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Abstract

Robots operating in a workspace can localize themselves by queryines rafda sensor-network deployed in the same
workspace. This paper addresses the problem of computing the minimaoniner and placement of sensors so that the localization

uncertainty at every point in the workspace is less than a given thredieldocus on triangulation based state estimation where
measurements from two sensors must be combined for an estimate.

We show that the general problem for arbitrary uncertainty models ispatationally hard, and present approximation
algorithms for two geometric instances. For the general problem, weeptrea solution framework based on integer linear
programming and demonstrate its practical feasibility with simulations.

Index Terms
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in [1] (Section IlI).
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Sensor Placement for Triangulation Based
Localization

I. INTRODUCTION algorithm for this uncertainty model that deviates from the
i . optimal solution only by a constant factor both in the number
A sensor network is a network of small, cheap device cameras used and the uncertainty in localization. Howeve
equipped with sensing, communication and computation G- wis instance, we do not address the issue of visual-
pabll!tles. With co'ncurrent advancgs n rOb?]t'CSl’ e_mbdddscclusions in the workspace (Equivalently, it is assumed th
sensing, computation and communication technologieSen,are are no obstacles in the workspace and the cameras are
networks are becoming increasingly popular in automatigf,nigirectional.). In the second instance, we addressabisu
applications such as surveillance, inventory control aaffi¢ occlusions and present lag-factor approximation algorithm

management. for a more restricted uncertainty measure (where threshold

The presence of a sensor-network in a robot's workspace Ggp gjjowable angle and sensor-target distances are given)
provide robust, scalable solutions to a number of fundaaient Finally, we present a general framework based on math-
robotics problems. A_s an example, C(_)r_15|der the Iocal'nat_'%matical programming which, in practice, can be used to
problem whose solution is a prerequisite for many roboticg, e the placement problem for arbitrary uncertainty nde
applications. Sensor network technology offers a scalaligiie incorporating sensing constraints such as occlssife

solution for localization of heterogeneous, independebdt  yomqanstrate the practical feasibility of this approacttigh
teams operating in a large and complex environment: We cag, 1ations.

deploy a calibrated camera-network in such an environmentagor an overview of the related work (Section I-A), we

and the robots can query these sensors for localization,rqent 5 formal definition of the placement problem (Sec-
msFead of relying on on-board Sensors and customlzed-ap Bn [I-B) and establish its hardness (Section II-C). We -con
cations. Other robotics problems which can benefit from t'?ﬁ"uue with the approximation algorithms (Sections Il ang |

existence of a sensor network include navigation, search alhd the mathematical programming framework (Section V).
surveillance.

In the present work, we address the problem of placing
sensors so that when a robot queries sensors to estinfateRelated work

its own pOSition, the Uncertainty in the pOSition estimatio The most well-known p|acement prob|em that involves cam-
is small. We focus on triangulation-based localization ®hegras is the Art Gallery Problem [3] where a minimum number
two sensors are needed for estimating the position of the omnidirectional cameras is sought to guard every point
robot. A good example of this scenario is a robot localizing, g gallery represented by a polygon. Art gallery problems
itself in a camera network. As is well known, a robot cann@mphasize visibility/occlusion issues and there is noieipl
localize itself with a single measurement from a single aame representation of the quality of guarding — which is the focu
At least two different camera measurements are required fgrthis paper.
triangulation. However, the quality of the localization @  Coverage and placement problems received a lot of atten-
function of the robot-camera geometry. We consider a s@nafion recently. The problem of relocating sensors to improve
where the location of the cameras are known to the robgbyerage has been studied in [4]. In this formulation, the
To localize itself, the robot queries two cameras and merggsnsors can individually estimate the positions of theetarg
their measurements. The problem we addresgjiigen the However, the quality of coverage decreases with increasing
workspace and an uncertainty threshold, what is the minimuistance. Placement of sensors which jointly estimatetttes
number, and placement of cameras so that the uncertaintygftargets is an active research area.
localization is less than the threshold at every point in the |, [5], the problem of controlling the configuration of a
workspace? sensor team which employs triangulation for estimation is
In this paper, we make three main contributions: studied. The authors present a numerical, particle-filteet
First, we show, via a simple reduction, that the generftamework. In their approach, the optimal move at each time
sensor placement problem (where the uncertainty measurgtigp is estimated by computing an dimensional gradient
arbitrary) is NP-Complete. numerically wheren is the size of the joint configuration
Second, we focus on geometric uncertainty measures afce of the team. In [6], the problem of relocating a sensor
present two approximation algorithms for two different inteam whose members are restricted to lie on a circle and
stances. In the first instance, the uncertainty in the esitinma charged with jointly estimating the location of the targets
is proportional to% where z is the position of was studied. In [7], the authors study the problem of placing
the robot,s; and s, are the locations of the sensors aihd cameras in a polygonal workspace in such a way that for each
denotes the Euclidean distance. We present an approximagoint of interest, there are two cameras which can view the
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referred to as the Geometric Dilution of Precision (GDOP).
In case of cameras, th@ DOP is given by

d(s1,2) x d(s2,x)

U =
(s1,52,) | sin Zs1x82]

