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ABSTRACT 
 
This paper studies pricing mechanisms for short-term contracts for network services in a 
recurring auction with sealed bids. We propose and evaluate a novel winner selection 
policy in such an auction. The new approach was motivated by an observation that in a 
recurring auction enough customers must be willing to participate in future auction 
rounds to prevent the collapse of prices. Using a simulation, we compare the proposed 
mechanism with traditional ones. The results demonstrate that the new method increases 
revenues of the network service provider, minimizes the loss of fairness, and enlarges the 
stable customer base. 
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1. Introduction 
 
Several dynamic pricing schemes for selling network services have been proposed 
recently [9,10,11]. They constitute an essential component of dynamically adaptable 
service management frameworks for the sale and delivery of a wide range of network 
services. They have been proposed as an efficient solution for the congestion control, 
service admission control, fair allocation of network resources and revenue maximization. 
In such frameworks, prices help to control dynamically changing network environments. 
Most of the proposed dynamic pricing schemes use an auction [6,7,8] because of its ease 
of understanding by the customers and network service providers and its decentralized 
pricing scheme that eliminates the need for the seller to decide the exact price of products 
[3].  
 
The precise modeling of a customer behavior is a critical part of validation of the designs 
for auction based dynamic pricing schemes [15]. However, the previously considered 
designs for auctioning network services disregarded recurring nature of those auctions. 
Generally, an allocation of a network service is made for a specific time only, and once 
the allocated resources become free, the network service provider needs to offer them to 
the customers again. Hence, an auction for network services should be regarded as a 
recurring one.  
 
Using traditional auction mechanisms, such as English or Vickrey ones, in a recurring 
auction may result in an inevitable starvation of certain customers. As a result, the 
affected customers may drop out of the future auction rounds, thereby decreasing the 
long-term demand for the traded products. Consequently, the network service provider 
cannot guarantee its revenues. The conclusion is that to stabilize revenues in a recurring 
auction, the network service provider must prevent price collapse that requires controlling 
the supply of resources and solving the customer drop problem.  
 
Although a lot of attention was paid to controlling resource supplies, to the best of our 
knowledge, the customer drop problem has not been addressed. In this paper, we propose 
a novel pricing mechanism in a recurring auction for short-term contracts for network 
services. It resolves the customer drop problem, eliminates resource waste and restores 
the symmetry of the negotiation power between the customers and the service provider 
that is broken in the traditional auction mechanisms. The proposed mechanism is 
applicable to a multiple winners, discriminatory pricing, and sealed bid auction with the 
seller reservation price. 
  
The remainder of this paper is organized as follows. In section 2, we consider potential 
negotiation scenarios for network services and use them to analyze the problems 
motivating our approach. Section 3 illustrates the novel auction pricing mechanism. The 
proposed mechanism is verified by various experiments that are described (together with 
their results) in section 4. Finally, summaries of the contributions and of the future work 
are included in section 5. 
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2. Negotiation scenarios and motivations 
 
Different negotiation scenarios require different pricing mechanisms to efficiently 
contract the resource allocation [2]. Hence, a precise analysis of the potential negotiation 
scenarios is necessary to design an efficient auction pricing mechanism. 
 
2.1 Potential negotiation scenarios 
 
From the market structure point of view, an auction for network services can be regarded 
as an operated market with one-to-many participants (i.e., one network service provider 
and many customers), and in which multiple units of homogeneous goods are traded. The 
latter are network resources for premium quality, homogeneous network services that are 
requested recurrently by the customers for a specific time interval. Auction winners make 
contracts with a network service provider at the price that they bid in the auction.  
 
We assume that the traded services are inelastic network applications, such as real-time 
voice and video applications that require the fixed amount of network resources to 
achieve the adequate quality of service (QoS). For this reason, the predetermined part of 
network resources is allocated to the traded services. The size of this part, assumed here 
to be constant for all auction rounds, defines the upper limit on the number of winners in 
each auction round.  
 
Our negotiation scenario is based on two types of contracts. Long-term contracts are used 
for network services with the best-effort quality whereas short-term contracts are awarded 
via an auction and apply to the guaranteed premium quality network services. Our 
negotiation scenario focuses on recurring, short-term contracts only.  
 
