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Abstract

We describe several new sampling strategies for Rao-Blackwellized particle
filtering SLAM. Two of the strategies, called fixed-lag roughening and the block
proposal distribution, attempt to exploit “future” information, when it becomes
available, to improve the filter’s estimation for previous time steps. Fixed-lag
roughening perturbs trajectory samples over a fixed lag time according to a
Markov Chain Monte Carlo kernel. The block proposal distribution directly
samples poses over a fixed lag from their fully joint distribution conditioned
on all the available data. Our results indicate that the proposed strategies, es-
pecially the block proposal, yield significant improvements in filter consistency
and a reduction in particle degeneracies compared to standard sampling tech-
niques such as the improved proposal distribution of FastSLAM 2.

In addition, we examine the effectiveness of two new resampling techniques,
residual resampling and generalized resampling, as applied to RBPF SLAM. These
drop-in-place techniques are simple to use and (in the case of residual resam-
pling) computationally cheaper than the standard random resampling approach.
However, our results show that they offer no real improvement in performance
over random resampling in SLAM.

This is an extended version of a paper (Beevers and Huang, 2007) previ-
ously submitted for publication.

1 Introduction

Simultaneous localization and mapping (SLAM) algorithms based on particle fil-
ters have gained exceptional popularity in the last few years due to their relative
simplicity, computational properties, and experimental successes. However, re-
cent work such as that by Bailey et al. (2006) and others has shown that particle
filtering SLAM algorithms are susceptible to substantial estimation inconsistencies
because they generally significantly underestimate their own error. In large part
this is due to degeneracies in the particle filter sampling process.

A particle filter for SLAM represents the posterior distribution of the robot’s
trajectory using a set of samples, or “particles.” Conditioned on each particle is a
map, estimated using a series of small extended Kalman filters for each landmark.
At each time step, particles are extended according to a motion model and maps
are updated based on sensor observations. The particles are weighted according
to the likelihood of the observations given the sampled poses and previous obser-
vations. Finally, particles are resampled (with replacement) according to to their
weights in order to give more presence to highly-weighted trajectories.
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Particle degeneracies occur when the weights of particles in the filter are highly
skewed. In this case, the resampling step selects many copies of a few highly
weighted particles. Since resampling is repeated often (in the basic particle fil-
ter, at every time step), the sampled poses representing past portions of the robot’s
trajectory tend to become degenerate (i.e., all or mostly all identical) so that they
insufficiently encode uncertainty in the estimation. These degeneracies can have
significant consequences if the robot revisits the poorly estimated region, such as
when closing a loop.

Some previous work has addressed the issue of particle diversity. The im-
proved proposal distribution of FastSLAM 2 (Montemerlo, 2003) seeks to sample
“better” poses so that particle weights remain relatively uniform. The adaptive
resampling technique employed by Grisetti et al. (2005) performs resampling only
when the weights become skewed, rather than at every time step. (We further
discuss these and other approaches in Section 2.)

In this paper we describe two new sampling strategies for particle filtering
SLAM, inspired in part by the tracking literature (Gilks and Berzuini, 2001; Doucet
et al., 2006), which improve the consistency of the filter’s estimation and the di-
versity of the trajectory samples. The first approach, termed fixed-lag roughening,
incorporates a Markov Chain Monte Carlo (MCMC) move step, perturbing pose
samples over a fixed lag time according to an MCMC kernel to combat particle de-
generacy. The second technique employs a block proposal distribution which directly
samples poses over a fixed lag time from their fully joint distribution conditioned
on all of the available data. The main idea behind both methods is to exploit “fu-
ture” information to improve the estimates of past portions of the trajectory, in
the sense that the information becomes available only after initial estimation of the
poses.

The new sampling techniques lead to significant reductions in estimation error
over previous approaches. For example, in our experiments, estimation error us-
ing fixed-lag roughening was as little as 30% that of FastSLAM 2 on average, and
error using the block proposal was as little as 12%, both at the expense of a con-
stant factor increase in computation time. Furthermore, trajectory samples from
the block proposal exhibit better diversity than those from FastSLAM 2, with the
filter maintaining multiple samples over most of the pose history for reasonably
long trajectories.

The primary complication of both approaches is in designing and drawing from
the sampling distributions — i.e., the MCMC kernel for fixed-lag roughening, and
the fully joint pose distribution for the block proposal. We derive conditional dis-
tributions for a Gibbs sampler for the roughening case, and employ a well-known
algorithm to simulate from joint distributions in state-space models for the block
proposal. In addition, we show how to apply the techniques in practice using the
standard Gaussian approximations to the motion and measurement models of the
robot.

Other work in the statistics literature has pinpointed several alternatives to the
usual random resampling strategy employed in particle filtering techniques (Liu,
2001). For purposes of comparison, we have implemented two of the approaches,
residual resampling and generalized resampling, in the context of RBPF SLAM.
Residual resampling deterministically selects a number of copies of each particle
proportional to the weights. A benefit of this approach is that it requires access
to many fewer random numbers than the standard approach. Generalized resam-
pling draws particles with probability proportional to a function of the weights.
The function can be tailored to balance the need for particle diversity with the need
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for sample effectiveness. Unfortunately our results show that neither technique
yields much improvement over random resampling in terms of filter performance.

