
SDE: Graph Drawing Using Spectral Distance
Embedding

(Long Theory Paper)

Ali Civril, Malik Magdon-Ismail and Eli Bocek-Rivele

Computer Science Department, RPI, 110 8th Street, Troy, NY 12180
{civria,magdon, boceke}@cs.rpi.edu

Abstract. We present a novel algorithm for drawing undirected con-
nected graphs, by using a spectral decomposition of the distance matrix
to approximate the graph theoretical distances. The main advantages
of our algorithm are that it is ”exact” (as opposed to iterative), and
it gives results that preserve symmetry and uniform node density, i.e.,
the drawings are aesthetically pleasing. Our approach has the benefits of
fast spectral techniques, but at the same time it produces drawings of a
quality comparable to or better than the much slower force-directed ap-
proaches. The computational complexity of our algorithm is governed by
its two main steps: distance matrix computation using an all-pairs short-
est path algorithm, which is O(|V ||E|); and low-order spectral decom-
position, which is O(|V |2). The runtime for typical 20, 000 node graphs
ranges from 100 to 150 seconds.

1 Introduction

A graph G = (V,E) is a pair where V is the vertex set and E is the edge set,
which is a binary relation over V . The graph drawing problem is to compute
an aesthetically pleasing layout of vertices and edges so that it is easy to grasp
visually the inherent structure of the graph. Depending on the aesthetic criteria
of interest, various approaches have been developed, and a general survey can
be found in [11, 16].

We consider only the straight-line edge drawings of graphs, which reduces the
problem to finding the coordinates of the vertices in two dimensions. A popular
approach is to define an energy function or a force-directed model with respect
to vertex positions, and to iteratively compute a local minimum of the energy
function. The positions of the vertices at the local minimum produce the final
layout. This approach is generally simple and easy to extend to new energy
functions. Various energy functions and force models have been studied [4–6,
10] and there exist several improvements to handle large graphs, most of them
concentrating on a multi-scale paradigm. This involves laying out a coarser level
of the graph first, and then taking advantage of this coarse layout to compute
the vertex positions at a finer level (eg. [15, 18]).

Spectral graph drawing approaches have become popular recently. We use the
term spectral graph drawing to refer to any approach that produces a final layout

using the spectral decomposition of some matrix derived from the vertex and
edge sets. In this paper, we present a spectral graph drawing algorithm, SDE
(Spectral Distance Embedding), in which we use the spectral decomposition of
the graph theoretical distance matrix to produce the final layout of the vertices.
In the final layout, the pair-wise Euclidean distances of the vertices approximate
the graph theoretical distances. SDE consists of two main steps:

(i) all-pairs shortest path computation, which takes O(|V ||E|) time.
(ii) spectral decomposition of the distance matrix, in which we find the optimal

rank-d reconstruction to embed in d-dimensions. The complexity of this step
is O(d|V |2).
SDE can be used to produce a d-dimensional embedding, the most practical

being d = 2, 3. We focus on d = 2 in this paper. We present the results of our
algorithm through several examples, including run-times. Compared to similar
techniques, we observe that our results achieve superior drawings, while at the
same time not significantly sacrificing computation time. The breakdown of the
paper is as follows: first, we discuss some related work on spectral graph draw-
ing. In section 2, we discuss the spectral decomposition of the distance matrix,
followed by the algorithm and the results in sections 3 and 4 respectively. We
then give an analysis of the performance characteristics of the algorithm, fol-
lowed by some concluding remarks in section 6, where we also discuss possible
improvements to the algorithm.

Related Work. Spectral graph drawing formulates graph drawing as a problem
of computing the eigenvalues of certain matrices related to the structure of the
graph. The formulation is mathematically clean, in that exact (as opposed to
iterative) solutions can be found.

