
Sequence Alignment for Masquerade Detection

Scott E. Coull1

coulls@cs.jhu.edu

Joel W. Branch2

brancj@cs.rpi.edu

Boleslaw K. Szymanski2

szymansk@cs.rpi.edu

Eric A. Breimer3

ebreimer@siena.edu

Johns Hopkins University1 Rensselaer Polytechnic Institute2 Siena College3

3400 N. Charles St. 110 Eighth St. 515 Loudon Rd.
Baltimore, MD 21202 Troy, NY 12180 Loudonville, NY 12211

(410) 516-8775 (518) 276-8326 (518) 786-5084

Abstract

The masquerade attack, where an attacker takes on the identity of a legitimate user to maliciously
utilize that user’s privileges, poses a serious threat to the security of information systems. Such
attacks completely undermine traditional security mechanisms, including strong authentication and
intrusion detection, because the trust imparted in user accounts once they have been authenticated.
Many attempts have been made at detecting these attacks, yet none of them have provided a level
of accuracy necessary for practical deployment. In this paper, we discuss the use of a specially tuned
sequence alignment algorithm, typically used in the field of bioinformatics, to detect instances of
masquerading in sequences of computer audit data. By aligning monitored audit data with sequences
known to have been produced by the user, known as the user’s signature, the alignment algorithm
can discover areas of similarity and ultimately derive a metric which indicates the presence or absence
of masquerade attacks. Specifically, we use a specially tuned Smith-Waterman sequence alignment
algorithm and investigate the use of various scoring systems on the algorithm’s ability to detect
masquerade attacks. Additionally, we provide methods to dynamically update the user’s signature
to accommodate for variations in behavior that occur over time, and describe heuristics for decreasing
the computational requirements of the algorithm. Our technique is evaluated against the standard
masquerade detection dataset provided by Schonlau et al. [9]. The results show that the use of
our sequence alignment technique provides the best results of all known to us masquerade detection
techniques.

1 Introduction

To protect information systems from unauthorized use, administrators rely on security technologies such
as firewalls, network and host-based intrusion detection systems, and strong authentication protocols.
If an attacker can gain access to a legitimate user account, however, these state-of-the-art security
technologies are rendered useless. For instance, once a user has his password compromised by an
attacker, the attacker can then utilize all the privileges available to the legitimate user without being
detected due to the trust placed in the compromised account. Similarly, a malicious insider can choose to
use their privileges to perform unauthorized actions. These examples describe the canonical masquerade
attack, when an attacker masquerades as a legitimate user of the system to perform unauthorized and
malicious actions without being subjected to the scrutiny of traditional security technologies. Clearly,
such attacks pose a serious threat, and their detection often occurs long after the damage is done.
The key, therefore, is to develop techniques to differentiate this malicious masquerading behavior from
legitimate usage of the information system. Of course, this is quite difficult in practice, as legitimate
daily activity can easily become malicious based on its context. In fact, there have been several attempts
at creating algorithms for detecting these attacks, and yet a level of accuracy required for practical
deployment has not been achieved [1, 5, 6, 7, 9, 10, 12, 16].

In this paper, we leverage the pattern matching abilities of sequence alignment algorithms found in
the field of bioinformatics to discover masquerade attacks within sequences of information system audit
data (e.g., command line entries, mouse movements, system calls, etc.). Sequence alignment algorithms

1

are used in the field of bioinformatics to discover areas of similarity between two sequences of biological
data, such as nucleotides in DNA sequences. The true value of these algorithms is their ability to
align sequences not simply using lexical matching, such as string matching or longest common substring
searches, but to incorporate domain knowledge and allow for certain mutations in the sequences. Cus-
tomized scoring systems are used to define ‘good’ and ‘bad’ alignments based on knowledge of likely
mutations found in research performed on these biological sequences. Hence, these alignments actu-
ally discover areas of functional similarity between the aligned sequences based on the scoring system
utilized.

The ability of sequence alignment algorithms to find areas of similarity can be used to differentiate
legitimate usage from masquerade attacks. To do so, we create a signature of the normal behavior for a
given user by collecting sequences of audit data that are known to be created from legitimate use of the
information system, known as the user signature. This user signature can then be aligned with audit data
collected from monitored sessions to find areas of similarity between the two. Areas that do not align
properly can be assumed to be anomalous, and the presence of many of these anomalous areas is a strong
indicator for masquerade attacks. The ability to encode domain knowledge within the scoring system
used by these algorithms allows us to align sequences with similar high-level functionality or behavior,
despite the fact that the underlying audit data may differ lexically. This kind of specialization allows
the sequence alignment technique to provide more complex pattern matching than previous masquerade
detection techniques.

Though the use of sequence alignment appears to be easily adaptable to the task of detecting
masquerade attacks, much of the research performed on the use of sequence alignment and its scoring
systems focuses on biological applications. Unfortunately, much of this research does not have clear
parallels to masquerade detection. For instance, biological sequences are typically made up of some
finite alphabet of base symbols (e.g., nucleotides or proteins), while audit data has an effectively infinite
alphabet of base symbols, such as the set of all possible command line entries. Moreover, significant
research has been performed on the mutations of DNA and RNA, and likely mutations can be codified
as probabilities gleaned from the substantial set of samples available, whereas such a model is difficult to
derive for computer audit data, due to its dynamic nature. Thus, there is substantial need to investigate
appropriate algorithms for aligning audit data and scoring those alignments based on the properties of
the audit data sequences. To this end, we provide a modification of the Smith-Waterman local alignment
algorithm [11] to properly accommodate for the alignment of computer audit data. We also investigate
two novel scoring systems designed to model mutations in audit data.

There are also several problems that are inherent to the task of detecting masquerade attacks. First,
the usage patterns of legitimate users can be expected to change, perhaps due to new projects or software.
The use of static user signatures is therefore prone to label legitimate variations as attacks. By using the
sequence alignment algorithm’s ability to discover areas of similarity, we are able to dynamically update
the user’s signature as new user behavior is encountered, thereby avoiding false detection of masquerade
attacks. Second, the Smith-Waterman algorithm can be considered computationally expensive, and
impractical for use in detecting masquerade attacks on multi-user systems. By selectively performing
alignments only on the portions of the user signature that have the highest probability of alignment, we
significantly reduce the number of computations required in practice with almost no loss of accuracy in
detecting masquerade attacks. Our modified alignment algorithm, along with our scoring systems and
signature updating scheme, were tested on the Schonlau et al. dataset [9], which has become the de-facto
standard due to its use in nearly all previous masquerade detection work. Results of the evaluation
show that our system provides the best accuracy of any of the known masquerade detection techniques.
These results provide encouragement for the practical use of our sequence alignment technique, and
advance the state of the art in masquerade detection.

We begin by providing a discussion of previous attempts at detecting masquerade attacks, as well
as other uses of bioinformatics algorithms within the field of computer security. We then provide a
description of the methodology used to evaluate our masquerade detection technique and its various
improvements. We continue by describing our modifications of the Smith-Waterman local alignment
algorithm [11], the scoring systems developed for use in aligning computer audit data, our user signature
updating mechanism, and finally the use of heuristics to reduce the computational requirements of the

2

alignment in detecting masqueraders. For each improvement, we provide its evaluation in-line for ease
of reading. We progressively adapt our sequence alignment algorithm from the most simplistic version
given in previous, exploratory work [1], to the most sophisticated, taking advantage of the custom
scoring systems, signature updating, and reduction of computational requirements. We conclude by
assessing the impact of this algorithm on the state of the art in masquerade detection.