In the next section we formally introduce particle filtering SLAM and the con-
sistency issue, and describe previous work on improving consistency and particle
diversity. We introduce fixed-lag roughening in Section 3 and the block proposal
distribution in Section 4. The two resampling strategies are discussed in Section 5.
Finally, Section 6 presents the results of experiments comparing our techniques to
previous approaches.

2 Particle filtering SLAM

The simultaneous localization and mapping (SLAM) problem is for a robot to con-
currently estimate both a map of the environment and the robot’s pose with respect
to the map. We consider the map to consist of a set of parameterized geometric ob-
jects (e.g., points or lines) and treat SLAM as a state estimation problem, with the
goal of recovering the map xm = [xm

1 . . . xm
n ]T and the robot’s time-dependent

trajectory xr
1:t through the environment, where each intermediate pose xr

t typically
consists of the robot’s position and orientation with respect to the world frame.
At each pose the robot executes a control command (i.e., motion) according to the
control input ut. It then acquires an observation (or set of observations) zt from
its sensors and computes correspondence variables nt mapping observations to
landmarks in the map.

The goal of SLAM is therefore to estimate the distribution:

p(xr
1:t, xm|u1:t, z1:t, n1:t) (1)

(While correspondences n1:t could be included in the inference process they are
typically estimated in more ad hoc fashion, e.g., by taking the maximum likelihood
correspondences.)

A common SLAM assumption is that landmarks are randomly and indepen-
dently distributed in the environment. Under this assumption, correlation be-
tween landmark variables {xm

i } in the SLAM estimation arises only through un-
certainty in the robot’s trajectory.1 This motivates a “Rao-Blackwellized particle
filtering” (RBPF) approach to estimating the posterior (1). The posterior is first fac-
tored according to the stated independence to obtain:

p(xr
1:t, xm|u1:t, z1:t, n1:t) = p(xr

1:t|u1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior over trajectories

n

∏
i=1

p(xm
i |xr

1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior over landmark i

(2)

The posterior over trajectories is estimated nonparametrically using N samples
(“particles”). Conditioned on the sampled values, landmark variables are indepen-
dent, and each is estimated separately, typically by a small constant-size extended
Kalman filter (EKF).

The estimation of the trajectory posterior by samples is done using sequen-
tial importance sampling with resampling (SISR), commonly known as bootstrap
filtering or particle filtering. (Particle filtering is a general method for sampling
from high-dimensional, complicated distributions by building samples sequen-
tially.) The basic idea is to employ for each particle φi

t =
{

xr,i
1:t−1, xm,i

}
a motion

1In (Beevers and Huang, 2006) we develop a particle filtering SLAM algorithm that does not rely on
this common assumption, but in this work we’ll stick with the usual model.
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model p(xr
t |x

r,i
t−1, ut) as a proposal distribution to project the robot state forward by

sampling, i.e.:
xr,i

t ∼ p(xr
t |xr,i

t−1, ut) (3)

Once every particle is projected forward, the “prediction” step is complete and the
posterior:

p(xr
1:t|u1:t, z1:t−1, n1:t−1) (4)

is represented by the particles.
Next, the samples are weighted according to the sensor measurement likeli-

hood, i.e.:
ωi

t = ωi
t−1 p(zt|xr,i

t , nt, xm,i
nt ) (5)

The weighted samples are (asymptotically) from the desired posterior (1).
Finally, a resampling step draws N times from the particle set, with replacement,

according to the weights {ωi
t}. The weights are then reset uniformly. This typically

improves the representation of the trajectory posterior because over time, most
of the weight is concentrated in just a few particles. Resampling assigns more
particles to areas of high likelihood which then leads to better estimation of future
portions of the trajectory.

For more details about general particle filtering, see, e.g., (Liu, 2001). A de-
tailed description of particle filtering in the context of SLAM can be found in (Mon-
temerlo, 2003).

2.1 Consistency

An important issue in particle filtering SLAM is the consistency of the SLAM filter. A
filter is inconsistent if it significantly underestimates its own error, which can lead
to divergence of the filter estimate from the truth. Bailey et al. (2006) have shown
experimentally that in general, current particle filtering SLAM algorithms are in-
consistent. This is in large part due to degeneracies caused by frequent resampling
such that most samples become identical for much of the robot’s trajectory.

The primary objective of this work is to develop particle filtering SLAM algo-
rithms with consistency properties that are significantly more desirable than those
of the standard approaches, without sacrificing the computational benefits of par-
ticle filtering techniques.

2.2 Related work

Several researchers have addressed consistency in the context of RBPF SLAM; we
describe two well-known approaches and a third recent development.