The quality of network services is dictated by the capacity of network resources (such as 
bandwidth, etc.) that are allocated to them. Since network resources assigned for a given 
time interval are perishable (that is, they perish if not used), we can characterize them as 
time sensitive goods. We make the followings assumptions throughout the paper: Each 
customer’s true valuation (i.e., her willingness to pay) is restricted by her wealth that is 
unevenly distributed among customers. Thus, the true valuation of each customer is 
independently distributed (this is often called an Independent Private Value Model 
assumption). Each customer keeps his true valuation constant during the recurring 
auction. Additionally, customers are risk neutral and symmetric. Finally, unless clearly 
stated otherwise, we assume that customers who dropped out of an auction do no return 
later to it regardless of the winning prices.    
 
2.2 Motivating problems 
 
With the recurring demand for and time sensitivity of network resources, the traditional 
auction mechanisms, when applied to network services, cause the following problems. 
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1) Asymmetric balance of negotiation power: In most of the general auction 
mechanisms, the prices bid in an auction are dependent only on customer’s willingness to 
pay for the traded goods. Hence, winning prices reflect intentions of only customers, but 
not of the network service provider.  
 
2) Resource waste: To resolve the asymmetric balance of negotiation power problem, the 
seller’s reservation price has been introduced into the general auction mechanism [4], 
leading to the so-called seller’s optimal auction. Only bids higher than the seller’s 
reservation price are considered during winner selection. However, in case of time 
sensitive goods, such as network services, the seller’s reservation price causes resource 
waste. Resources unused because of the restriction on the number of winners imposed by 
the reservation price are wasted. 
 
3) Bidder drop problem: Prices bid in an auction are dependent on the each customer 
true valuation of the traded goods. Each customer wealth influences such valuation that is 
an upper bound on customer’s bids. An uneven wealth distribution can cause starvation of 
poor customers in a recurring auction. Most previous auction studies regarded the 
starvation as one of the methods for decreasing the customer’s demand. However, a 
frequent starvation for the traded goods decreases the customer’s interest in future 
auction rounds. If a customer concludes that it is impossible or unlikely that he will win 
at the price that he is willing to pay, he will drop from the future auction rounds. Such a 
drop out of an auction decreases the number of active customers in the future rounds. We 
will refer to the active customers as bidders.  
 
A drop in the number of bidders gradually decreases the price competition. The 
remaining bidders constantly win and as a result they decrease their bidding prices for 
future auction rounds to maximize their expected profit. In the long run, the bidding price 
needed for the win may collapse to a very low level and revenues of the service provider 
may plummet to the unacceptable levels.  
 
According to our assumptions, customers who participate in an auction for premium 
quality network service already have entered a long-term contract for the best-effort 
quality network services. Thus, even if they lose in an auction, they always have an 
alternative (i.e., the best-effort quality network service) available for their requests. This 
is another important motivation for customers to drop out of the auction in case of 
starvation.  
 
The importance of bidder drop control (i.e., maintaining a sufficiently high number of 
active customers)1 in an auction can be shown by the following theoretical reasoning that 
is derived from the one made by McAfee and McMillan [3] to justify the first price sealed 

                                                           
1 In a Vickrey auction, theoretically, the optimal bidding price is independent of the number of participants. 
Yet, Vickrey himself noticed in his seminal work [13], that when the competition was weak, then the 
revenues from the Vickrey auction become small. Hence, the bidder drop control is also important in the 
Vickrey auction. Several other examples of similar phenomena were found in the real world situations 
reported in [14].  
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bid auction with a single winner. Under the assumptions of (i) a uniform distribution of 
bidder’s private true valuations, and (ii) risk neutral bidders, the optimal bidding price 
(i.e., that is the price that optimizes the bidder expected profit) for bidder i  in each 
auction round with discriminatory pricing, sealed bid with or without the reservation 
price is 
 
                                                        * ( )

1i i
n kb t

n k
−

= ⋅
− +

,   (1) 

 
where *

ib  denotes the optimal bidding price of bidder i , it  represents the private true 
valuation of bidder i , n  denotes the number of active bidders (i.e., participants in an 
auction), and k  represents the number of possible winners in each auction round based 
on available resources. The proof of this formula is given in Appendix A.  
 

