07 

(±7.37) 

-2.4 100.00  

(±0.00) 

100.00  

(±0.00) 

97.46 

(±0.78) 

100.00  

(±0.00) 

84.75 

(±4.12) 

93.60 

(±3.81) 

85.02 

(±4.12) 

82.19 

(±5.32) 

-2.8 100.00  

(±0.00) 

100.00  

(±0.00) 

98.05 

(±0.00) 

100.00  

(±0.00) 

89.50 

(±5.24) 

92.13 

(±3.47) 

88.31 

(±4.35) 

85.94 

(±4.72) 

-3.2 100.00  

(±0.00) 

100.00  

(±0.00) 

98.38 

(±0.34) 

100.00  

(±0.00) 

91.88 

(±1.35) 

93.33 

(±1.09) 

89.52 

(±1.37) 

93.44 

(±0.99) 

-3.6 100.00  

(±0.00) 

100.00  

(±0.00) 

99.35 

(±0.00) 

100.00  

(±0.00) 

88.63 

(±2.53) 

92.93 

(±2.36) 

89.72 

(±0.99) 

89.38 

(±5.74) 

-4.0 100.00  

(±0.00) 

100.00  

(±0.00) 

99.35 

(±0.00) 

100.00  

(±0.00) 

95.63 

(±2.72) 

90.67 

(±1.78) 

92.21 

(±1.08) 

89.38 

 (±2.64) 

-4.4 100.00  

(±0.00) 

100.00  

(±0.00) 

99.35 

(±0.00) 

100.00  

(±0.00) 

93.50 

(±2.19) 

91.33 

(±2.11) 

87.23 

(±2.00) 

91.88 

(±3.36) 

-4.8 100.00  

(±0.00) 

100.00  

(±0.00) 

99.35 

(±0.00) 

100.00  

(±0.00) 

91.13 

(±4.19) 

90.93 

(±4.39) 

89.36 

(±4.01) 

85.00 

(±8.81) 
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Table 2: 

1ST LAYER CLASSIFIER 2ND LAYER CLASSIFIER 

Training Test Training Test 

α 
healthy unhealthy healthy unhealthy 

malignant 

(cancerous) 

benign 

(inflamed) 

malignant 

(cancerous) 

benign 

(inflamed) 

-2.0 100.00  

(±0.00) 

100.00 

(±0.00) 

98.05 

(±0.00) 

100.00 

(±0.00) 

82.63 

(±2.97) 

76.53 

(±3.15) 

75.78 

(±2.74) 

67.81 

(±1.51) 

-2.4 100.00  

(±0.00) 

100.00  

(±0.00) 

91.30 

(±2.11) 

99.68  

(±0.11) 

87.88  

 (±2.13) 

85.33  

(±0.89) 

86.75  

(±0.96) 

74.06  

 (±6.76) 

-2.8 100.00  

(±0.00) 

100.00  

(±0.00) 

90.65 

(±2.08) 

99.01 

(±0.33) 

90.13 

(±0.92) 

88.93  

(±1.10) 

82.13  

(±1.26) 

89.07 

(±3.04) 

-3.2 100.00  

(±0.00) 

100.00  

(±0.00) 

94.29 

(±0.51) 

100.00  

(±0.00) 

91.88 

 (±0.88) 

89.87 

 (±1.57) 

85.82 

 (±2.52) 

81.25 

(±2.34) 

-3.6 100.00  

(±0.00) 

99.74 

(±0.34) 

92.47 

(±3.65) 

99.32 

(±0.26) 

88.00 

(±1.05) 

87.33 

(±1.69) 

87.23 

(±3.18) 

75.63 

(±2.47) 

-4.0 100.00  

(±0.00) 

100.00  

(±0.00) 

99.35 

(±0.00) 

100.00  

(±0.00) 

88.50 

(±1.29) 

88.67 

(±1.69) 

88.15 

(±1.38) 

75.00  

(±6.75) 

-4.4 100.00  

(±0.00) 

100.00  

(±0.00) 

96.88 

(±0.86) 

100.00  

(±0.00) 

89.63 

(±1.19) 

86.53 

(±0.99) 

85.46 

(±1.39) 

88.44 

(±2.57) 

-4.8 100.00  

(±0.00) 

99.94 

(±0.21) 

99.29 

(±0.21) 

100.00  

(±0.00) 

87.13 

(±1.19) 

87.87 

(±0.75) 

88.07 

(±0.60) 

77.81 

(±3.74) 
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Table 3:  

1ST LAYER CLASSIFIER 2ND LAYER CLASSIFIER 

Training Test Training Test 

spectral 

property 
healthy unhealthy healthy unhealthy 

malignant 

(cancerous) 

benign 

(inflamed) 

malignant 

(cancerous) 

benign 

(inflamed) 

#of conn 

comp. 

89.46 

(±6.04) 

94.90 

(±1.84) 

50.98 

(±12.30) 

72.60 

(±9.78) 

83.50 

(±1.75) 

78.80 

(±0.42) 

90.56 

(±0.97) 

83.75 

(±1.32) 

slope 01 
97.50 

(±4.85) 

95.48 

(±1.22) 

98.51 

(±1.44) 

97.54 

(±1.03) 

80.25 

(±27.17) 

25.87 

(±25.13) 

81.53 

(±29.44) 

53.13 

(±12.33) 

# of 1s 
96.43 

(±0.00) 

97.42 

(±0.00) 

55.71 

(±2.68) 

92.60 

(±0.55) 

55.13 

(±8.59) 

68.14 

(±10.92) 

31.32 

(±8.23) 

64.38 

(±4.93) 

slope 12 
99.28 

(±0.92) 

94.84 

(±0.00) 

98.96 

(±0.82) 

95.87 

(±0.84) 

68.50 

(±12.23) 

58.13 

(±17.32) 

74.22 

(±9.84) 

79.69 

(±8.75) 

# of 2s 
78.75 

(±3.52) 

94.77 

(±1.93) 

41.49 

(±7.18) 

75.48 

(±8.15) 

84.25 

(±6.70) 

58.53 

(±8.06) 

85.87 

(±3.89) 

74.06 

(±5.90) 

sum 
100.00  

(±0.00) 

99.29 

(±0.64) 

99.35 

(±0.00) 

99.11 

(±0.51) 

88.63 

(±19.97) 

13.47 

(±24.92) 

90.20 

(±17.80) 

20.31 

(±32.85) 

energy  
100.00  

(±0.00) 

100.00  

(±0.00) 

99.35 

(±0.00) 

100.00  

(±0.00) 

88.63 

(±19.97) 

13.47 

(±24.92) 

90.20 

(±17.80) 

20.31 

(±32.85) 

size 
100.00  

(±0.00) 

100.00  

(±0.00) 

99.35 

(±0.00) 

100.00  

(±0.00) 

83.50 

(±25.53) 

18.53 

(±27.65) 

86.55 

(±21.47) 

27.81 

(±36.04) 
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Figure 1: The Laplacian spectrum of a cell-graph. The first 5 spectral features that characterize 

the eigenvalues are also illustrated. 

 

Figure 2: Microscopic images of brain biopsy samples: (a) a cancerous (malignant glioma) 

tissue, (b) a benign reactive/inflammatory process, (c) a healthy tissue. 

 

Figure 3: The accuracy results obtained when only the connected component is used in the 

second layer classifier. The results on the training data set over 10 runs are illustrated. 

 

Figure 4: The distribution of the number of connected components for the training samples. 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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