2.2.1 Improved proposal distribution

For robots with very accurate sensors such as scanning laser rangefinders, the mea-
surement likelihood in (5) is highly peaked. Thus, the proposal distribution (3)
samples many robot poses that are assigned low weights, so only a few samples
survive the resampling step. This can quickly lead to particle degeneracies.

An alternative is to incorporate the current sensor measurement zt into the pro-
posal distribution, i.e., to sample robot poses according to:

p(xr
t |xr,i

1:t−1, u1:t, z1:t, n1:t) (6)
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Using this approach, many more samples are drawn for robot poses that match
well with the current sensor measurement and particles are more evenly weighted,
so more particles are likely to survive resampling. This “improved proposal distri-
bution” has been used in both landmark-based SLAM (Montemerlo, 2003), where it
is often called “FastSLAM 2,” and in occupancy grid scan-matching SLAM (Grisetti
et al., 2005).

2.2.2 Effective sample size

The basic particle filtering algorithm resamples particles according to their weights
at every iteration, i.e., for every SLAM update step. It can be shown that if the
weights of particles are approximately the same, resampling only decreases the effi-
ciency of the sampled representation (Liu, 2001). The effective sample size is a useful
metric to determine whether resampling is necessary (Liu and Chen, 1995). It can
be approximated as:

N̂eff =
1

∑N
i=1

(
ωi

t
)2 (7)

If the effective sample size is large, say, N̂eff > N/2, resampling is undesirable
since the PDF over robot trajectories is well represented. This technique was first
applied to SLAM by Grisetti et al. (2005).

2.2.3 Recovering diversity through stored state

The preceding methods focus on preventing loss of particle diversity. Another ap-
proach is to attempt to “recover” diversity. Stachniss et al. (2005) store the “state”
of the particle filter upon detecting the robot’s entry into a loop. After repeatedly
traversing the loop to improve the map (a process normally resulting in loss of di-
versity), the filter state is restored by splicing the loop trajectory estimate onto each
saved particle, effectively restoring the diversity of the filter prior to loop closing.

3 Fixed-lag roughening

Resampling leads to degeneracies because multiple copies of the same highly-
weighted particles survive. In this section we describe a modification of the par-
ticle filter sampling process that incorporates “roughening” of the sampled trajec-
tories over a fixed lag so that the posterior over trajectories is better estimated. A
similar approach termed “resample-move” has been described in the statistical lit-
erature in the context of target tracking (Gilks and Berzuini, 2001; Doucet et al.,
2006), and has been mentioned (but not pursued) in the context of SLAM by Bailey
(2002).

The basic idea is to incorporate a post-SISR Markov Chain Monte Carlo (MCMC)
step to “move” the trajectory of each particle over a fixed lag time L after the usual
RBPF update is complete. Specifically, for each particle φi

t, i = 1 . . . N, we sample:

xr,i
t−L+1:t ∼ q(xr

t−L+1:t) (8)

where q is an MCMC kernel with invariant distribution

p(xr
t−L+1:t|u1:t, z1:t, n1:t) (9)
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After the move, the particles are still approximately distributed according to the
desired posterior but degeneracies over the lag time L have been averted. Further-
more, some “future” information is used in drawing new values for previously
sampled poses. The samples are already approximately distributed according to
the desired posterior before the move, so the usual burn-in time of MCMC sam-
plers can be avoided. The MCMC move can be repeated to obtain better samples,
although in our implementation we only perform a single move at each time step.

There are two main difficulties in implementing the approach. First, an appro-
priate kernel q and method for sampling from it must be devised. Second, care
must be taken to avoid bias from counting the same measurement twice, leading
to a need for a simple mechanism to manage incremental versions of the map.

3.1 Fixed-lag Gibbs sampler for SLAM

An effective approach for sampling from the joint MCMC kernel q(xr
t−L+1:t) is to

employ Gibbs sampling, which samples each component of xr
t−L+1:t in turn from

its conditional distribution given the values of other components. Specifically, we
sample each component in turn according to the following scheme, for every par-
ticle φi

t:

xr,i
t−L+1 ∼ p(xr

t−L+1|x
r,i
1:t−L,t−L+2:t, u1:t, z1:t, n1:t)

. . .
xr,i

k ∼ p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t)

. . .
xr,i

t ∼ p(xr
t |xr,i

1:t−1, u1:t, z1:t, n1:t) (10)

The last distribution (10) is equivalent to the usual (improved) proposal distri-
bution. The other intermediate distributions are of the form:

xr,i
k ∼ p(xr

k|x
r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t) (11)

at a particular lag time k. We will concentrate on manipulating (11) into a form
from which we can easily sample. We can first rewrite this distribution using
Bayes’ rule as follows:

p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t)

=
p(zk|xr,i

1:t, u1:t, z1:k−1,k+1:t, n1:t)p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:k−1,k+1:t, n1:t)

p(zk|xr,i
1:k−1,k+1:t, u1:t, z1:k−1,k+1:t, n1:t)

(12)

The denominator can be subsumed into a normalization constant η:

= ηp(zk|xr,i
1:t, u1:t, z1:k−1,k+1:t, n1:t)p(xr

k|x
r,i
1:k−1,k+1:t, u1:t, z1:k−1,k+1:t, n1:t) (13)

Applying the Markov assumption and factoring, we obtain:

= ηp(zk|xr,i
1:t, u1:t, z1:k−1,k+1:t, n1:t) p(xr

k|x
r,i
k−1, uk)︸ ︷︷ ︸

forward model

p(xr
k|x

r,i
k+1, uk+1)︸ ︷︷ ︸

backward model

(14)
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We now have three terms. The forward model is the distribution of robot poses
given the previous pose and the current control input; the backward model is the
distribution of poses given the next pose and control input. Finally, marginalizing
the first term yields:

p(zk|xr,i
1:t, u1:t, z1:k−1,k+1:t, n1:t) =∫

p(zk|xr,i
k , nk, xm,i

nk
)︸ ︷︷ ︸

measurement likelihood

p(xm,i
nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t)︸ ︷︷ ︸
landmark distribution

dxm,i
nk

(15)

Substituting this back into (14) we obtain:

p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t) =

η
∫

p(zk|xr,i
k , nk, xm

nk
)p(xm

nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t) dxm
nk

p(xr
k|x

r,i
k−1, uk)p(xr

k|x
r,i
k+1, uk+1) (16)

3.2 Practical implementation

In practice we approximate the measurement likelihood, the landmark distribu-
tions, and the forward and backward models by Gaussians. Replacing the terms
of (16) accordingly, we obtain the convolution of two Gaussians multiplied by two
more Gaussians, i.e.:∫

N
(

g(xm,i
nk

, xr,i
k ), Rk

)
N

(
xm,i

nk
, Pm,i

nk

)
dxm,i

nk

× N
(

h(xr,i
k−1, uk), Vk

)
N

(
s(xr,i

k+1, uk+1), Vk+1

)
(17)

where the functions g, h, and s represent the measurement model, forward motion
model, and backward motion model, respectively.

Typically, the measurement model must be linearized, e.g., by taking the first-
order Taylor expansion:

g(xm
nk

, xr
k) ≈ g(xm,i

nk
, h(xr,i

k−1, uk)) + Hm(xm
nk
− xm,i

nk
) + Hr(xr

k − xr,i
k ) (18)

where Hm and Hr are the derivatives of g with respect to the observed landmark
and the robot’s pose, respectively, evaluated at the expected values.

Note that aside from the backward motion model term, the distribution (17)
is exactly the approximation of the improved proposal described by Montemerlo
(2003), who has shown that the resulting distribution is Gaussian with mean µ̃r,i

k
and covariance P̃r,i

k as follows:

µ̃r,i
k = P̃r,i

k HT
r S−1

k (zk − g(xm,i
nk

, h(xr,i
k−1, uk))) + h(xr,i

k−1, uk) (19)

P̃r,i
k =

(
HT

r S−1
k Hr + HT

u V−1
k Hu

)−1
(20)

where:
Sk = Rk + HmPm,i

nk
HT

m (21)
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It remains to incorporate the backward motion model, which is straightforward
since we can just merge the backward model distribution with the distribution (19-
20), i.e.:

µr,i
k = µ̃r,i

k + P̃r,i
k (P̃r,i

k + HuVk+1HT
u )−1(s(xr,i

k+1, uk+1)− µ̃r,i
k ) (22)

Pr,i
k =

(
(P̃r,i

k )−1 + HT
u V−1

k+1Hu

)−1
(23)

The fixed-lag roughening algorithm computes the distribution N
(

µr,i
k , Pr,i

k

)
for

each time step k = t − L + 1 . . . t for every particle φi
t to draw the new poses

xr,i
t−L+1:t, and then updates the maps conditioned on the new trajectories.

3.3 Incremental map management

To avoid bias the intermediate map estimate p(xm
nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t) used
in (16) should incorporate all available information except the measurement zk from
the time step being moved. Thus, it is necessary to store “incremental” versions
of the map over the lag time so that the intermediate map distributions can be
computed. A simple strategy which we use in our implementation is to store the
map from time t − L and the measurements zt−L+1:t. The intermediate map dis-
tributions are computed on the fly by applying EKF updates to the map using the
observations from all but the kth time step.

To avoid storing multiple complete copies of the map of each particle, the bi-
nary tree data structure of log N FastSLAM (Montemerlo, 2003) can be used to store
only the differences between maps from each time step.2

3.4 Discussion

Note that (16) is nearly identical to the result of similar manipulations of the im-
proved proposal distribution (6) as described by Montemerlo (2003). The primary
difference is the inclusion of the “backward model” p(xr

k|x
r,i
k+1, uk+1) since we are

sampling a pose in the midst of the trajectory rather than simply the most recent
pose.

Note also that we do not reweight the particles after performing the MCMC
roughening step. This is because the particles before the move are asymptotically
drawn from the same distribution as those after the move.