 
Figure 1: A coefficient of the optimal bidding price 

 
 
To maximize the seller’s income from an auction, the optimal bidding price of each 
bidder should be close to his true valuation [2]. To avoid wasting of resources, the 
number of winners in each auction round should be constant. Hence, to keep the optimal 
bidding price from Equation (1) close to the true valuation, the number of bidders should 
be high. Figure 1 shows the change of coefficient ( ) /( 1)n k n k− − +   of the optimal 
bidding price as a function of the number of bidders (number of winners, k , is kept 
constant).  
 
Our experimental results show that the three described above motivating problems indeed 
arise in our negotiation scenarios. As shown in Figure 2 (A), 28.6 % of network resources 
are wasted by allocating resources only to the qualified customers in each auction with 
the reservation price.2  Figure 2 (B) shows that the bidder drop rate in a recurring auction 
directly affects the average winning price (i.e., the revenue of the seller) in an auction 
with exponential distribution of the customer wealth.3 
                                                           
2 This result is based on the experimental scenario described in Section 4.1 with the seller’s reservation price 
equal to 5.0, the exponential wealth distribution and no bidders dropping out of an auction. With bidders 
dropping, the waste of network resources will be even more pronounced than in the presented result. 
3 This result is also based on the experimental scenario described in Section 4.1. 
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To solve the motivating problems, we propose a novel auction mechanism based on the 
Bidder Drop Control (BDC) winner policy described in the next section. This mechanism 
(i) maximizes the network service provider’s revenue, (ii) minimizes loss of fairness that 
is caused by the bidders dropping out of an auction, and (iii) enlarges the active customer 
base in a recurring auction.  
 

    
          
             (A) The Resource Waste Problem                 (B) The Bidder Drop Problem 
 

Figure 2: The resource waste and the bidder drop problem  
 
 
3. Auction with BDC winner policy 
 
3.1 Illustration of main idea 
 
The main idea of our paper is based on the demand-supply principle of microeconomics 
[1]. As shown in Figure 3, when the overall bid price decreases (i.e., the entire demand 
curve changes from D1 to D2) during a recurring auction, the minimum market clearing 
price drops from p1 to p2. In such a case, to maintain the minimum market-clearing price 
at p1, the service provider should decrease the supply of resources from q1 to q2 (i.e., the 
entire supply curve needs to be changed from S1 to S2). Inversely, when the overall bid 
price increases, the service provider may increase the supply. However, when the service 
provider decreases the supply of network resources for the given time period, the unsold 
resources are wasted. Thus, in the proposed auction mechanism, the “unsold” network 
resources (q1–q2 in Figure 3) are assigned to the bidders who have high probability of 
dropping out of the forthcoming auction round. This assignment prevents such a drop and 
keeps enough bidders in the auction to maintain the competition for resources. 4 
Simultaneously, using “unsold” resources for bidder drop control resolves the resource 
waste problem and increases the number of winners. To implement the described above 
main ideas, we needed to answer the following two questions:  

                                                           
4 There are several previously studied auction mechanisms that focused on maximizing seller’s revenue, 
called seller’s optimal auction [4] [5]. However, they are based on trading non-perishable goods and do not 
consider the bidder drop problem in a recurring auction.  
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(1) What is optimal number of network resources reserved for bidder drop control? 
(2) What is the efficient way of controlling the bidder drop problem?   
 
  
 
 
 
 
 
   
                                 
 

 
Figure 3: The impact of the Demand-Supply principle 

 
In the subsequent sections we provide answers to these questions. Here, we define the 
basic notions of bidders, bidding prices, and goods that are fundamental to the proposed 
auction mechanism. 
 
1) Bidders: There are 1n +  bidders, denoted by 0, ...,i n= , including n  customers, 

1..i n= , and a network service provider 0i = . Each bidder enters her bidding price 
0 1 2, , , ..., nb b b b  in each auction round. We assume a sealed bidding, thus only a bidder 

and the network service provider can communicate.  
 