2 Related Work

The problem of detecting masquerade attacks was introduced by Schonlau et al. [9,10]. In those
works, a number of possible methods for detecting attacks were discussed, though most approaches
focused on statistical models. One of the proposed methods, for instance, used the uniqueness of a
command in a sequence of command line entries as an anomaly metric. If a particular command was
rarely used previously, its score would be proportionally lower than a command that was used more
often. Another approach was the use of compression algorithms on the sequence of commands to
create a compression ratio that would be used as an indicator for anomalous activity. The underlying
idea in the methods proposed by Schonlau et al. was that legitimate sequences of command line
data should be consistent with the commands found in the user’s signature, and any deviation would
indicate possible masquerade attacks. Of course, these approaches have several shortcomings, including
ignoring sequencing information by assuming command independence, ignoring command functionality,
and ignoring variations in human behavior by unduly punishing any change from past command line
entries. Lane and Brodley [3, 4, 5] take a string matching approach by attempting to lexically match
subsequences of the user’s signature with subsequences of the monitored sequence, and used the number
of commands that were matched to create a similarity metric. The method proposed by Lane and
Brodley, like Schonlau et al., ignore the underlying functionality of the commands in the sequences,
instead relying solely on finding exact lexical matches.

There have also been several attempts at applying machine learning techniques to the problem of
masquerade detection. Maxion and Townsend [6] provide the best results of all past techniques by ap-
plying a two-class Näıve Bayes classifier to the problem, one class being the commands entered by the
user and one being the commands entered by all other users. The most important contribution made by
Maxion and Townsend is the use of updating mechanisms which dynamically update the classifier prob-
abilities as monitored sequences are classified. Thus, this approach adapts to changes in user behavior.
However, despite the performance of the classifier, several features including sequencing information
and functionality are ignored. Wang and Stolfo [16] apply one-class Näıve Bayes and Support Vector
Machine classifiers, and find that their results are comparable to the results of the two-class classifiers.
This approach suffers from the same issues as the Maxion and Townsend approach by ignoring sequence
and functionality information. Szymanski and Zhang [12] also use a one-class Support Vector Machine,
but also implement a novel recursive data mining strategy to perform dimensionality reduction. Unlike
the Support Vector Machine of Wang and Stolfo, Szymanski and Zhang do provide some consideration
for sequencing information in their dimensionality reduction technique, but functionality is ignored as
is the possibility of variation in user behavior.

There have been several other applications of bioinformatics tools to problems in the field of computer
security. Wespi, Dacier, and Debar [17] were among the first to consider the use of bioinformatics
techniques beyond biological data when they applied the TEIRESIAS pattern discovery algorithm to
sequences of system call data. This algorithm finds recurring patterns of maximal length sequences and
uses these recurring patterns to build a database of valid system call sequences. More recently, Tandon,
Chan, and Mitra [13] used the concept of motifs, or conserved areas of recurring behaviors, to define
behavior in sequences of audit data and define anomalies within the data. Wright et al. [18, 19] use
Hidden Markov Models, which are typically used to perform alignment of many biological sequences at
once, to detect the presence of various application protocols within an encrypted tunnel.

Previous work on using sequence alignment techniques to detect masquerade attacks focused on
an exploration of the technique and the design choices in tuning the algorithm for use in masquerade
detection [1]. This prior work, however, ignored the use of domain knowledge in the development of
scoring systems, and made no attempt to address issues involved in dynamically updating user signatures

3

to variations in behavior. In our current work, we focus on formalizing the insights gleaned from
exploration of the sequence alignment techniques, and provide an evaluation of methods for updating
the user’s signature and using domain knowledge in scoring alignments. Through this deeper exploration,
we are able to provide a system which performs substantially better than those previously proposed.

3 Evaluation

To evaluate our sequence alignment method we compare our results to those of previously published
methods by using the Schonlau et al. dataset [10]. The Schonlau et al. dataset has become the de-facto
standard due to its wide use and public availability. In fact, all previous masquerade detection tech-
niques were evaluated, at least in part, on the Schonlau dataset, making comparison among masquerade
detection algorithms straightforward. The Schonlau dataset was created by recording users’ commands
as they were provided to the UNIX shell. These commands were recorded via the acct utility with
all command arguments removed for the sake of user privacy. Commands were recorded for seventy
distinct users, fifty of which were chosen as the users that would make up the dataset. For each of
these fifty users in the dataset, 5,000 commands were recorded to make up the set of commands that
are considered free of any anomaly or intrusion. We will call this anomaly-free command sequence the
user’s signature, or training set. An additional 10,000 commands were also recorded from each user in
the dataset to make up the set of commands that are to be tested for intrusions. We can call this set
the test data. The commands that have been recorded from the remaining twenty users are randomly
interspersed into the fifty users’ test data, thereby replacing the commands of the fifty users with those
of the twenty users not represented in the dataset. This replacement is probabilistic in nature, and is
discussed in detail in the Schonlau et al. work [10].

The commands, in both the user’s signature and the test data, are broken into 100-command group-
ings, which we will call blocks. We can now think of the dataset as consisting of fifty users, where each
user has a signature made of fifty blocks, and test data made of one hundred blocks. Additionally, any
of the one hundred blocks in the test data may or may not have another user’s command(s) embedded
within it. Our task, therefore, is to align the 100-command test blocks to the 5,000-command user
signature sequence, and determine if the resultant alignment is indicative of a masquerade attack. The
only information about the intrusions that are given by the dataset is a marking of which test data
blocks have at least one command that was inserted from a different user’s recorded sequence. No
statements are made as to which commands, or even how many commands, constitute the masquerade
attack within each test block.

The Schonlau dataset obviously has several weaknesses which limit its realism. The lack of detailed
information about which commands were intrusions in the test blocks makes a thorough analysis of
masquerade detection techniques difficult at best. Also, the manner in which masquerade attacks are
interspersed among the true command data is far from realistic. In some cases, only a single command
could be inserted, which could be as innocuous as a command to change the working directory. Certainly,
such an ‘attack’ is far less dangerous and realistic than one that performs a longer sequence of malicious
actions. The primary weakness of this dataset, however, is its lack of command arguments. This makes
it difficult to perform a realistic evaluation of the dataset. Since the masquerade detection techniques
are typically not designed to use arguments, augmenting them to include arguments may have unknown
effects on their performance. There is also some concern that an attacker could perform a mimicry
attack [15] on detection systems that do not use argument data. In the mimicry attack, an attacker
utilizes knowledge of the user’s signature to craft their system usage in such a way that it would evade
detection by the masquerade detection techniques. If, however, command argument data is included,
such techniques become much more difficult as the attacker would also have to use similar arguments,
not simply similar commands.

Though there are several negative aspects to this dataset, it is the most widely used and gener-
ally accepted dataset in the area of masquerade detection, and is necessary to facilitate comparison of
performance across a variety of techniques1. There is is also anecdotal evidence provided by an eval-

1We regret that the results of Wang and Stolfo [16] do not provide specific false positive and true detection scores,

4

uation of a proprietary dataset by Maxion [7] which suggests the Schonlau dataset provides adequate
evaluation of masquerade detection techniques. Maxion found that by including command argument
information with his existing Näıve Bayes machine learning technique actually achieved an increase of
approximately 20% in performance when compared to the Schonlau data. This result indicates that
the Schonlau dataset offers some benefit as a lower bound on the performance of the masquerade detec-
tion techniques. The results are bolstered by the fact that the sequence alignment technique is easily
augmented to include argument data simply by including both the command and its arguments as
base symbols in the sequences being aligned. Finally, while the Schonlau dataset considers the use of
command line entries as the base symbols of the signature and test sequences, we reiterate the fact that
the sequence alignment technique can just as easily be made to detect anomalies within a variety of
computer audit data.