4 Block proposal distribution

An alternative approach for exploiting “future” information in drawing trajectory
samples over a fixed lag time L is to draw new samples for the last L poses directly
from the joint “L-optimal block proposal distribution,” i.e.:

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L) (24)

The basic idea is to sample from (24) at each time step, replacing the most recent L
poses of each particle with the newly sampled ones. The result is a particle filter

2We note that while the tree described in (Montemerlo, 2003) stores landmarks only at the leaf nodes
and thus requires O(n log n) memory for n landmarks, it is possible to store landmarks at every node
in the tree, which requires O(n) memory.
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that is “current” in that its samples are always distributed according to the desired
posterior (1) and can be used for, e.g., planning, but which yields much better
samples since future information is directly exploited by the joint proposal. Thus,
degeneracies in the weights of particles are much less likely to occur. A related
technique was recently described by Doucet et al. (2006) in the general particle
filtering context. One can think of the standard improved proposal distribution (6)
as a “1-optimal” version of the block proposal.

The main difficulty in employing the block proposal is in drawing samples
from the joint distribution (24). Our approach relies on the factorization due to
Chib (1996):

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L) = p(xr
t |u1:t, z1:t, n1:t, xr,i

t−L)×

p(xr
t−1|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
t ) × · · · × p(xr

k|u1:t, z1:t, n1:t, xr,i
t−L, xr,i

k+1:t)× · · · ×

p(xr
t−L+1|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
t−L+2:t) (25)

Here, the typical term is:

p(xr
k|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
k+1:t) (26)

and application of Bayes’ rule and the Markov assumption leads to (Chib, 1996):

p(xr
k|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
k+1:t)

∝ p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L) p(xr
k+1:t, zk+1:t|xr,i

k , xr,i
t−L, u1:t, z1:k, n1:t) (27)

= p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L) p(xr
k+1|x

r,i
k , uk+1)

× p(xr
k+2:t, zk+1:t|xr,i

k , xr,i
k+1, u1:t, z1:k, n1:t, xr,i

t−L) (28)

∝ p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L) p(xr
k+1|x

r,i
k , uk+1) (29)

where the final step follows because p(xr
k+2:t, zk+1:t|xr,i

k , xr,i
k+1, u1:t, z1:k, n1:t, xr,i

t−L) is
independent of xr

k.
The idea is to first filter forward over the robot’s trajectory by computing the

distributions {p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L)} using alternating prediction and update
steps (e.g., with an EKF), and then sample backward, first drawing:

xr,i
t ∼ p(xr

t |u1:t, z1:t, n1:t, xr,i
t−L) (30)

and then sampling the poses from the preceding time steps in reverse order using
the distributions that arise from substituting the sampled values into (29). This
process is repeated for every particle, and the corresponding maps are updated
conditioned on the sampled trajectories.

Once new samples have been drawn for {xr,i
t−L+1:t}, the particles are reweighted

according to the usual technique, i.e.:

ωi
t = ωi

t−1
target distribution

proposal distribution
(31)
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The optimal weight update is given by:

ωi
t = ωi

t−1
p(xr

1:t−L|u1:t, z1:t, n1:t)
p(xr

1:t−L|u1:t−1, z1:t−1, n1:t−1)
(32)

= ωi
t−1

p(zt|xr,i
1:t−L, u1:t, z1:t−1, n1:t) p(xr

1:t−L|u1:t−1, z1:t−1, n1:t−1)
p(xr

1:t−L|u1:t−1, z1:t−1, n1:t−1) p(zt|u1:t, z1:t−1, n1:t)
(33)

∝ ωi
t−1 p(zt|xr,i

1:t−L, u1:t, z1:t−1, n1:t) (34)

Thus, the weight update is proportional to the likelihood of the current measure-
ment using the forward-filtered pose and map distribution.

4.1 Practical implementation

As with fixed-lag roughening, we implement the necessary models as Gaussians
in practice. The algorithm for sampling from (24) proceeds in two steps: forward
filtering and backward sampling.

4.1.1 Forward filtering

The forward filtering step estimates the intermediate pose distributions condi-
tioned upon past and present data, but not on future data. Note that the distri-
butions must be computed separately for each particle since they are also con-
ditioned on the “starting pose” xr,i

t−L. We implement the step using an extended
Kalman filter (EKF) with the usual alternation between predictions and updates,
for k = t − L + 1 . . . t. We first compute the prediction:

µ̃r,i
k = h(µ̃k−1, uk) (35)

P̃r,i
k = P̃r,i

k−1 + HuVkHT
u (36)

and then apply the measurement(s) to improve the model using (19-20). The re-
sulting distribution is used recursively to compute the distribution for the next
time step. The process is initialized with P̃r,i

t−L = 0 since the pose xr,i
t−L is already

sampled.
Note that during the forward filtering step, a temporary version of the map

must be updated with the measurements from each time step to obtain the correct
forward-filtered distributions. The ideal approach is to apply the EKF to the full
state vector [xr xm]T over the lag time. If the number of observed landmarks in a
time step is less than a constant m (rather than a function of the size of the map),
then the total cost of forward filtering is O(NLm3), i.e., asymptotically constant
time to draw N samples at each time step.