2) Goods: There are R units of network resources that are assigned to the premium 

quality homogeneous network service for the predefined time period. The network 
service provider trades these assignments in each auction round. Each customer 
requires one unit of network resources for the premium quality network service.  

 
3.2 Classification of customers 
 
The first step in each auction round is to classify each customer based on his bidding 
price ib , where 1, ...,i n= , and the network service provider’s bidding price 0b . Two 
classes, Traditional Winners (TW) and Traditional Loser (TL), are based on the ascending 
rank of each customer’s bidding price and the number of available resources; those 
customers will be the winners (losers, respectively) in a traditional auction. The numbers 
of customers in the TW class, denoted by twN , and the TL class, denoted by tlN , are  
 
                                                  ;  tw tl twN R N n N n R= = − = −   (2) 
 
The network service provider classifies also customers into Definitely Winner (DW), 
Definitely Loser (DL), and Winner or Loser (WL) classes using the following conditions: 
 
 

Quantity

Price 
D1D2

q1q2

p1 

S2 S1

p2 
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                                         i DW∈  if 0  & i i twb b r n N≥ > − , 1, 2, ...,i n= . 
                                         i DL∈   if  0ib = , 1, 2, ...,i n= ,   (3) 
                                         i WL∈  otherwise . 
 
where ir  denotes the rank of i-th bidder among all customers.  
 
The DW class customers are winners without any additional considerations, since they 
bid prices higher than the network service provider did and there are enough resources to 
assign to all of them. The DL class represents the customers who already dropped out of 
the auction.  dwN  and dlN  represent the number of customers in the DW class and the DL 
class respectively. The customers who are in the WL class can be winners or losers 
depending on the bidder drop control mechanism. The Winner Portion of Winner or Loser 
class (WPWL) is defined by the capacity of the network resources that are reserved for 
the bidder drop control mechanism. Thus, the number of customers wpwlN who can be 
winners in the WL class is       
          
                                                                   wpwl dwN R N= −    (4) 
 
 
 
 
 
 
 

 
 

Figure 4: A classification of customer’s classes 
 
 
3.3 Valuable Last Loser First (VLLF) algorithm 
 
By definition, the bidder drop control mechanism applies only to customers in the WL 
class, so it must include an efficient strategy for selecting winners in this class. For this 
purpose, we propose the Valuable Last Loser First (VLLF) algorithm that consists of two 
phases. In the first phase, the VLLF algorithm selects customers in the WL class who 
have high probability of dropping out of the forthcoming auction round. The second 
phase of the VLLF algorithm compensates for the loss of fairness resulting from the first 
phase.  
 
In the first phase of the VLLF algorithm, the bidders in the WL class who lost in the 
previous auction round but bid a higher price than in the previous auction round are 
marked as potential winners. The marked bidders are ranked according to their bidding 
price and up to wpwlN highest ranked marked bidders are selected as winners. If the number 

WPWL 

TW TL 

Lower bidding price 

  The network service provider’s 
    bidding (reservation) price 

DL WL DW 

Higher bidding price 
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of the marked bidders is smaller than wpwlN , the remaining resources are allocated in the 
second phase of the algorithm. The winner selection in the first phase is influenced by the 
bids and win records in the previous auction round, so there could be some loss of 
fairness. To compensate for it, in the second phase, the highest bidding unmarked bidders 
in the WL class are selected as winners of the remaining resources. By marking only 
those last losers who bid higher in the current round than in the previous one, the 
algorithm prevents bidders with low bidding patterns from becoming winners. 
 
3.4 Optimal service provider’s bidding price (reservation price) 
 
The bidding price of the service provider defines the minimum bid ensuring consideration 
for the membership in the DW class (so it plays the same role as the reservation price 
does in the Riley and Samuelson’s optimal auction [4]). Finding the optimal bid for the 
service provider is equivalent to finding the optimal number of network resources to be 
reserved for the bidder drop control. 
 
3.4.1 Service provider’s minimum cost 
 
Let mC  denote the minimum cost of a unit of traded resources. This cost can also be 
interpreted as the service provider’s desired minimum price for the unit of network 
resources. A specific mechanism for deciding mC  is beyond the scope of this paper.       
 