In previous work, Maxion and Townsend created a scoring framework that rates the overall perfor-
mance of a masquerade detection algorithm as a function of its false positive rate, or the percentage of
legitimate user blocks that were incorrectly labeled as masquerade attacks, and its false negative rate,
or the percentage of masquerade attack blocks that were incorrectly labeled as legitimate [6]. Such a
framework is quite useful in providing a summary of the performance of a detection technique. The
framework provided by Maxion and Townsend calculates the overall cost, or score, of a masquerade
detection algorithm as six times the false positive rate plus the miss rate. The choice of coefficients
should give some indication of the relative negative costs for raising false alarms, and failing to catch
masquerade attacks when they occur. For the sake of consistency with previous work, we keep the coef-
ficients at six and one, respectively. The choice of a false positive coefficient of six and a miss coefficient
of one is somewhat arbitrary, but provides a realistic assessment of the various masquerade detection al-
gorithms, where false positives are far more costly to administrators than misses, due to their disruptive
nature. We use the so-called Maxion-Townsend score, as well as the more traditional receiver operator
characteristic (ROC) curve, to compare the overall performance of previously published techniques to
our sequence alignment algorithm.

4 Sequence Alignment Algorithm

Sequence alignment algorithms are used in the field of bioinformatics to find areas of similarity between
two biological sequences, such as DNA or protein sequences. The problem of sequence alignment,
however, can be viewed as a generalization of the longest common subsequence problem [14]. In the
longest common subsequence problem, we are given two strings, A = a1a2...am and B = b1b2...bn with
n ≤ m, created over alphabet Σ. The goal is to find the maximal length subsequence of A and B such
that the subsequences are lexically similar (i.e., exact string matches). This is achieved by deleting
characters from A and B in such a way that the resultant strings are the maximal length sequence that
A and B have in common. Similarly, we can also consider this as a type of alignment, where instead
of deleting characters we simply insert gaps into the sequences such that the areas that are matched
are the common subsequence between the two sequences. For instance, notice the gaps that have been
inserted in both the upper and lower sequences found in Figure 1 so that the subsequences can be
properly aligned.

- - G T G A C A T G C G A T - - A A G A G G
| | | | | | | | | | | | |

G G G A G A C - T G C G A T A C A A G - - -
- = Gap , | = Match

Figure 1: Example sequence alignment of DNA sequences

Beyond simple lexical matching, sequence alignment allows for a scoring system that can be used
to provide preference to certain matches while discouraging others. In bioinformatics, such scoring
systems are based on observed mutations from one symbol to another (e.g., from one nucleotide in a

and thus direct comparison is not possible. One can assume their results are aligned closely with those of Maxion and
Townsend’s näıve Bayes approach, however

5

DNA sequence to a different nucleotide). Thus the discovery of the maximal subsequence between two
biological sequences is not simply based on lexical matching, but on the biological plausibility of two
sequences having similar functionality, or having been descended from a similar predecessor sequence,
also known as phylogenetic similarity. An example can be seen in Figure 1, where mismatched symbols
are aligned despite lexical dissimilarity due to the fact that mutation from one to the other is allowable
in the scoring system used.

Moreover, the sequence alignment algorithm has several modes of alignment: global, semi-global, and
local alignments. These various alignments allow the algorithm to search for subsequences with different
characteristics. The global alignment, known as the Needleman-Wunch algorithm, tries to maximize
the length of the subsequence over the entire length of both strings [8]. This type of alignment is useful
in situations where both strings are approximately the same length, and where it is believed that the
entirety of both sequences should be similar, such as the case in phylogenetic similarity searches on DNA
sequences. The local alignment, known as the Smith-Waterman algorithm, instead focuses on finding
the best aligned substrings of the two sequences over all possible substrings, rather than over the entire
sequence [11]. The local alignment is useful when searching for areas of functional similarity between
sequences, such as protein sequences, or when one sequence is significantly longer than the other. Since
the majority of the sequence can be assumed to be dissimilar except for the area of functional similarity,
global alignment will provide a poor alignment, whereas local alignments can focus the alignment on
the conserved area that has the best functional similarity. This local alignment is achieved by allowing
the algorithm to ignore both prefixes and suffixes of the sequences to find the best possible matching
subsequence. Finally, semi-global alignment allows for large areas of the sequences to be aligned as
in global alignments, but take advantage of the conserved nature of local alignments. Like the local
alignment, the semi-global alignment allows both prefixes and suffixes to be ignored, but rather than
only aligning the conserved area with the maximal similarity, the entire sequence is still aligned as in the
global alignment case. In essence, the semi-global alignment is a slight modification to the traditional
Smith-Waterman algorithm which aligns the entire sequence based on the alignment of several conserved
areas of similarity. Such an alignment is particularly useful in situations where the alignment of the
entire length of the sequences should be dictated primarily by the alignment of several small, conserved
subsequences.

4.1 Detecting Masquerade Attacks

We can draw several parallels between searching for similarity within sequences of biological data and
searching for signs of masquerade attacks within computer audit data, and the Schonlau command
line data specifically. Like bioinformatics sequence alignment, we can define the masquerade detection
problem as a form of sequence alignment. In the masquerade detection problem, we are given two
strings Signature = a1a2...am and Test = b1b2...bn with n ≤ m. The string Signature represents the
sequence of audit data gathered from normal usage of the system by a given user, or the user’s signature.
The string Test represents the sequence of audit data gathered from the currently monitored session in
which we wish to detect masquerade attacks. These sequences are made from an alphabet, Σ, which
is defined by the type of audit data being recorded. In the case of the Schonlau data, this alphabet
consists of commands that can be entered at the command line, not including their arguments. Note
that this alphabet is effectively infinite for our purposes, and this represents a significant difference
from use of sequence alignment with biological data. Our goal is to find the areas dissimilarity between
Signature and Test, and determine if the extent of this dissimilarity indicates a masquerade attack.
This is in fact equivalent to aligning the two strings to find the areas of similarity, and assuming areas
of dissimilarity, as indicated by alignment with gaps or lexical mismatches, are indicative of possible
masquerade attacks.

Aligning Sequences The alignment algorithm, shown in Algorithm 1, uses the principle of dynamic
programming to discover the optimal alignment over all possible alignments. The algorithm begins by
initializing an m + 1 by n + 1 matrix. Starting at position (0, 0) (the upper left most corner) in the
matrix, we iterate through each position in the matrix and determine its value through a choice of three

6

Algorithm 1 Align(Signature of length m, Test of length n)
for i = 0 to m do

for j = 0 to n do
if i = 0 or j = 0 then

D[i][j] ← 0
else

if i = m or j = n then
top← D[i][j − 1]
left← D[i− 1][j]

else
top← D[i][j − 1] + gapSignature

if top < 0 then
top← D[i][j − 1]

end if
left← D[i− 1][j] + gapTest

if left < 0 then
top← D[i− 1][j]

end if
end if
if Signature[i− 1] = Test[j − 1] then

diagonal← D[i− 1][j − 1] + match

else
diagonal← D[i− 1][j − 1] + mismatch

end if
D[i][j] ← max(top, left, diagonal)

end if
end for

end for
return D[m][n]

transitions to that position:

1. Diagonal Step: Indicates an alignment between the i − 1 symbol in Signature with the j − 1
symbol in Test. The alignment score is added to the value of the matrix position at (i− 1, j − 1).
The alignment score is dependent on the score provided to the alignment of the symbols by the
scoring system, and whether the symbols being aligned are a lexical match or mismatch.

2. Vertical Step: Indicates the insertion of a gap into Signature, and alignment of the gap with the
j − 1 symbol in Test. The gap penalty is added to the value of the matrix position at (i, j − 1).
The gap penalty for this transition is dependent on the scoring system used.

3. Horizontal Step: Indicates the insertion of a gap into Test, and alignment of the gap with the i−1
symbol in Signature. The gap penalty is added to the value of the matrix position at (i − 1, j).
The gap penalty for this transition is dependent on the scoring system used.

The maximum value of these three possible transitions is used as the value for the matrix position and
indicates the actual alignment made. Thus, given the dynamic programming principle, each position,
(i, j), in the matrix represents the score of the optimal alignment of all symbols up to location i − 1
in Signature and j − 1 in Test. By induction, one can see that the score given in position (m,n)
represents the score of the optimal alignment of the two sequences given the scoring system, and by
tracing the transitions made in deriving that score we can recreate the alignment of the two sequences.
The resultant score at the (m,n) position of the matrix represents a metric for the similarity of the
two strings according to the scoring system used, and we use this as an indicator of the presence of
masquerade attacks.