The method described in [8] by Harel and Koren embeds the graph in a
high dimension (typically 50) with respect to carefully chosen pivot nodes. One
then projects the coordinates into two dimensions by using a well-known mul-
tivariate analysis technique called principal component analysis (PCA), which
involves computing the first few largest eigenvalues and eigenvectors of the co-
variance matrix of the points in the higher dimension. ACE (Algebraic multi-
grid Computation of Eigenvectors) [13] minimizes Hall’s Energy function E =
1
2

∑n
i,j=1 wij(xi − xj)2 in each dimension, modulo some non-degeneracy and or-

thogonality constraints (n is the number of nodes, xi is the one-dimensional
coordinate of the ith node and wij is the weight of the edge between i and j).
This problem can be reduced to obtaining the eigen-decomposition for the Lapla-
cian of the graph. An iterative approach to minimizing E results in an update of
the form, xi =

�
j∈N(i) xj

|N(i)| , i.e., xi is placed at the center of mass of its neighbors.
This basic method was introduced by Tutte [17], and is known as the barycenter
method. To avoid the degenerate solution in which all the nodes are placed at
the same location, Tutte proposed to split the nodes into two sets Sfixed and
Svariable. The nodes in Sfixed are ”nailed” to the corners of a polygon, and the
nodes in Svariable are updated iteratively. In [12], all of the nodes are positioned

simultaneously by solving a constrained quadratic optimization. The solution
once again reduces to the eigen-decomposition of a matrix associated with the
graph.

Both of the methods described above are fast due to the small sizes of
the matrices processed. Specifically, ACE also takes advantage of the simple
form of Hall’s energy function by using a multi-scaling approach to the eigen-
decomposition. The drawings reflect the general structure of the graph, however
there is nothing that prevents the nodes from becoming too close to one an-
other since there is no repulsion term in the energy function. This may result in
aesthetically unpleasant drawings of certain graphs.

We propose a new spectral graph drawing algorithm that explicitly approx-
imates the graph theoretical distances between nodes. It sits between the fast
spectral methods, which may sacrifice on quality, and slow force-directed ap-
proaches, which produce high quality drawings. Other related algorithms that
try to embed distance matrices and which have been used in different contexts
(localization from incomplete distance matrices and dimensionality reduction
using local distance information) are Multi-Dimensional Scaling [9] and Semi-
Definite Embedding [3].

2 Spectral Decomposition of the Distance Matrix

Given a graph G = (V,E) with n nodes, let V = {v1, v2, . . . , vn}. The distance
matrix D is the symmetric n × n matrix containing all the pair-wise distances,
i.e., Dij is the shortest path length between vi and vj . Suppose the position at
which vertex vi is placed is xi. We are seeking a positioning that approximates
the graph theoretical distances with the Euclidean distances, i.e,

‖xi − xj‖ ≈ Dij , for i, j = 1, 2, . . . , n.

Taking squares of both sides, we have

xi
2 + xj

2 − 2xi · xj ≈ D2
ij . (1)

To write this expression in matrix notation, we will need to define some special
matrices. Let L be an n × n symmetric matrix such that Lij = D2

ij , for i, j =
1, 2, . . . , n. Let X,Q and 1n be defined as follows:

XT = [x1, . . . ,xn], QT = [‖x1‖2, . . . , ‖xn‖2], 1n
T = [1, . . . , 1].

Note that X is an n × d matrix containing the positions, Q is an n × 1 matrix
containing the magnitude of the positions and 1n is the n×1 vector of ones. We
discuss general d; however, d = 2 is the case of practical interest. Now (1) can
be written as (Q1n

T)ij + (Q1n
T)ji − 2(XXT)ij ≈ Lij . Since Aij = AT

ji, and
(Q1n

T)T = 1nQT , the entire set of equations in matrix form is

Q1n
T + 1nQT − 2XXT ≈ L. (2)

Note that Q is a function of X. The goal is to find X for which the above
equality approximately holds. This set of equalities may not be exactly satisfied
if L cannot be embedded in R

d. Introduce a projection matrix γ = In− 1
n1n1n

T ,
where In is the n × n identity matrix. Multiplying both sides of (2) by γ from
the left and the right, we obtain

γQ1n
T γ + γ1nQT γ − 2γXXT γ ≈ γLγ. (3)

Since γ is a projection operator, 1n
T γ = γ1n = 0. Thus, (3) becomes

(γX)(γX)T = −1
2
γLγ,

where we have used the fact that γ = γT . We may interpret this equation
more easily by setting Y = γX = (X − 1

n1n1n
T X). Y is an n × d matrix

containing the coordinates in X, each translated by the same vector 1
n1n

T X,
i.e., each translated by the mean of the X coordinates. Thus, Y is the same set
of coordinates as X in a different coordinate system; one in which mean(Y) = 0.
Since the distance matrix is invariant to rotations and translations, a solution
for Y is just as acceptable as a solution for X. Letting M = −1

2γLγ, we get

YYT ≈ M.