3.4.2 Optimal range of the service provider’s bidding price  
 
In this section, we derive a range for the optimal value of the reservation price. The 
revenue of an auction round with the VLLF bidder drop control algorithm should be 
larger than the network service provider’s profitability revenue. The sufficient condition 
to ensure this constraint is: 
     

                                                0 ( )dw wlmp dw mb N P R N C R⋅ + ⋅ − > ⋅ ,  (5)  
 
where wlmpP represents the minimum bidding price of winners in the WL class. Hence                               
                  
                                                       0m dw

wlmp
dw

C R b NP
R N
⋅ − ⋅

>
−

                (6)  

 
To control bidder drops efficiently, dwN should be less than R to preserve some units of 
network resources for the VLLF bidder drop control algorithm. Hence, the following 
conditions on dwN , and wlmpP  can be derived: 
 
                                                        00 ;   0dw wlmpN R P b≤ < < <   (7)                                                            
 
Using inequalities (5) and (7), the condition for the optimal reservation price values is
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0 mb C>    (8)

  
 
Therefore, the network service provider should bid a higher price than her minimum cost 
of a unit of network resources to maintain the profitability of each auction round.  
 
The upper bound of a range for the optimal reservation price is constrained by the 
interrelationship between the three types of customer’s classes and fairness. As shown in 
Table 1, an increase in the reservation price decreases the number of customers in the 
DW class (i.e., dwN decreases). This change results in an increase in the number of 
network resource units reserved for the bidder drop control. Thus, in this case, the size of 
the DL class decreases (i.e., dlN decreases). The total revenue of the service provider, at 
least initially, increases with the reservation price (this increase is the largest when 

dwN R=  and then it steadily shrinks and may become negative for larger reservation 
prices, when dwN is smaller). However, increasing the number of the network resource 
units reserved for the bidder drop control decreases fairness of the network resource 
allocation. This is because the winners in the first phase of the VLLF algorithm are 
selected based not only on their current bidding prices but also on their bidding prices 
and status in the previous auction round.  
 
The reverse case (i.e., decreasing the reservation price) increases fairness by decreasing 
the number of units available for the bidder drop control, and may either increase or 
decrease the total revenue of the service provider. Accordingly, in deciding the upper 
bound of the reservation price, the network service provider should balance an increase in 
the total revenues versus the loss of fairness induced by the selected reservation price.  
 
 

Reservation Price dwN  WPWL dlN  Revenue Fairness 
↑ ↓ ↑ ↓ ↑ for dwN ~R ↓ 
↓ ↑ ↓ ↑ ↓ for dwN ~R ↑ 

           
                     ↑ : Increase   ↓ : Decrease   ~: Close to 

 
Table 1: The interrelationship between the customer’s classes 

 
Based on many experiments conducted under the various customer wealth distributions, 
described in Appendix B, we discerned 2/3 rule (i.e., every two out of three network 
resources should be allocated to the DW class) for the near optimal distribution of the 
network resources between the DW class and the pool of network resources reserved for 
the VLLF bidder drop control algorithm. This rule leads to a simple and adaptive formula 
for the network service provider optimal bidding price 0b as equal to the 2 / 3R  highest bid 
in the current auction round.  
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3.4.3 TW class average bidding price approach   
 
In analysis of our experimental results (see Appendix C), we observed the following: In 
most cases, the average bidding price of bidders in the TW class, if used as the 
reservation price of network service provider, results in near optimal revenue for the 
service provider. Based on these experimental results, we propose a simple and adaptive 
way for establishing the network service provider’s reservation price.  
 
In each auction round, after the network service provider ranks customer’s bidding prices 
in ascending order, the average atwP  of the bidding prices of bidders in the TW class is 
computed.  
 

                                                           
1tw i

n
i n N r

atw
tw

b
P

N
= − +∑

=
                

(9) 

 
Following inequality (8), the network service provider selects larger of atwP  and mC  as 
her bidding price 0b  in the current auction round.  
 
 
4. Analysis of experimental results 
 
4.1 Experimentation scenarios 
 
4.1.1 Auction mechanism  
 
In our experiments, we compare the following three auction mechanisms for the single 
item, multiple winners, discriminatory pricing, and sealed bid recurring auction for the 
short-term contracts on homogeneous network services: 
 
1) Traditional Auction (TA): an auction mechanism with no bidder drop control 

mechanism, so bidders drop during the recurring auction as a result of starvation.  
 