An alternative approach is to assume the landmarks are independent and apply
the usual RBPF updates to the landmarks during forward filtering, inflated by the
uncertainty of the intermediate pose distributions computed by the EKF, i.e.:

xm,i
nk

= xm,i
nk

+ (Pm,i
nk

HT
mS−1)(zk − g(xm,i

nk
, µ̃k)) (37)

Pm,i
nk

=
(
(Pm,i

nk
)−1 + HT

mR−1
k Hm + HT

r (P̃r,i
k )−1Hr

)−1
(38)

10



4.1.2 Backward sampling

Once the forward filtering step is complete, we draw samples for each intermediate
pose xr

k, starting with k = t and decrementing until k = t− L + 1. The first sample
is drawn directly from the (approximately) optimal forward-filtered distribution:

xr,i
t ∼ N

(
µ̃r,i

t , P̃r,i
t

)
(39)

The remaining samples are conditioned on the poses drawn for the succeeding
time steps by applying the same backward model used in fixed-lag roughening,
i.e., we apply the steps (22-23) with µ̃r,i

k and P̃r,i
k as computed by during forward

filtering, and draw samples from the resulting Gaussians.

4.1.3 Reweighting

After drawing the samples {xr,i
t−L+1:t}, the particles must be reweighted to approx-

imate the desired posterior. From (34), it can easily be seen that the appropriate
weight update is:

ωi
t = ωi

t−1 ×|2πLi
t|−1/2 exp

(
−1

2
(zt − g(xm,i

nt , µ̃r,i
t ))T(Li

t)
−1(zt − g(xm,i

nt , µ̃r,i
t ))

)
(40)

with:
Li

t = HrP̃r,i
t HT

r + HmPm,i
nt HT

m + Rt (41)

where xm,i
nt and Pm,i

nt are as computed during the forward filtering step.

4.2 Discussion

At first it may appear that the samples drawn using the block proposal distribu-
tion are no different from those obtained with fixed-lag roughening. In fact, while
the samples are asymptotically from the same distribution (the desired posterior),
those obtained from the block proposal will generally be better. This is because
poses over the lag time are drawn directly from the joint distribution that incorpo-
rates future information. On the other hand, in fixed-lag roughening, poses are
originally drawn using past and present information only, and then are gradually
moved as future information becomes available. Only through the application of
many MCMC moves at each time step will the samples obtained by fixed-lag rough-
ening be as good as those from the block proposal.

5 Resampling strategies

In addition to fixed-lag roughening and the block proposal distribution described
above, we have examined the use of alternative resampling methods in RBPF SLAM.
To our knowledge, all published RBPF SLAM algorithms employ the random resam-
pling approach, which resamples particles with probability proportional to their
importance weights. We briefly describe two alternative techniques from the sta-
tistical literature (Liu, 2001), termed residual resampling and generalized resampling,
and apply them to particle filtering SLAM. Our results indicate that the perfor-
mance of these strategies in the context of SLAM is not appreciably better than
random resampling. However, they offer flexibility and, in the case of residual
resampling, may be computationally beneficial.
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5.1 Residual resampling

Residual sampling is a mostly-deterministic approach that enforces the number
of copies of a particle retained during resampling to be (approximately) propor-
tional to the weight of the sample. (Note that this is the expected result of random
resampling.) The technique is shown in Algorithm 1.

Algorithm 1 Residual resampling

1: Let ω̃
j
t = ω

j
t/ ∑N

i=1 ωi
t

2: Retain k j = bNω̃
j
tc copies of φ

j
t

3: Let Nr = N − k1 − . . . − kN
4: Obtain Nr i.i.d. draws (with replacement) from {φ1

t , . . . , φN
t } w.p. proportional

to Nω̃
j
t − k j

5: ∀j, ω
j
t = 1/N

Since the number of deterministically selected copies of all particles, ∑N
j=1 k j,

may be less than N, random resampling is performed according to the residu-
als Nω̃

j
t − k j in Step 4 to prevent bias.

According to Liu (2001), residual resampling can be shown to “dominate” ran-
dom resampling in that it yields more accurate PDF approximations and is compa-
rable or better in terms of computation. Perhaps the primary benefit is that residual
resampling gives comparable performance to random resampling while consum-
ing many fewer random numbers, which may be costly to generate, particularly in
embedded scenarios.

5.2 Generalized resampling

The idea of generalized resampling is to resample according to alternative prob-
abilities {ai

t} instead of the usual importance weights {ωi
t}. The intuition behind

this approach, which is depicted in Algorithm 2, is that {ai
t} can be used to “mod-

ify” the weights of particles, balancing focus (giving more presence to particles
with high weights) with particle diversity.