Note that Y has rank d. If D were a true Euclidean distance matrix, then M
would have rank at most d and we could exactly recover Y, solving our problem.
Since D may not be a true distance matrix , i.e., D may not be embeddable in R

d,
M will generally have rank greater than d. Naturally, we want to approximate
M as closely as possible. The metric we choose is the spectral norm, so we
wish to find the best rank-d approximation to M with respect to the spectral
norm. This is a well-known problem, which is equivalent to finding the largest
d eigenvalues of M. Specifically, order the eigenvalues of M such that |λ1| ≥
|λ2| ≥ · · · ≥ |λn| and let u1,u2, . . . ,un be the associated eigenvectors. Then
the spectral decomposition of M yields M =

∑n
k=1 λkukuk

T , and the rank-d
approximation of M is Md =

∑d
k=1 λkukuk

T .

Theorem 1 (see for example[7]). Md is the best rank-d approximation to M
w.r.t. the spectral norm.

The final centralized coordinates are then given by Y = [
√

λ1u1, . . . ,
√

λdud].

3 The Graph Drawing Algorithm

The algorithm can now be succintly stated as an implementation of Theorem 1.
Specifically, there are two stages:

(i) computing all-pairs shortest path lengths
(ii) finding a rank-d approximation of M which corresponds to computing the

largest d eigenvalues.

SDE(G)

1: Compute the distance matrix D using an APSP algorithm on G
2: Define matrix L such that Lij = D2

ij .
3: return Y = PowerIteration(− 1

2
γLγ, ε) % epsilon is a tolerance

Fig. 1. The spectral graph drawing algorithm SDE.

In order to implement (i), we run a BFS for each node. The complexity of this
step is O(|V ||E|). For (ii), we use a standard procedure typically referred to
as the power iteration to compute the eigenvalues and eigenvectors of M. The
power iteration starts with some random initial vectors and iteratively multi-
plies them with the relevant matrix modulo orthonormality constraints. The
procedure stops when some termination condition is met, for example, when
the change in direction of the eigenvector is negligible, i.e., the cosine of the dot
product of the previous estimate and the newly computed estimate is above 1−ε
for some small ε. We impose one additional condition for termination, which en-
sures that the ratio of the direction change between two consecutive iterations
is above some value, 1 + ε in this case. The convergence of the power iteration
depends on the eigenvalues of the matrix; in practice it takes some constant
number of iterations to compute the eigenvalues to some precision, since conver-
gence is exponentially fast. The matrix multiplications we perform in the power
iteration take O(|V |2) time, which makes the overall complexity of the power
iteration O(d|V |2). Thus, the complexity of our algorithm is O(|V ||E| + d|V |2),
which is equal to O(|V ||E|) for d = 2. The space complexity is O(|V |2) since we
need to store all the pair-wise distances. The algorithm is summarized in Figure
1 with a detailed implementation of the power iteration given in Figure 2.

4 Results

We have implemented our algorithm in C++, and Table 1 gives the running
time results on a Pentium IV 3.2 Ghz processor system. We present the results
of running the algorithm on several graphs of varying size up to about 20, 000
nodes. We show results for some small graphs in order to illustrate explicitly how
the symmetries are preserved, in addition to several benchmark graphs. Finally in
Figure 5, we compare some graph drawings generated by our algorithm, together
with the results of other spectral graph drawing algorithms [8, 13]. Note that the
results for HDE are produced by the standard application of the algorithm, which
uses the first and the second principal components [8]. For the power iteration,
we set the tolerance ε = 10−7.