2) Traditional Auction with No Bidder Drop Assumption (TANBDA): an auction 

mechanism in which bidders never drop during the recurring auction in spite of 
starvation (i.e., despite the consecutive losses in the recurring auction).  

 
3) Auction with BDC Winner Policy (BDC): an auction mechanism with the VLLF 

bidder drop control algorithm and the TW class average bidding price approach 
described in the previous sections.  

 
4.1.2 Wealth distribution of customers and the minimum cost of a unit network 
resource  
 
In addition to the perceived intrinsic value of the traded goods, the wealth of each 
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customer limits her willingness to pay and defines her true valuation of the traded goods. 
For simplicity, we consider only the distribution of the customer’s true valuation here. We 
set the network service provider’s minimum cost of a unit of the network resources at 

5mC = . We consider also three distributions, all with mean of 5, of the customers true 
valuations: (1) the exponential distribution, (2) the uniform distribution over the range [0, 
10], and (3) the Gaussian distribution. 
 
4.1.3 Bidders, bidding behavior and goods 
 
There are 100 customers (i.e., bidders) in our experiments. We assume that the initial 
bidding price is randomly selected from the range [ / 2, ]i it t , where it  represents the true 
valuation of the traded goods by customer i . Following the sealed bidding assumption, 
bidders bid independently of each other. However, in a recurring auction, the bidding 
behavior is influenced by results of the previous auction rounds based on the win/loss 
outcome informed to each bidder. According to the assumption of risk neutral bidders, the 
bidders will maximize the expected profit. Hence, we assumed the following bidding 
behavior. 
  
If a bidder lost in the last auction round, he increments his bidding price by l

ibα ⋅  to 
increase his win probability in the current auction round. 0 1α≤ ≤ denotes the increase 
coefficient and l

ib  represents the bidding price of bidder i  in the last auction round. The 
change in the bidding price is limited by the bidder’s true valuation. If the bidder won in 
the last auction round, she, with probability of 0.5, either decreases the bidding price by a 
factor β  or maintains it unchanged. The decrease attempts to maximize the expected 
profit. α  and β  are set in the experiments to 0.2. The minimum bidding price of a bidder 
is 0.1. If a customer drops out of an auction, his bidding price is set to 0. This means that 
the dropped bidders don’t ever return to the auction.  
 
There are 50 units of resources available for allocation in each auction round.  
 
4.1.4 Tolerance of Consecutive Losses (TCL) 
 
The customer’s tolerance of consecutive losses, abbreviated as TCL, denotes the 
maximum number of consecutive losses that a customer can tolerate before dropping out 
of an auction. TCL of each customer is uniformly distributed over the range of [2,10]. 
Based on the above experimental scenarios, we assume that, initially, each bidder wants 
to participate in an auction round and the auction is executed 2000 times.   
 
4.2 Discussion of experimental results 
 
Our experiments focus on the network service provider’s revenue and the network 
resource allocation fairness. An auction is entirely fair if a bidder with a bid higher than 
any of the winners is a winner as well. In our experiments, the network service provider’s 
revenue is proportional to the average bidding price of winners in each auction round, so 
we use the latter as a measure of the former. We also measure the number of wins for 
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each customer in 2000 rounds of the recurring auction. The resulting distribution is a 
metric of fairness, because higher bidding customers should be more frequent winners 
than the lower bidding ones.  
 
The experimental results of TANBDA are impossible to achieve in the real recurring 
auction, because the no bidder drop assumption is unrealistic. In the real world, starvation 
will be triggered by the uneven distribution of customer’s true valuations. The starvation 
combined with the customer’s ability to substitute the premium quality network services 
with the best-effort ones will motivate starving customers to drop our of auction. Thus, in 
our experimentation, TANBDA is used only for comparison. 
 