Note that in our masquerade detection problem, the Signature sequence must necessarily be larger
than the Test sequence due to the fact that it must record the user’s behavior over long periods of
time to create a useful profile of behavior. Thus, it is prudent to choose a type of alignment that
allows the entire Test sequence to be aligned, but whose alignment is dictated by conserved areas of
similarity within the sequences — semi-global alignment is an excellent choice for such behavior. In

7

our semi-global implementation, there are some cases where the transitions given above are altered. To
allow for a prefix of the sequences to be ignored, the 0th column and 0th row have a gap penalty of
zero for gaps in either sequence. Therefore, the prefixes can be ignored simply by inserting gaps into
either sequence, with no penalty to the resultant scoring when alignment between symbols begins in
earnest. Similarly, the gap penalties for the mth column and nth row are set to zero for both sequences.
Thus, after the end of one of the sequences is reached, we align the remained of the opposite sequence
with gaps with no loss of score. Also, while performing the alignment, if at any point the score of the
alignment becomes negative due to gap penalties within the central positions of the matrix, the score
at that position is reset to zero. This allows us to delineate the areas of similarity within the sequences,
and use only the largest contiguous area of similarity in the final score calculation.

Scoring Alignments The scoring system itself is made up of four variables that can be defined to
alter the behavior of the alignment, and create alignments that are based on domain knowledge, such
as known mutations in biological sequences. The match variable determines the value added to the
score at a given matrix position when a diagonal step is made and the two symbols being aligned are
an exact lexical match. The mismatch variable determines the value added to or subtracted from the
score based on the plausibility of mutation from the symbol in Signature to the symbol found in Test.
Of course, this variable can be made to take into account very complex models of mutation, and has
a significant amount of power in defining the alignment. The gapSignature and gapTest variables
determine the values subtracted from the score due to the introduction of a gap within the Signature

or Test sequence, respectively.
Intuitively, the choice of functions for defining these variables should represent the preference of the

respective alignments (e.g., match, mismatch, gap) within the optimal alignment of the sequences. In
our case, it is clear that an exact lexical match of all symbols is the optimal situation — one in which the
user repeats his behavior exactly as it is captured in his signature. A lexical mismatch between symbols
could indicate either a positive or negative alignment based on the specific symbols being aligned. In
the following section, we examine the ways in which we can define ‘good’ and ‘bad’ mismatches through
custom scoring systems. Finally, the use of gaps is certainly the worst possible case of alignment, as
it means that the sequences are completely different according to the scoring scheme used. In the case
of masquerade detection, however, there is a slight distinction between gaps found in the Signature

sequence and those found in the Test sequence. The Signature sequence represents the known behavior
of the user and thus altering the temporal properties found in this sequence by inserting gaps is certainly
much more detrimental to an alignment than the insertion of gaps into the Test sequence. Therefore,
a gap in the Test sequence is preferable to a gap that alters the known behavior of the user in the
Signature sequence.

Example As a concrete example, consider the alignment of the two strings in Figure 2. This example
shows the semi-global alignment of the strings “ABCD” and “ABECD” with a match having a value of
+2, a mismatch having a score of +1, a gap in the “ABCD” sequence having a score of -2, and a gap
in the “ABECD” sequence having a score of -3. This scoring system represents the relative importance
of each type of alignment (match, mismatch, and gap) in determining the similarity of the sequences.
The bold numbers within the matrix shows the transitions made by the optimal alignment, which is
depicted below the scoring matrix. Notice the lack of gap penalties for the prefix and suffix columns and
rows, as described above. Also, note that the score provided in the lower right position of the matrix
represents the score of the optimal alignment. The maximum possible score is 8, based on the fact that
the minimum sequence length is 4 and exact matches represent an addition of 2 points to the score
each. Therefore, this alignment has scored very well and the two sequences can be considered similar
under the provided scoring system.

Masquerade Detection Threshold It remains to be seen how exactly the score provided by the
alignment algorithm can be used to detect masquerade attacks. These scores can have a range from
zero, indicating that the entire sequences were ignored as a prefix or suffix, to the minimum length of
the two sequences multiplied by the match score, indicating that the entire minimum length sequence

8

A B C D

0 0 0 0 0

A 0 2 1 1 1

B 0 1 4 2 2

E 0 0 2 3 3

C 0 1 2 4 4

D 0 1 2 4 6

A B C D
A B E C D

Figure 2: Example alignment using semi-global Smith-Waterman alignment and the resultant alignment

was matched exactly. However, in the context of masquerade detection, these scores are dependent on
the consistency of the user’s behavior. For instance, if the user were to use only a single command, then
one would expect the alignment of his monitored sequences to his signature to produce the maximum
score at all times. Of course, user behavior is very much distinct, and therefore setting a static threshold
is inappropriate. Moreover, the consistency of the user’s behavior may actually change over time due
to projects requirements, or other individual considerations.

Given these constraints, we choose to create a dynamic threshold for each user. This threshold is
calculated by taking 20 random, 1,000-command subsequences of the user’s Signature sequence, and
aligning them to 20 non-overlapping, 100-command subsequences of the user’s Signature sequence.
The average of the resultant scores of these alignments represents the typical consistency of the user’s
behavior as depicted in his signature. As alignments to the monitored audit data are made, this average
is updated with the latest scores, thus allowing for slight changes to the user’s consistency over time.
To determine the threshold for detecting masquerade attacks, we take a percentage of this average.
Thus, the percentage represents the sensitivity of the detection mechanism. For example, if we set the
percentage, or sensitivity, to 50% then any alignment that scores lower than half the user’s average is
classified as containing a masquerade attack. This sensitivity allows administrators to tune the security
provided by the system. A higher sensitivity value would catch more masquerade attacks, but may
expose the system to a number of false positives created by normal user activity. Conversely, a lower
sensitivity would only catch the most onerous masquerade attacks without raising false alarms, but
more subtle attacks may go undetected.

4.2 Sequence Alignment Results

To provide context for the evaluation of our custom scoring system, signature updating strategy, and
heuristic speed up method, we provide the results from our previous, cursory study of the sequence
alignment technique’s ability to detect anomalies in sequences of audit data. In our exploratory study,
we implemented the Smith-Waterman semi-global alignment algorithm with a simplistic scoring system
[1]. The scoring system for this initial study was set simply to provide a score of +1 to exact matches, -2
for gaps created in the Test sequence, and -3 for gaps created in the Signature sequence. The mismatch
score was derived through calculating the frequency of occurrence of the mismatched commands in the
Signature sequence. If the frequency of the commands within the Signature sequence is greater than
the average frequency of occurrence of commands in the Signature, the mismatch is given a positive
score in the range [1,0). If the frequency is less than the average, the mismatch is given a negative
score in the range (0,-1]. Of course, if the frequency is exactly the average, then the mismatch score is
0. This scheme represents a very simplistic model where all matches are weighted more heavily than
mismatches, which are weighted more heavily than gaps in the test sequence, and so on.

Despite the simplicity of the scoring system, the approach yielded encouraging results, provided
in the ROC curve of Figure 3 and the table of results in Table 1. According to the ROC curve, the
technique is only bested by the Näıve Bayes approaches of Maxion and Townsend [6], and the Support
Vector Machine of Szymanski and Zhang [12]. Though the use of Maxion-Townsend score provides a

9

Bayes 1-Step Markov

Hybrid Markov

IPAM

Uniqueness

Sequence Matching

Compression

Recursive Data Mining

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

% False Positive

%
 H
it

Naïve Bayes (No Updating)

Naïve Bayes (With Updating)

Figure 3: Receiver operator characteristic curve for previous result

very different picture of the best performance when compared to other techniques, showing the sequence
alignment technique as having only middling performance. We shall use these results as a baseline for
the improvement of our system as we examine each improvement to the system, in turn.