Table 1 shows that SDE is reasonably fast for graphs up to 20,000 nodes. As
can be seen from Figure 3 and Figure 4, it also produces aesthetically pleasing
drawings of a wide range of graphs varying in size, node density and degree of
symmetry. Figure 5 highlights the main advantages of SDE over other spectral

PowerIteration(M,ε)

1: current← ε; y1 ← random/‖random‖
2: repeat
3: prev ← current
4: u1 ← y1

5: y1 ←Mu1

6: λ1 ← u1 · y1 % compute the eigenvalue
7: y1 ← y1/‖y1‖
8: current← u1 · y1

9: until current ≥ 1− ε or |current/prev| ≤ 1 + ε
10: current← ε; y2 ← random/‖random‖
11: repeat
12: prev ← current
13: u2 ← y2

14: u2 ← u2 − u1(u1 · u2) % orthogonalize against u1

15: y2 ←Mu2

16: λ2 ← u2 · y2 % compute the eigenvalue
17: y2 ← y2/‖y2‖
18: current← u2 · y2

19: until current ≥ 1− ε or |current/prev| ≤ 1 + ε
20: return (

√
λ1y1

√
λ2y2)

Fig. 2. The power iteration method for finding eigenvectors and eigenvalues (d = 2).

graph drawing methods. Specifically, it preserves the symmetries in the graph
and maintains uniform node density to a large extent, and hence produces a
better representation of the overall graph structure.

5 Performance Analysis

The formal problem we are attempting to solve is a well-known problem in
minimum distortion finite metric embedding [14]. We approach this problem
using a spectral decomposition of the matrix of squared distances. We give some
results that explain the intuition behind why and when our algorithm will work
well. The distance matrix D represents a finite metric space. Our approach
is to use a spectral technique to estimate L, where Lij = D2

ij . Suppose that
the optimal embedding (which we define below) is given by the coordinates
z1, . . . , zn, which we collect in the matrix Z (analogous to X,Y). Let DZ and
LZ be the distance matrix and the matrix of squared distances implied by Z.
We can then write

L = LZ + ε. (4)

Z is optimal in that || ε ||S is infimum over all possible Z. L is embeddable if ε = 0.

Theorem 2. If L is embeddable, then, up to an orthogonal transformation, our
algorithm returns Z − 1

n1n1n
T Z.

Graph |V| |E| APSP time Power Iteration time Total time

jagmesh1 936 2664 0.10 0.11 0.21

can1072 1072 5686 0.22 0.29 0.51

Grid 50x50 2500 4900 0.65 0.54 1.19

nasa1824 1824 18692 1.05 0.79 1.84

blckhole 2132 6370 0.62 1.54 1.84

nasa2146 2146 35052 2.07 0.69 2.76

lshp3466 3466 10215 1.77 1.97 3.74

4970 4970 7400 2.75 2.29 5.04

Grid 70x70 4900 9660 2.80 2.43 5.23

airfoil1 4253 12289 3.42 3.51 6.93

3elt 4720 13722 4.67 3.80 8.47

sierpinski08 9843 19683 15.71 9.01 24.72

Grid 100x100 10000 19800 18.10 11.63 29.73

whitaker3 9800 28989 25.24 8.18 33.42

crack 10240 30380 27.92 17.08 45.00

4elt2 11143 32818 34.35 14.42 48.77

bcsstk33 8738 291583 76.40 15.36 91.76

4elt 15606 45878 85.81 47.52 133.33

sphere 16386 49152 106.96 29.73 136.69

vibrobox 12328 165250 124.51 40.30 164.81

cti 16840 48232 91.09 77.98 169.07

Table 1. Running time of SDE for several graphs. (Most of these graphs can be
downloaded from [1, 2].)

Proof. Multiplying both sides of (4) by γ from the left and right, we obtain

γLγ = γLZγ = −2(Z − 1
n
1n1n

T Z)(Z − 1
n
1n1n

T Z)T = −2AAT , (5)

where A = Z − 1
n1n1n

T Z is rank-d. Since our algorithm computes a rank-d
approximation Ad of the matrix − 1

2γLγ, and the right hand side of (5) is rank-
d, we exactly recover − 1

2γLγ, i.e., AdAd
T = − 1

2γLγ = AAT , and therefore Ad

differs from A by at most an orthogonal transformation.