Fairness of TANBDA is optimal, because a bidder with the bid higher than any of the 
winners is also a winner. Additionally, by the no bidder drop assumption, TANBDA never 
looses a customer with high true valuation but low TCL. This means that TANBDA 
prevents the loss of fairness that may result from low TCL. Thus, we can measure the 
loss of fairness of TA and BDC mechanisms by their degree of deviation from the 
fairness of TANBDA. We measure the auction’s loss of fairness kLF  for auction 
mechanism k  by the distribution of wins between the customers:     
 
 

                                                   1

_

( ) ( )
100

n
i TANBDA k

k
Total Auction

NW i NW i
LF

R N
= −∑

= ⋅
⋅

,    (9) 

 
where n denotes the total number of customers in the recurring auction,  ( )TANBDANW i and 

( )kNW i represent the total number of wins by bidder i  during _Total AuctionN of auction rounds 
in TANBDA and auction mechanism k , respectively.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The average bidding price of winners 
 
As shown in Figure 5 under various wealth distributions, TA cannot maintain the network 
service provider’s desired revenue in a recurring auction. The inevitable bidders’ drops 
decrease the price competition between customers who remaining in the auction. 
Accordingly, the remaining customers decrease their bidding price in the forthcoming 
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auction rounds to maximize their expected profit. In the long run, the revenue of each 
auction round plunges to a very low level (i.e., below 1.0), compared to the network 
service provider minimum cost (here 5.0). An efficient bidder drop control, however, can 
maintain the number of bidders permanently high in each auction round. Thus, the 
network service provider can preserve the near optimal level of the desired revenue in 
each auction round.  
 
Remarkably, as shown in Table 2, the loss of fairness of BDC is lower than that of TA 
under the various wealth distributions, when bidders are allowed to drop out of an auction. 
The reason is that TA cannot prevent the loss of fairness caused by the higher bidders 
dropping out of an auction as a result of exceeding their TCL (i.e., TA cannot prevent a 
customer who is willing to pay high prices but has the low TCL from dropping out of an 
auction). Even though TA maintains higher fairness than BDC in each auction round, 
because customers in the TW class become winners in TA, remarkably, BDC suffers 
lower loss of fairness during the recurring auction. Apparently, loss of fairness that results 
from low TCL is the dominating factor in the recurring auction.  
 
 

 Exponential Uniform Gaussian 
TA 34.6 % 23.9 % 29.4 % 

BDC 9.4 % 6.0 % 11.9 % 
 

Table 2: Loss of fairness 
 

We also simulated the more general case of an auction in which a bidder who dropped out 
can return when the winning price becomes sufficiently low. For this case, the 
experimental results show that the revenue of the network service provider settles 
somewhere between the revenues of TA and TANBDA. This is not surprising because TA 
and TANBDA are the border cases of the general model. The revenue of the TA case sets 
the lower bound of the revenue of the general case because there are no bidders returning 
during the recurring auction. The revenue of TANBDA sets the upper bound because all 
bidders return immediately to the recurring auction in that case.  
 
In conclusion, BDC achieves the increased revenue and decreased loss of fairness in a 
recurring auction compared to the traditional auction mechanisms. Additionally, the 
winning distribution of the BDC auction shows that the proposed pricing mechanism can 
achieve broader winning distribution than TA. Even poor customers have a non-zero 
probability of winning in BDC auction thanks to the VLLF bidder drop control algorithm. 
For this reason, wins are widely distributed over a wide range of the customer wealth. 
This property of our mechanism is important when the network resources are viewed as a 
public resource.  
 
In short, the proposed BDC auction stabilizes the network service provider’s revenue, 
minimizes the loss of fairness, and broadens winning distribution under the trade-off 
relationship between these three goals.    
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5. Conclusions and future works 
 
During a recurring auction, customers can drop out of the auction at any time. For this 
reason, keeping customers interested in participating in the auction stabilizes the market 
by preventing a collapse of the price competition. Hence, the bidder drop problem is one 
of the most important factors in designing winner selection algorithms in the recurring 
auction for network services. The resource waste is another problem that needs to be 
considered when maximizing the revenues from the allocation of time sensitive network 
resources.  
 