Technique % Hit % False Positive Maxion-Townsend Score

Näıve Bayes (With Updating) [6] 61.5 1.3 46.3
Recursive Data Mining [12] 62.3 3.7 59.9

Näıve Bayes (No Updating) [6] 66.2 4.6 61.4
Uniqueness [10] 39.4 1.4 69.0

Hybrid Markov [10] 49.3 3.2 69.9
Sequence Alignment [1] 75.8 7.7 70.4
Bayes 1-Step Markov [10] 69.3 6.7 70.9

IPAM [10] 41.1 2.7 75.1
Sequence Matching [3,10] 36.8 3.7 85.4

Compression [10] 34.2 5.0 95.8

Table 1: Comparison of published masquerade detection technique sorted by Maxion-Townsend Score

5 Scoring Systems

In order to properly score two aligned command sequences, we must first develop a general concept of
the characteristics that make a good alignment and the characteristics that make a poor alignment.
The most obvious characteristic of a good alignment is a multitude of lexically matched commands
in the two sequences being aligned. If all commands match, then the alignment is the best that can
possibly occur. It is not always the case that we can find perfectly matching commands, however, so the
next characteristic would be lexically mismatched commands that are in some way similar to each other
based on the scoring metrics used. Additionally, if two mismatched commands are in no way similar
to each other, then a gap may be introduced in either sequence to represent an insertion or deletion in
that sequence of commands.

10

From these characteristics, we are able to develop a concept that matched and similar mismatched
commands should be rewarded, while dissimilar mismatched commands and gaps should be penalized.
The user’s signature should be a representation of the user’s overall usage patterns, and therefore should
not be subject to insertions, represented by gaps in the Signature during alignment, as this would imply
that additional commands were used, but were somehow excluded from the signature. Conversely, a
gap in the Test sequence indicates that a command that occurred in the Signature pattern is deleted
from the Test sequence, which is possible if a user were to use a subset of the pattern represented
in the Signature. A simple example would be a user that typically changes directory, performs a
directory listing, and then edits a file. If the user were already familiar with the directory, then there
would be no need for the listing, so that could be deleted in the test sequence. Therefore, gaps in
the Signature sequence should be more heavily penalized than gaps in the Test sequence. While
the relations among the scoring variables are certainly important, the scoring scale itself is somewhat
arbitrary. As long as matches produce a score that is proportionally higher than mismatches, and
mismatches score proportionally higher than gaps, then the exact scoring scale is inconsequential. This
is due to the fact that the alignment algorithm chooses from among all possible scoring possibilities,
so the absolute magnitude of these scoring parameters is not as important as the relative magnitude
of how much they vary from one another. This scoring is what allows us to give preference to certain
types of alignments over others.

6 Modeling Mutation in Computer Audit Data

In bioinformatics, scoring systems are created based on years of research regarding the forms mutation
can take in a variety of biological sequence types. Dayhoff et al., for instance, use the wealth of research
performed on sequences known to be closely related to create probabilistic models of mutation [2]. Such
methods are widely used in practical applications of bioinformatics algorithms, but their creation relies
heavily on extensive ground truth from which to create the probability models from. Unfortunately, in
the case of audit data, such longitudinal ground truth is not available. The nature of the audit data,
that is that the alphabet from which symbols in the sequences are chosen is essentially infinite, makes
it impossible to create observations for all, or even most, possibilities of mutation. Moreover, such
probabilistic models for mutations most likely would have little semantic meaning in terms of audit
data. Instead, we must look for models of mutation which provide semantic meaning to the mutation
and which can be justified given the use of computer audit rather than biological data.

In this study, we explore two possible models of mutation in computer audit data sequences. Our
first model considers the possibility of mutation through semantic, or functional, equivalence with the
command grouping scoring system. This model of mutation assumes that the user’s behavior falls into
well defined patterns of functional behaviors, such as patterns of always opening an e-mail client before
opening a web browser. Thus, when mutation occurs within the audit data, and in the case of Schonlau
the commands that the user runs, we can assume that these changes retain the functional properties
of the patterns in the Signature, such as replacing the command for one text editor with that of an
equivalent text editing program (e.g., replacing vi with emacs). The second model of mutation draws
upon the conclusions of previous work in masquerade detection that suggest that a legitimate user
session is indicated by a fairly consistent set of audit data. In our case, each user is prone to use the
same set of commands that were encountered in their signature. We refer to this set of commands known
to be from the legitimate user as the user’s lexicon. The model of mutation, therefore, allows mutation
from any command in the lexicon to any other command in the lexicon without penalty. These models
of mutation offer differing explanations for the mutations that occur in sequences of audit data, and
through evaluation of these systems on the Schonlau dataset we empirically determine which provides
the best performance. For the tests performed in this remainder of this paper, penalties for gaps in the
Test sequence and in the Signature sequence remain constant at -2 and -3, respectively.

Command Grouping In this scoring system, a static reward of +2 is given to exact matches. During
a mismatch, the groups to which the two commands belong are compared to determine their scoring.

11

These groups were manually created from a set of common UNIX commands found among all of the
commands in the dataset. Each of these groups reflects the general function of the commands within
it. For instance, a group with the commands sh, tcsh, ksh, csh, and bash would be representative of
various UNIX shell programs. With these command groups, we now have a model of mutation from one
command to another, namely from one command in a group to another in the same group. Furthermore,
we can say that an alignment of two commands is good when a command found in the Signature aligns
with a mismatched command in the Test sequence that is in the same group, thereby representing an
expected mutation from the user’s command sequence. If a mismatch occurs in which the commands do
not have the same grouping, then an unexpected mutation has occurred and this should be penalized.
In our system, we reward mismatched commands that are in the same group by adding a value of +1 to
the alignment score, and penalize commands that are in different groups by adding the value -1 to the
alignment score. For our needs, we must be able to find which commands can be interchanged without
changing the high-level function of the pattern created by the user. The command grouping technique
does this by keeping the functional high-level definition consistent while allowing for changes in the
low-level representation of that functionality.

Binary Scoring Previous work by Wang and Stolfo [16] compared various features of the sequences,
and found that binary information about the presence of absence of a command from the user’s lexicon
performed better than features that took into account frequency of occurrence. Our binary scoring
method therefore builds upon the results presented in [16] by implementing a simple scoring system
where lexical mismatches that have previously occurred in the user’s lexicon are given a positive score,
and lexical mismatches that have not previously be observed in the lexicon are given a negative score.
Specifically, the binary scoring system rewards exact matches by adding +2 to the score for the align-
ment. Lexical mismatches where the symbol in the Test sequence previously occurred in the user’s
lexicon are scored as +1, while lexical mismatches are scored as -1. Thus, any previously observed
command from a given user can replace any other previously observed command, but use of previously
unseen commands is labeled as anomalous behavior. This model of mutation is roughly equivalent to
allowing various permutations of previously observed patterns without reducing the score significantly.

6.1 Scoring System Results

We have developed two scoring systems based on distinct conjectures about the form that mutations
take within the audit data. In the command grouping scoring system, the conjecture states that the
mutations in sequences of audit data occur as a result of functionally similar base symbols replacing
the original symbols found in Signature. For instance, in the case of commands, one text editor can
be replaced with another text editor with no loss of functionality. In the binary scoring system, the
conjecture follows the results provided in previous masquerade detection work whereby mutation does
not replace base symbols found in the user’s lexicon, these symbols are in fact a strong indicator of the
user being legitimate, but that these original base symbols can be permuted in some fashion. In being
permuted, the only strong indicator for mutation is whether or not the symbol has been seen in the
user’s signature. The sequence alignment algorithm used in our evaluation in this section builds upon
the algorithm described in Section 4 by using binary scoring and command grouping scoring systems
rather than the simple scoring scheme previously described. In the following evaluation, results from
the sequence alignment with simple scoring system described in Section 4 are referred to as previous
result, while the results of the sequence alignment algorithm with our two novel scoring systems are
referred to as command grouping and binary scoring, respectively.