Algorithm 2 Generalized resampling
1: for j = 1 . . . N do
2: Draw k from {1, . . . , N} according to ai

t, i = 1 . . . N
3: Let φ̃

j
t = φk

t

4: Let ω̃
j
t = ωk

t /ak
t

5: return the φ̃i
ts and ω̃i

ts

Liu (2001) suggests assigning generalized weights according to:

ai
t =

(
ωi

t

)α
(42)

with 0 < α ≤ 1. By picking α < 1, the weight of seemingly poor particles is slightly
amplified, giving them a “second chance.” (Note that the ai

ts should be monotone
in ωi

t since we generally want to discard bad samples and duplicate good ones.)
The weights are reset nonuniformly after resampling to prevent bias.

12
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Figure 1: Simulated environments used to test RBPF SLAM algorithms. The envi-
ronments consist of point landmarks placed uniformly at random. The solid dark
lines represent the ground truth trajectories of the robot, which were kept the same
for all simulations. The lighter gray lines depict several typical uncorrected odom-
etry estimates of the robot’s trajectory.

6 Results

Our experiments compared the standard FastSLAM 2 algorithm, the fixed-lag rough-
ening (FLR) algorithm from Section 3, the block proposal (BP) distribution from
Section 4, and FastSLAM 2 with residual (RES) and generalized (GEN) resampling
as described in Section 5. For the roughening and block proposal approaches we
tested the algorithms with several values for the lag time L, and generalized re-
sampling was tested with several values of the parameter α. All experiments used
N = 500 particles and resampling was performed only when N̂eff < N/2.

Our experiments were in simulation since comparing the estimation error of
the filters requires ground truth. We assumed known data associations to pre-
vent poor correspondence-finding from influencing the comparison between filter-
ing algorithms. Noise was introduced by perturbing odometry and range-bearing
measurements. The observation model used σr = 5 cm and σb = 0.3◦ with a sens-
ing radius of 10 m, and the motion model used σx = 0.12d cos θ, σy = 0.12d sin θ
and σθ = 0.12d + 0.24φ for translation d and rotation φ.

Experiments were performed in a variety of simulated environments consisting
of point features. We present results from two representative cases with randomly
placed landmarks: a “sparse” map with a simple 27 sec. trajectory (no loops) and
a “dense” map with a 63 sec. loop trajectory. The environments, ground truth
trajectories, and typical raw odometry estimates are shown in Figure 1. All results
were obtained by averaging 50 Monte Carlo trials of each simulation.

6.1 NEES comparison

We begin by comparing the normalized estimation error squared (NEES) (Bar-Shalom
et al., 2001; Bailey et al., 2006) of the trajectory estimates produced by each algo-
rithm. The NEES is a useful measure of filter consistency since it estimates the
statistical distance of the filter estimate from the ground truth, i.e., it takes into
account the filter’s estimate of its own error. For a ground truth pose xr

t and an
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estimate x̂r
t with covariance P̂r

t (computed from the weighted particles assuming
they are approximately Gaussian), the NEES is:

(xr
t − x̂r

t)(P̂r
t)
−1(xr

t − x̂r
t)

T (43)

The recent paper by Bailey et al. (2006) gives more details about using NEES to
measure RBPF SLAM consistency.

We computed the NEES at each time step using the current particle set. Fig-
ures 2-3 and 4-5 show the resulting errors from each of the algorithms in the sparse
and dense examples, respectively. In the sparse environment, NEES grows steadily
for FS2, FLR, RES, GEN, and for BP with small lag times. Increasing the lag time for
FLR has relatively little effect on NEES because “future” information is exploited
slowly (see Section 4.2). FLR’s NEES is approximately 33% that of FS2 on average
for L = 5 and L = 10. On the other hand, increasing the lag time for BP dramat-
ically reduces NEES. The NEES of BP(1) is roughly 73% that of FS2 on average; for
BP(5), 22%; and for BP(10), 12%. RES and GEN fail to improve on random resam-
pling and in fact — aside from GEN(0.5) — do noticeably worse than FS2 in the
sparse environment.

For the dense case the results are mostly similar. Note that FLR avoids de-
generacies (manifested as spikes in the NEES plots) by moving particles after re-
sampling. Interestingly, increasing L in a dense environment appears to slightly
increase the NEES of FLR, a subject warranting further investigation. RES and GEN
do better in the dense case, with performance comparable to that of FS2. In the
dense environment, increasing α (placing more emphasis on representation accu-
racy than on particle diversity) leads to improved performance, a clue that gener-
alized resampling is offering little benefit in this case aside from the expected slight
reduction in degeneracies.

Note that the range of the NEES plots is quite large — none of the filters is truly
consistent. (A consistent filter over 50 Monte Carlo trials should have NEES less
than 3.72 with 95% probability (Bailey et al., 2006).) While the estimation error
using fixed-lag roughening and the block proposal is significantly reduced, these
strategies alone do not guarantee a consistent filter, at least with reasonably small
lag times. In fact it is likely that guaranteeing consistent SLAM estimation (with
high probability) while representing the trajectory posterior by samples requires
drawing the full dimensionality of the samples from a distribution conditioned on
all the measurements, e.g., with MCMC, since particle filtering is always susceptible
to resampling degeneracies depending on the environment and trajectory.