We have presented a novel auction mechanism (i.e., an auction with the BDC winner 
policy) for a recurring auction for short-term contracts on network services. This 
mechanism stabilizes the market by preventing a price collapse thanks to the efficient 
bidder drop control. Compared to the traditional auction mechanisms, the proposed 
mechanism increases the network service provider’s revenue by maintaining the price 
competition and at the same time it decreases loss of fairness of the network resource 
allocation by preventing the bidders who are willing to bid high prices from dropping out 
of the auction. Additionally, the pattern of the winning price distribution shows that an 
auction with the BDC winner policy, when compared to the traditional auction, supports 
larger active customer base by occasionally allocating resources to the customers with 
lower resource valuation.  
 
In our future work, we intend to design more efficient bidder drop control algorithms and 
to provide a stronger theoretical foundation of the proposed auction mechanism. We will 
also consider a more general case of an auction in which multiple heterogeneous network 
services are traded in a recurring auction. 
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APPENDIX A 
Proof of optimality of the bidding price 

 
1) Multiple winners, discriminatory pricing, sealed bid auction with reservation 
price 
 
Based on the assumptions made in this paper, each customer (i.e., bidder)’s expected 
profit iU  in each auction round is  
 
                                                        ( ) P ri i i w inU t b= − ⋅  ,   (A.1) 
 
where it  denotes the private true valuation of bidder i ,  ib represents the bidding price of  
bidder i , and Prwin  denotes the probability that the bidder wins with the bidding price ib  
in the current auction round. By using Equation (A.1) and the assumption that each 
bidder randomly selects the bidding price from the range [0, ]it  with the uniform 
probability, the expected profit of bidder i  is 
 
                                                    0
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=

−
= − ⋅ ⋅ ∏    (A.2)             

 
Since the bidders are risk neutral, ib that maximizes iU can be found by solving the 
following equation: 
                                                      * max ( ) 0
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i
i i ib

i

Ub U b
b
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= ⇒ =

∂
     (A.3)           

 
By solving Equation (A.3), we get the following optimal bidding price in our negotiation 
scenarios: 
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       (A.4) 

 
 
2) Multiple winners, discriminatory pricing, sealed bid auction without reservation 
price 
 
Each bidder’s expected profit is defined by: 
 
                                                            

1
( )

n k
i

i i i
j j

bU t b
t

−

=
= − ⋅ ∏         (A.5) 

 
By using Equation (A.5) and the same reasoning as in the reservation price case, we get 
the same result as in Equation (A.4). 
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APPENDIX B 
Experimental results for optimal resource distribution 

 
When network service provider decides the optimal amounts of network resources for 
DW class (i.e. decides the optimal amounts for bidder drop control by using VLLF bidder 
drop control algorithm), the trade-off relationship between revenue and fairness should be 
considered.  As shown by Figure B.1, in various wealth distributions, if the network 
resources for DW class is decreased (i.e., the reserved network resource for bidder drop 
control is increased), the revenue is increased. However, in this case, the fairness is 
decreased because the winners are selected based on not bidding price but winning 
history of last auction round in WL class by first step of VLLF bidder drop control. For 
this reasons, the network service provider should the optimal distribution of network 
resource which maintains his/her desired revenue and minimizes the loss of fairness. The 
various experimental results of Figure B.1 shows that allocation of network resources to 
DW class between 60% ~ 70 % is in near optimal under the various income distributions. 
Therefore, we identified 2/3 rule (every two out of three, or 66.67% of the network 
resources allocated to the DW class) for the near optimal distribution of the network 
resources between the DW class and the pool of network resources reserved for the 
VLLF bidder drop control.   
 
 

 

 
 

Figure B.1: Experimental results of optimal resource distribution 
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APPENDIX C 
Experimental result of TW class average bidding price approach 

 
In Traditional Winner class average (TWA) bidding price approach, the average bidding 
price of TW class is used as network service provider’s reservation price if it is larger 
than the minimum cost of unit network resource. As shown by Figure C.1, in various 
customer’s wealth distributions, the TWA approach can achieve near optimal resource 
distribution of network resources (see Appendix B) between the DW class and the pool of 
network resources reserved for the VLLF bidder drop control in almost recurring auction 
round.    
 
 
 
 
 

 
 
 

 
 
 
Figure B.1: Network resource distribution of  TW class average bidding price approach 
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