Signature: sendmail sendmail mailx sendmail rm rm rm p sh sendmail sendmail sendmail

Test: sendmail sendmail sendmail p sh p sh p sh p sh mailx

Figure 4: Example of differences between User 23’s signature and test sequences

Interestingly, as the ROC curve comparing the previous, simplistic scoring system to the two scoring
systems proposed in this paper shows, the binary scoring system vastly outperforms the command

12

grouping system. This lends further credence to results such as those provided by Wang and Stolfo,
that suggest that the best indicator of legitimate user behavior is the previous observance of base
symbols in the user’s signature [16]. When we closely examine a subsequence of the Signature and
Test sequences for user number 23 in our dataset, we find additional evidence to support the claim that
the mutations that do occur within these sequences of audit data are in fact permutations of previous
behaviors. Thus, the most viable model for mutation is clearly the binary scoring method whereby
mismatches of commands that have previously been observed in the user’s lexicon are weighted more
heavily than those mismatches that have never been observed previously. Table 2 provides the Maxion-
Townsend scores for the three scoring systems, again showing the clear advantage of the binary scoring
system.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

% False Positive

%
 H
it

Command Grouping Binary Scoring Previous Result

Figure 5: Receiver operator characteristic curve for previous result, binary and command group scoring

Technique % Hit % False Positive Maxion-Townsend Score

Binary Scoring 60.3 2.9 56.8
Previous Result [1] 75.8 7.7 70.4

Command Grouping 42.2 3.5 78.4

Table 2: Comparison of sequence alignment scoring systems

7 Signature Updating

As usage of the information system progresses, it is likely that the users will alter their behavior to
varying degrees based on changes to projects, or installation of new programs. This can become a serious
problem if a static Signature sequence is used to detect anomalies in monitored sessions where user
behavior may change over time. The static signature will have no way of adapting to the new behavior,
and therefore much of the variation will be considered to be masquerade attacks, thereby creating false
positives. As a concrete example, consider the case where a new program has been installed for the users
of the information system. Since this new program does not exist within the user’s lexicon of previously
used commands, the binary scoring system that we have previously examined in Section 5 will always

13

punish any mismatch with this new program. Clearly, Such issues can undermine the confidence in the
results of the masquerade detection and should therefore be addressed.

To overcome such issues, the Signature must be updated dynamically as user behavior changes.
Of course, there are several challenges involved in such updating mechanisms, namely maintaining the
temporal properties of the Signature sequence (i.e., maintaining useful patterns) and preventing tainted
masquerade commands from entering the user’s lexicon or Signature sequence. These challenges can
be distilled into three tasks that the updating mechanism must perform: (i) finding areas in the ex-
isting Signature sequence that require updating and augmenting them to include the new behavioral
information, (ii) determining when a user has begun using a new command not present in his existing
lexicon and adding that command to the lexicon, (iii) choosing thresholds that ensure that both the
Signature sequence and user lexicon remain free of tainted commands from masquerade attacks. Previ-
ously, Maxion and Townsend performed a similar procedure on their Näıve Bayes classifier by updating
the class probabilities of a command every time a Test sequence was classified [6]. To choose which
class, user or non-user, was augmented, they simply used the classification provided by their Näıve
Bayes approach. Thus, if their classifier determined a particular Test sequence to be from the user, the
user’s classifier would be have its probabilities updated to reflect the commands found in this sequence.
Similarly for non-user sequences, the non-user classifier would be updated to reflect the new commands.
Note that since their technique utilized an independence assumption among commands, there is no need
to maintain the integrity of the temporal characteristics of the sequences. Thus, while the Maxion and
Townsend method provides some insight into how to characterize which commands should be used for
updating, our sequence alignment approach requires a far more complex updating scheme.

Updating Signatures with Sequence Alignment To determine the way in which the Signature

sequence and the user’s lexicon becomes augmented, we look to the scoring matrix that is created during
the alignment process. This scoring matrix, as previously shown in Figure 2, can be used to recreate the
optimal alignment by tracing back through the matrix from the (m,n) position to the (0, 0) position.
This alignment provides us with the areas where the Test sequence has aligned well with the Signature

sequence. In fact, this is an intuitive and natural way to determine which areas of the Signature

sequence should be augmented, and when new commands should be entered into the user’s lexicon.
Note that when a gap is encountered in this alignment, in either the Signature or Test sequence, it
indicates poor alignment for the opposite symbol. This is a clear indication that symbols that are
aligned with gaps should not be considered in the updating process since they are not determined to
be similar.

When two symbols do align, they can align as an exact lexical match, a ‘good’ mismatch where the
mutations from the Signature symbol to the Test symbol is expected by our scoring system, or a ‘bad’
mismatch where the mutation is unexpected. In the case of a match, no updating needs to be done,
as the alignment properly utilized the existence of the symbol within the pertinent subsequence to find
the optimal alignment. Information is gained by the appearance of mismatches, however. For ‘good’
mismatches, we know that the symbol in the Test sequence must have previously existed in the user’s
lexicon since our binary scoring system uses that information to define ‘good’ mismatches. The fact
that the command existed in the user’s lexicon and participated in a conserved alignment indicates the
creation of a new permutation of the user’s behavior. Similarly, in the case of ‘bad’ mismatches, we
know that the user has never used the command before since it does not exist in his lexicon, but its
presence within a conserved, high scoring alignment means that it participates in an alignment that was
most likely created by the legitimate user. Hence, such ‘bad’ mismatches could indicate the introduction
of a new symbol into the user’s lexicon, but only if the resultant alignment has a very high score when
compared to the user’s average alignment score.

Updating the signature, therefore, becomes a simple process of finding the ‘good’ and ‘bad’ mis-
matches in the alignment between the Signature and Test sequence. When a ‘good’ mismatch is
encountered, we can augment the Signature sequence by adding the Test symbol to the Signature

sequence at the aligned position. For instance, if the alignment produced a ‘good’ mismatch between vi

in the Signature sequence and cd in the Test sequence, the Signature sequence would be augmented
such that the position that contained vi can now match with vi or cd. Notice that this augmentation

14

does not destroy previous information encoded in the Signature sequence, it simply embeds observed
variations into the sequence. Likewise, when a ‘bad’ mismatch is encountered, we can simply add the
Test symbol to the user’s lexicon, but make no changes to the Signature sequence. Essentially, we let
this newly introduced symbol be used as a ‘good’ mismatch in future alignments.

Updating Threshold The question remains as to how we choose what score an alignment must
have in order to implement these updating features. Recall that our threshold system for the sequence
alignment technique, given in Section 4, provides two distinct measures of normal alignment scores for
each user — the user’s average score and the threshold score for labeling masquerade attacks based on
a percentage of the user’s average score. In choosing the appropriate threshold for updating, we must
consider the relative dangers in each of the updating operations, namely augmenting the Signature

sequence and inserting new commands into the lexicon. Since the Signature sequence updating mech-
anism only updates those symbols, or commands, that have previously been seen in the user’s lexicon,
it is a relatively safe procedure. Conversely, adding a command into the user’s lexicon that has never
been seen before could introduce a tainted command that would prevent our detection of masquer-
ade attacks. Therefore, since updating the user’s lexicon is much more dangerous, we require that an
alignment score higher than the user’s average score to perform the lexicon updating procedure. To
perform the Signature sequence augmentation, however, we require only that the alignment score above
the user’s masquerade threshold (i.e., some percentage of the user’s average score determined by the
sensitivity level).

Example We provide a concrete example of this updating approach in Figure 6. Let us assume
that the provided alignment has scored above the user’s average score, and therefore both the lexicon
and the Signature sequence will be updated. Furthermore, let use assume that the symbol ‘C’ occurs
within the user’s lexicon, while the symbol ‘F’ does not. Therefore, by recreating the alignment from
the scoring matrix, we see that we must augment the Signature sequence with the symbol ‘C’ at the
position where it has been mismatched, represented by | in the new Signature sequence. Likewise, the
symbol ‘F’ has now been added to the user’s lexicon, and in future alignments it will be treated as a
‘good’ mismatch. Since it is a ‘good’ mismatch, the ‘F’ symbol may be augmented, as the ‘C’ symbol
was, in future alignments. This alignment process allows us to control the symbols which enter the
user’s lexicon and Signature sequence, while maintaining the temporal properties of the Signature and
adapting to changing user behavior.