6.2 N̂eff comparison

The effective sample size N̂eff is also a useful statistic in examining filter consis-
tency. If N̂eff is high, the weights of particles are relatively unskewed, i.e., all parti-
cles are contributing to the estimate of the trajectory posterior. Furthermore, since
N̂eff dictates when resampling occurs, high values of N̂eff indicate less chance for
degeneracies in past portions of the trajectory estimate because resampling occurs
infrequently.

Figures 6-7 show N̂eff as computed at each time step in the simulations. In the
sparse case, FLR exhibits no significant improvement over FS2, but in the dense
environment FLR(5) and FLR(10) have about 72% higher N̂eff than FS2 on average.
Again, BP exhibits stronger results, with BP(10) more than 1000% better than FS2
in the dense case, and 340% better in the sparse case. This can be attributed to
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Figure 2: NEES for the sparse environment, versus the simulation time on the x-
axis. We use the following abbreviations: FS2 for FastSLAM 2 with random resam-
pling, FLR(L) for fixed-lag roughening with lag time L, BP(L) for the block proposal
with lag time L, RES for FastSLAM 2 with residual resampling, and GEN(α) for gen-
eralized resampling with parameter α.
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Figure 3: Ratio of NEES to that of FastSLAM 2 for the sparse environment.
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Figure 4: NEES for the dense environment.
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Figure 5: Ratio of NEES to that of FastSLAM 2 for the dense environment.
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Figure 6: N̂eff for the sparse environment, versus the simulation time on the x-axis.
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Figure 7: N̂eff for the dense environment.
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the direct use of future information by the block proposal, which leads to better
samples for essentially the same reason FastSLAM 2’s samples are better than those
of FastSLAM 1. Residual resampling gives slightly better performance than FS2 (a
result of its deterministic approach). GEN yields worse N̂eff than FS2 in all cases,
with the ratios approximately proportional to the parameter α. Again, this is the
expected result since generalized resampling trades off representation accuracy
(which is measured by N̂eff) for particle diversity.

6.3 Particle diversity

Finally, we examine particle diversity for each of the different filters. Figures 8
and 10 show the variance of the pose histories of all the particles, computed at the
end of SLAM. Figures 9 and 11 show the number of unique particles representing
each pose. For all of the algorithms, the end of the trajectory is better represented
than earlier portions. FLR extends the representation over the lag time but the
typical quick dropoff remains. BP avoids the loss of diversity in the sparse case,
maintaining non-zero variance over most of the trajectory, as one would expect
since little resampling occurs due to the high effective sample size. In a denser
environment a significant amount of resampling still occurs, reducing the benefit
somewhat. RES gives slightly worse performance than FS2. GEN very slightly im-
proves on FS2, with about 1% more unique samples of each pose on average for
α = 0.2 and α = 0.5.

7 Conclusions

We have described two new sampling strategies for particle filtering SLAM. The
first method, fixed-lag roughening, applies an MCMC move to the trajectory sam-
ples over a fixed lag at each time step. The second approach, the block proposal
distribution, draws new samples for all poses in a fixed-lag portion of the trajec-
tory from their joint distribution. Both techniques exploit “future” information to
improve the estimation of past poses.

Our results show that the new algorithms lead to substantial improvements
in SLAM estimation. Fixed-lag roughening and the block proposal yield samples
which exhibit less statistical estimation error than those of FastSLAM 2. Further-
more, the samples drawn by the block proposal distribution tend to have much
more uniform importance weights (and thus higher “effective sample sizes”), lead-
ing to less need for resampling and consequently, improved particle diversity.

We have also examined the utility of two alternative resampling algorithms.
Residual resampling deterministically selects a number of copies of each particle
proportional to the weights, consuming many fewer random numbers than the
usual random resampling. Generalized resampling selects samples according to
some function of their importance weights, giving flexibility in balancing particle
diversity with representation accuracy. While our results have shown that nei-
ther technique significantly improves upon the estimation performance of basic
random resampling, the approaches expand the resampling toolkit; in particular,
residual resampling may be useful in computationally restricted scenarios.

Our experiments so far have been in simulation for purposes of comparison.
We are currently working to implement fixed-lag roughening and the block pro-
posal distribution for line features, which are more suitable for use in real-world
indoor mapping.
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Figure 8: Sample variance of the final trajectories for the sparse environment. The
plots shown here are computed using the trajectory samples at the end of SLAM,
i.e., {xr,i

1:t|u1:t, z1:t, n1:t}.
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Figure 9: Number of unique samples representing each pose in the trajectory at the
end of SLAM, for the sparse environment.
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Figure 10: Sample variance of the final trajectories for the dense environment.
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Figure 11: Number of unique samples representing each pose in the trajectory at
the end of SLAM, for the dense environment.
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