Since the distance matrix is invariant to orthogonal transformations, we obtain
the following corollary, which is the basic intuition behind SDE:

Corollary 1. When the distance matrix is embeddable, the coordinates recovered
by SDE exactly reproduce the distance matrix.

When the distance matrix is not exactly embeddable, but the embedding error
ε is small, SDE should approximately reproduce the distance matrix. Suppose
that ε �= 0, and let M = − 1

2γLZγ = −2(Z − 1
n1n1n

T Z)(Z − 1
n1n1n

T Z)T . Let
ε1 = − 1

2γεγ. Then, using (4), − 1
2γLγ = M + ε1.

Theorem 3. Let Ad be the best rank-d approximation to − 1
2γLγ = M + ε1.

Then, ||Ad − M ||S ≤ || ε ||S.

Proof. By the triangle inequality, we have

||Ad − M ||S = ||Ad − M − ε1 + ε1 ||S ≤ ||Ad − M − ε1 ||S + || ε1 ||S
. Since Ad is the best rank-d approximation to M + ε1 and M is itself rank-d,
||Ad − M − ε1 ||S ≤ ||M − M − ε1 ||S = || ε1 ||S . Thus, ||Ad − M ||S ≤ 2|| ε1 ||S .
To conclude, note that since γ is a projection matrix, || γ ||S ≤ 1, so by sub-
multiplicativity, || ε1 ||S = || − 1

2γεγ ||
S
≤ 1

2 || γ ||2S || ε ||S ≤ 1
2 || ε ||S .

Thus, if SDE returns the coordinates Y, then || γYYT γ − γZZT γ ||S is small
provided that L is nearly embeddable (which depends on the perturbation ε).
Unfortunately this alone does not guarantee that γY ≈ γZO for some orthogonal
d× d matrix O, i.e., in general, the eigenvectors are not stable to perturbations.
However, when the eigenvalues of M are well separated and ε is small, then it
is true that SDE will recover a close approximation to ZO for some orthogonal
matrix O, i.e., the distance matrix is nearly recovered. We do not give a precise
formulation of this result, which can be found in [7, Theorem 8.3.5]. Note that
the separation of the eigenvalues is a necessary condition for the power iteration
to converge quickly. Thus, when the power iteration fails to converge quickly, it
is already a sign that the graph may not be embeddable.

6 Conclusion

We have presented a novel graph drawing algorithm SDE which is based on com-
puting the spectral decomposition of the matrix of squared graph theoretical dis-
tances. Our algorithm has the advantages of spectral graph drawing techniques,
for example exact (as opposed to iterative) computation of the coordinates, and
efficiency, while at the same time producing drawings that are comparable in
quality to slower force directed-methods.

The running time of our algorithm is dominated by an APSP computation,
which is O(|V ||E|) using O(|V |2) space for storing pair-wise distances. SDE
can readily be extended to weighted graphs with run time O(|V ||E| log |V |),
again dominated by the APSP algorithm. Our algorithm is not as efficient as
other methods such as ACE, which runs in linear time. However, it is able to
draw quite large graphs in a reasonable amount of time, and therefore can be
extremely useful as an auxiliary drawing algorithm to obtain precise pictures
of smaller regions contained within a huge graph. The general structure of our
algorithm also allows for zooming into a graph, which corresponds to running
SDE on a principle sub-matrix of the matrix of squared distances.

The main bottleneck of SDE is caused by the fact that it needs to compute
the shortest path lengths between every pair of nodes. This also affects the power
iteration, where large (|V | × |V |) matrices need to be processed. We will briefly
discuss approaches to improve the efficiency of our algorithm without significant

sacrifice in quality (which will be the topic of forthcoming work). Since any
valid matrix of squared distances has rank 4, i.e. all the rows of the matrix
can be expressed as a linear combination of 4 vectors, the BFS algorithm need
not be run on all vertices, but rather on a small number (O(1)) of carefully
chosen vertices. This results in a sparse matrix representation of L, which will
be accurate provided that the perturbation ε is small, i.e., if L is embeddable.
All the algorithms can then be run on the sparse approximation, which will
result in a runtime of O(mE), where m = O(1) is the dimensionality of the
sparse representation. Further increases in efficiency can be obtained by using
a multi-scaling approach in the power iteration, which was introduced in [13].
This method relates the actual graph to a coarser level of the graph using an
interpolation matrix. Finding the eigenvalues and eigenvectors of coarser level
graphs makes the convergence faster at the finer levels.