Signature: A B E J A B
Test: A C F H K J A B

New Signature: A B|C E J A B
X|Y = Match X or Y

Figure 6: Example of signature updating

7.1 Signature Updating Results

In their application of Näıve Bayes machine learning to masquerade detection, Maxion and Townsend
showed that updating the signature of the user provides a significant increase in performance. This is
certainly true in cases where a user’s behavior may vary over time due to changes in work patterns,
or installed software. Above, we provided a method of using the alignment created by the tuned
Smith-Waterman algorithm to find areas of similarity, and augment the user’s signature with additional
commands, as well as increasing the user’s lexicon with newly introduced symbols. In this evaluation,
we use the sequence alignment algorithm with the binary scoring system as evaluated in Section 6.1,
and augment it with the addition of the signature updating procedure outlined above. The following
discussion refers to the sequence alignment algorithm with binary scoring and no updating as binary
scoring, while the algorithm with updating is referred to as signature updating.

15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

% False Positive

%
 H
it

Binary Scoring Signature Updating

Figure 7: Receiver operator characteristic curve for signature updating compared to binary scoring
alone

Figure 7 shows that the binary scoring system with the signature updating method significantly
improves the results of our sequence alignment using the binary scoring method alone. Notice that
the entire ROC curve for the alignment algorithm using signature updating is far more conserved with
respect to false positives — all sensitivity levels for the signature updating approach lie in the area
below 15% false positives while the binary scoring approach lies in the area below 50%. Moreover,
Figure 8 and Table 3 indicate that the use of signature updating provides performance that surpasses
all previous masquerade detection algorithms, both in terms of ROC curve and Maxion-Townsend score.
This result is a significant improvement to the state of the art in masquerade detection, and underscores
the significance of using sequencing information, custom mutation models, and signature updating in
the development of masquerade detection algorithms.

Technique % Hit % False Positive Maxion-Townsend Score

Sequence Alignment (Updating) 68.6 1.9 42.8
Näıve Bayes (With Updating) [6] 61.5 1.3 46.3

Sequence Alignment (Binary Scoring) 60.3 2.9 56.8
Recursive Data Mining [12] 62.3 3.7 59.9

Näıve Bayes (No Updating) [6] 66.2 4.6 61.4

Table 3: Comparison of the top five masquerade detection techniques ranked by Maxion-Townsend score

8 Computational Requirements

Thus far, we have shown that the sequence alignment algorithm is proficient at detecting masquerade
attacks in computer audit data through evaluation on the Schonlau dataset. This evaluation, however,
only tests the detection performance of the algorithm without regard to the practical implementation
issues, such as computational requirements. In realistic deployments, the masquerade detection tech-
nique would have to perform detection for multiple users utilizing an information system at the same
time. Depending on the granularity of the audit data and its rate of generation, the computational

16

Bayes 1-Step Markov

Hybrid Markov

IPAM

Uniqueness

Sequence Matching

Compression

Recursive Data Mining

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

% False Positive

%
 H
it

Naïve Bayes (No Updating)

Naïve Bayes (With Updating)

Figure 8: Receiver operator characteristic curve for signature updating compared to previous results

requirements of such detection could easily become overwhelming for a modern information system.
The computational complexity of the sequence alignment algorithm is a rather slow O(mn), where m

is the length of the Signature sequence and n is the length of the Test sequence. In the case of the
Schonlau data, this means that there are 500,000 computations (asymptotically) per monitored user
session that needs to be tested for masquerade attacks. Certainly, this is far too much computation to
require for each user session, especially in multiuser environments or computationally limited devices,
and thus a method for reducing the computational requirements is necessary

A Heuristic for Aligning Audit Data To reduce this computational requirement, we must find
some way of reducing the number of computations that are required without reducing the quality
of the alignments, or allowing masquerade attacks to escape detection. Our method of reducing the
computations per alignment rests on using the heuristic that high scoring alignments are typified by
a large number of exact lexical matches in a very conserved area. In fact, this conserved area can
be expected to always be of size ≤ n, since n is always less than or equal to m. In other words, a
high scoring alignment will always find the Test sequence matching exactly with a subsequence of the
Signature sequence, with few or no gaps inserted, expect for prefixes and suffixes which are ignored
by the semi-global alignment. This implies that during any particular alignment, only subsequences of
size ≤ 2n are ever used. Any subsequence that is larger than 2n in size would necessarily score poorly
because of the number of gaps being inserted, and therefore we can focus our alignments only on the
subsequences of size 2n within the Signature sequence.

Given this observation, we split the original Signature sequence into overlapping blocks of size 2n
each, such that the last n symbols of block i are also the first n symbols of block i+1. This ensures that
we have all possible adjacent pairs of the subsequences of size n. Since high scoring alignments require
matches, we simply need to estimate the number of possible matches between the Test sequence and
the blocks of size 2n. A simple way to do this is to take each distinct symbol within the Test sequence
and determine its number of occurrences within the Test sequence and within the Signature sequence,
respectively. The minimum of these two numbers is the maximum number of times that particular
symbol can be matched. By summing this number over all distinct symbols in the Test sequence, we
have a heuristic for the number of matches possible between the Test sequence and the particular 2n

17

subsequence. We need only choose the 2n subsequence(s) for which the sum of possible matches is the
largest from among all 2n subsequence(s). Essentially, we choose those subsequences of the Signature

sequence which have the maximum number of possible matches with the Test sequence. We then align
the Test sequence only with those maximum subsequences, rather than blindly attempting alignment
on all subsequences. This has the effect of, in the average case, reducing the number of computations
performed since only a very small portion of the Signature sequence is being utilized for any given
monitored session.

Example For concreteness, let us consider the example given in Figure 9. In this example, we have a
Signature sequence of length 12, and a Test sequence of length 4. Notice that the best alignment of the
Test sequence falls between the final two blocks of size 4. As described above, the Signature sequence
is partitioned into overlapping blocks of size 2n, in our case blocks of size 8, given as Subsequence 1
and 2, respectively. Since Subsequence 2 has the largest number of possible matches, only Subsequence
2 will be aligned with the Test sequence. This reduces the number of computations necessary from 48
to 36. In cases of computer audit data where n ≪ m due to long observation periods for the Signature

sequence, this improvement in the computational requirements can be expected to be much larger, on
average.

Signature: A C C E F G I A B A C D
Test: G I A B

Subsequence 1: A C C E F G I A
Subsequence 2: F G I A B A C D

Number of Possible Matches (Subsequence 1): 4
Number of Possible Matches (Subsequence 2): 5

Figure 9: Example of computational heuristic

8.1 Heuristic Results

We evaluate the heuristic improvement in computational requirements of the detection process. In
this heuristic, the Signature sequence is broken into blocks of size 2n. The number of lexical matches
between any given 2n block and the Test sequence is estimated by the number of symbols that the
two sequences have in common. The 2n signature blocks with the maximum value for this heuristic
are then be used in the detection alignments. In the worst case, all of the alignments still need to be
computed, but in the average case a far smaller subset of alignments need be computed to perform
the detection. The evaluation of this heuristic speed up, therefore, is primarily concerned with (i)
empirically evaluating the number of alignments needed on average to perform detection and (ii) the
impact that this heuristic has on the detection performance of the sequence alignment algorithm. In
our evaluation, we augment the previously described sequence alignment algorithm using binary scoring
and signature updating by implementing the heuristic speed up as described above. For comparison,
we refer to the sequence alignment with the heuristic as heuristic, and the alignment algorithm without
it as signature updating.