References

1. http://wwwcs.uni-paderborn.de/fachbereich/ag/monien/research/part/graphs.html.
2. http://www.gre.ac.uk/ c.walshaw/partition/.
3. P. Biswas and Y. Ye. Semidefinite programming for ad-hoc wireless localization.

IPSN, Berkeley, CA, 2004.
4. R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing. ACM

Transactions on Graphics, 15(4):301–331, 1996.
5. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,

1984.
6. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed place-

ment. Software - Practice And Experience, 21(11):1129–1164, 1991.
7. G. H. Golub and C. V. Loan. Matrix Compuations. Johns Hopkins U. Press, 1989.
8. D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. In GD02,

LNCS. Springer-Verlag, 2002.
9. X. Ji and H. Zha. Sensor positioning in wireless ad-hoc sensor networks using

multidimensional scaling. IEEE Infocom, March 7-11, 2004.
10. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.

Information Processing Letters, 31(1):7–15, 1989.
11. M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Models.

Number 2025 in LNCS. Springer-Verlag, 2001.
12. Y. Koren. On spectral graph drawing. In COCOON 03, volume 2697 of LNCS,

pages 496–508. Springer-Verlag, 2003.
13. Y. Koren, D. Harel, and L. Carmel. Drawing huge graphs by algebraic multigrid

optimization. Multiscale Modeling and Simulation, 1(4):645–673, 2003. SIAM.
14. J. Matousek. Open problems on embeddings of finite metric spaces. Discr. Comput.

Geom., to appear.
15. A. Quigley and P. Eades. FADE: Graph drawing, clustering and visual abstraction.

In GD00, volume 1984 of LNCS, pages 197–210. Springer-Verlag, 2000.
16. I. G. Tollis, G. D. Battista, P. Eades, and R. Tamassia. Graph Drawing: Algorithms

for the Visualization of Graphs. Prentice Hall, 1999.
17. W. T. Tutte. How to draw a graph. Proc. London Mathematical Society, 13:743–

768, 1963.
18. C. Walshaw. A multilevel algorithm for force-directed graph drawing. In GD00,

volume 1984. Springer-Verlag, 2000.

(a) buckyball; |V | = 60, |E| = 90. (b) 50× 50 grid; |V | = 2500, |E| = 4900.

(c) 50× 50 bag; |V | = 2497, |E| = 4900. (d) jagmesh1; |V | = 936, |E| = 2664.

(e) nasa1824; |V | = 1824, |E| = 18692. (f) nasa2146; |V | = 2146, |E| = 35052.

(g) 3elt; |V | = 4720, |E| = 13722. (h) 4elt; |V | = 15606, |E| = 45878.

Fig. 3. Layouts of some of the graphs tested I.

(a) 4970; |V | = 4970, |E| = 7400. (b) blckhole; |V | = 2132, |E| = 6370.

(c) crack; |V | = 10240, |E| = 30380. (d) bcsstk33;|V | = 8738|E| = 291583.

(e) sphere; |V | = 16386, |E| = 49152. (f) vibrobox; |V | = 12328, |E| = 165250.

(g) whitaker3; |V | = 9800, |E| = 28989. (h) cti; |V | = 16840, |E| = 48232.

Fig. 4. Layouts of some of the graphs tested II.

SDE HDE ACE

finite element mesh of a cow; |V | = 1820, |E| = 7940.

20× 50 grid; |V | = 1000, |E| = 1930.

depth 8 sierpinski; |V | = 9843, |E| = 19683.

vibrobox; |V | = 12328, |E| = 165250.

whitaker3; |V | = 9800, |E| = 28989.

Fig. 5. Comparison of SDE with other spectral methods (HDE and ACE) on sample
graphs.