Through our evaluation, we found that there was an average of 4.5 alignments required per detection.
This is a huge reduction from the maximum number of alignments, 49, and represents a substantial
increase in speed for realistic detection scenarios. In terms of asymptotic computations, this reduces
the workload of the sequence alignment algorithm with binary scoring and signature updating from
980,000 computations (49 200x100 alignments) in the worst case to an average of 90,000 computations
(4.5 200x100 alignments). More importantly, as Figure 10 and Table 4 show, the use of this heuristic
has a minimal impact on the performance in terms of ROC curve and Maxion-Townsend score.

18

Bayes 1-Step Markov

Hybrid Markov

IPAM

Uniqueness

Sequence Matching

Compression

Recursive Data Mining

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

% False Positive

%
 H
it

Signature Updating Heuristic

Naïve Bayes (No Updating)

Naïve Bayes (With Updating)

Figure 10: Receiver operator characteristic curve for heuristic compared to signature updating

Technique % Hit % False Positive Maxion-Townsend Score

Sequence Alignment (Updating) 68.6 1.9 42.8
Sequence Alignment (Heuristic) 66.5 1.8 44.3

Näıve Bayes (With Updating) [6] 61.5 1.3 46.3
Sequence Alignment (Binary Scoring) 60.3 2.9 56.8

Recursive Data Mining [12] 62.3 3.7 59.9

Table 4: Comparison of the top five masquerade detection techniques

9 Conclusion

The masquerade attack poses a serious threat to the security of information systems due to its ability to
completely undermine even state of the art security technologies. To minimize the risk of these attacks
compromising the security of the information system, an automated method for detecting masquerade
attacks is necessary. Previous approaches to detecting masquerade attacks take advantage of statistical
models, machine learning techniques, and string matching [5, 6, 7, 9, 10, 12, 16]. However, none of these
previous approaches offers the level of accuracy necessary for practical deployment. Interestingly, while
a wide range of features are explored separately by these previous methods, no technique utilizes all of
these features in one mechanism. An exploratory study [1] of the use of sequence alignment algorithms
in detecting masqueraders showed that such algorithms can be made to take advantage of all of these
features, and that they can be adapted to the general task of intrusion detection with tuning, thereby
indicating that they may be able to provide the best performance of all available techniques.

Here, we have explored the intricacies involved in adapting the Smith-Waterman local sequence
alignment algorithm for use in masquerade detection. Though there has been significant previous
work in the field of bioinformatics, little of it is applicable to the domain of computer security. Our
development, therefore, focused on new methods for applying sequence alignment to sequences of audit
data from information systems. In doing so, we have presented methods for tuning the Smith-Waterman
algorithm by creating semi-global alignments of the sequences. Additionally, we discussed two scoring
systems which were inspired from functional mutations found in bioinformatics and models derived from
previous work, respectively. Interestingly, our results found that functional mutation was not a useful

19

model for detecting masquerade attacks, and that user behavior is typified by reusing the same symbols
from within their lexicon in varying permutations.

We were also able to develop methods for dynamically updating the user signature to accommodate
changes in the user’s command usage. By recreating the alignment, our technique was able to pinpoint
the areas of the user’s signature which should be augmented with the new usage information, without
violating the temporal properties of the sequence. The implementation of this signature updating
technique allowed our sequence alignment approach to best all previous techniques, including Maxion
and Townsend’s Näıve Bayes classifier which also performed signature updating. Finally, we addressed
the computational expense of the alignment algorithm by describing methods for choosing the best
subsequences of the user signature to align with the monitored session. Through empirical evaluation,
we found that this heuristic speed up in computation imposed only a minor loss of accuracy. Overall,
both with and without the heuristic speed up, our sequence alignment technique provides significant
advancement to the field of masquerade detection, and opens the possibility of using such alignment
techniques in other areas of intrusion detection.

References

[1] Coull, S. E., Branch, J. W., Szymanski, B. K., and Breimer, E. A. 2003. Intrusion Detection: A
Bioinformatics Approach. In Proceedings of the 19th Annual Computer Security Applications Confer-
ence, Las Vegas, NV, December 2003, 24-33.
[2] Dayhoff, M. O., Schwartz, R. M., and Oreutt, B. C. 1978. A Model of Evolutionary Change in
Proteins. In Atlas of Protein Sequence and Structure (Dayhoff, ed.). Vol. 5, Suppl. 3, 345-352.
[3] Lane, T., and Brodley, C. E. 1997. Sequence Matching and Learning in Anomaly Detection for
Computer Security. In Proceedings of AAAI-97 Workshop on AI Approaches to Fraud Detection and
Risk Management, Providence, RI, 43-49.
[4] Lane, T., and Brodley, C. E. 1998. Approaches to Online Learning and Concept Drift for User
Identification in Computer Security. In Proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining, New York, NY, August 1998, 259-263.
[5] Lane, T., and Brodley, C. E. 1999. Temporal Sequence Learning and Data Reduction for Anomaly
Detection. ACM Transactions on Information and System Security 2(3), 295-331.
[6] Maxion, R. A., and Townsend, T. N. 2002. Masquerade Detection Using Truncated Command Lines.
In Proceedings of the International Conference on Dependable Systems and Networks, Washington,
D.C., June 2002, 219-228.
[7] Maxion, R. A. 2003. Masquerade Detection using Enriched Command Lines. In International
Conference on Dependable Systems (DSN-03). San Francisco, CA, June 2003, 5-14.
[8] Needleman, S., and Wunch, C. 1970. A General Method Applicable to the Search for Similarities in
the Amino Acid Sequences of Two Proteins. Journal of Molecular Biology, 48: 444-453.
[9] Schonlau, M., and Theus, M. 2000. Detecting Masquerades in Intrusion Detection Based on Unpop-
ular Commands. Information Processing Letters 76, 33-38.
[10] Schonlau, M., DuMouchel, W., Ju, W., Karr, A. F., Theus, M., and Vardi, Y. 2001. Computer
Intrusion: Detecting Masquerades. Statistical Science 16(1), 58-74.
[11] Smith, T. F., and Waterman, M. S. 1981. Identification of Common Molecular Subsequences.
Journal of Molecular Biology 147, 195-197.
[12] Szymanski, B., and Zhang, Y. 2004. Recursive Data Mining for Masquerade Detection and Author
Identification. In Proceedings of the 5th IEEE System, Man and Cybernetics Information Assurance
Workshop, West Point, June 2004, 424-431.
[13] Tandon, G., Chan, P., and Mitra, D. 2004. MORPHEUS: Motif Oriented Representations to Purge
Hostile Events from Unlabeled Sequences. In Proceedings of the 2004 ACM Workshop on Visualization
and Data Mining for Computer Security, Washington, D.C., October 2004, 16-25.
[14] Wagner, R. A., and Fisher, M. J. 1974. The String-to-String Correction Problem. Journal of the
ACM 21, 168-173.
[15] Wagner, D. and Soto, P. 2002. Mimicry Attacks on Host-based Intrusion Detection Systems. In
Proceedings of the 9th ACM conference on Computer and Communications Security. Washington, D.C.,

20

255-264.
[16] Wang, K., and Stolfo, S. J. 2003. One Class Training for Masquerade Detection. In Proceedings
of the 3rd IEEE Conference Data Mining Workshop on Data Mining for Computer Security, Florida,
November 2003.
[17] Wespi, A., Dacier, M., and Debar, H. 1999. An Intrusion-Detection System Based on the Teiresias
Pattern-Discovery Algorithm. EICAR 1999 Best Paper Proceedings, 1-15.
[18] Wright, C., Monrose, F., and Masson, G. 2004. HMM Profiles for Network Traffic Classification.
In Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security,
Washington, D.C., October 2004, 9-15.
[19] Wright, C., Monrose, F., and Masson, G. 2006. On Inferring Application Protocol Behaviors in
Encrypted Network Traffic. Journal of Machine Learning Research, Special Topic on Machine Learning
for Computer Security. To appear.

21