@)

where d(z,y) denotes the Euclidean distance between
,,;\91 ,\92 andy and 8 = /sjzsy is the angle between the sensors
1= (@1, 01) — and the ta}rget (Figure 1). The det'alls of this derivation can
’ 52 = (22,92) be found in [8]. In general, Equation 1 suggests that better
Fig. 1. The uncertainty in estimating the position of the ¢arat= is given Measurements are obtained when the sensors are closer to the
by: Ul(s1, s2,z) = He12)xd(s2,m) target and the angle is as close to 90 degrees as possible.
Similarly, the uncertainty in merging the measurements of
two range sensors (which correspond to circles centerdtkat t
point at a “good” angle. The authors present an approximatieensor location, passing through the target), can be shown t
algorithm which guarantees that the number of sensorshis:
within a logarithmic factor of the optimal value. The second 1
approximation algorithm presented in this paper (Section | U(s1,52,2) )
is based on this work. Our contribution is in extending this o . ) )
algorithm to handle distance constraints. Ir_1 general, it |s_de5|rable to obtain a placement al_gorltbmf
Finally, we note that the placement problem can be viewdjpitrary uncertainty measurés(si, s, x) S0 as to incorpo-
as a clustering problem where the cluster centers correspdAte additional sensing constraints such occlusion, mimm
to the chosen sensor locations. For example, inithenter cIeara_nce required by cameras etc. In the next section, we
problem, we are given a set of locations for centers and a &¥malize the sensor placement problem.
of targets. The objective is to minimize the maximum diseanc
between any target and the center closest to it. In the plasemB. Problem formulation
problem, studied here, there are two centers associatéd wit| ot 14 pe the workspace which consists of all possible

each location and the cost is much more involved than th&aiions of the robot. For concreteness, throughout tipepa
Euclidean dlstange. We were un_able to find any literatufs assume thary is discretized and given by a set of points
that addresses this type of clustering problems. Therefoee o, the plane. Similarly, leS be the set of candidate sensor

placement algorithm presented in Section Ill may also be gfeationd. In addition to the two sety) andsS, we are given

- | sin Zsqxssa|

independent interest. a function,U((s;, s;,w) for all s;,s; € S andw € W which
returns the uncertainty in localization when the robot is at
IIl. THE PLACEMENT PROBLEM locationw € W and queries sensoks ands;. The function

Before we formalize the placement problem and establi&h can be easily defined to incorporate sensor limitations. For

its hardness, we start with an overview of uncertainty moddf*@mple, for cameras, we can defliis;, s, w) to be infinite
for triangulation based state estimation. if one of the cameras can not see the paint
Let S = {s1,...,s,} C S be a set of sensors placed at

locationss; throughs,,. When there is no danger of confusion,

A. Uncertainty in triangulation we will uses, to denote the location of sensoas well. For a

The term triangulation refers to inferring the stateof given placemenst and a locations € W, letassign(w, S) =
a target (e.g.: a robot) by solving a system of simultaneoasg ming, s.cs U(s;, 55, w) be the assignment function which
equationsz = h(Z) where z denotes the observation vectorchooses the best pair of sensors for locatian
As an example, consider the process of estimating the positi  The uncertainty of a placement is defined (465, W) =
# = [ y] of a target (or a robot) using measurements from twoax,ew U (w, assign(w, S)).
cameras. We assume calibrated cameras, hence their lecatio We can now define the sensor placement problem:
are known with respect to a common reference frame and theilGiven a workspacé/V, candidate sensor locatior, an
measurements can be interpreted as angles with respee touthcertainty function/ and an uncertainty threshold*, find
horizontal axis (see Figure 1). a placemeng with minimum cardinality such thdf (S, W) <

In this case, we have observablgsand g, and solve for U™.
the unknownsr andy in:

St Yo — Y C. Hardness of the sensor placement problem
an =

T1— Ty — X The hardness of the sensor-placement problem can be easily

to study the effect of small variations in the observables on, L
Here, it is implicitly assumed that the only relevant sensorapeeter

the estimate. This effect can be established by studying t8¢ycation. if there are additional sensor parameters sscbriantation,S

determinant of the Jacobiall = % which is commonly corresponds to the entire parameter set.

tanf, =
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problem, which is NP-Complete. In thecenter problem, we
are given a set of locations for centers and a set of targetg al
with a distance functioni(i, j) between the centers and the
targets. The objective is to minimize the maximum distance
between any target and the center closest to it [9]. The ¢csave
problem, where the maximum distance from each vertex to its
center is given and the number of centers is to be minimized,
is also NP-Complete [10]. Further, this problem is equintle
to the dominating set problem [10] which is not only NP-
complete, but also can not be approximated within a factor
better tharlogn in polynomial time [11]. Herep denotes the
number of target locations. The converse problem can bieasi
seen to be a special case of the sensor placement problem

where the uncertainty function is chosen (aési,s], w) = 2. This figure shows the partitiond, B and C, and their divided
min{d(s;,w),d(s;,w)}. Hence, sensor placement is at |ea§)tartlt|ons Three sensorsy, s2,s3) are placed on the circumference of

as hard as the mentioned problems. circle (c, 'i/;r The areaX;; represents the region in the partition,

In the next sections, we present polynomial time approXihereplaceSensorassignss; ands; for all w € X;;
mation algorithms for two geometric versions of the placeime
problem.

the centers is at leagtR, the disksD,. are pairwise disjoint.
[1l. A CONSTANT FACTOR PLACEMENT ALGORITHM We claim that each dislD. contains at least one camera in

In this section, we present a placement algorithm to mif@PT, which proves the lemma.

mize the error metric given by Equation 2, repeated here forSuppose the claim is not true and éethe a center such that
convenience: OPT has no cameras iR.. But then, for anys;,s; € OPT,

the error in observing the center &f. will be:
d(s1,x) X d(sa,x)

U(sy,89,2) =
( 1,952, ) |SiIl ZsleQ‘ U(Si,S]’,C) _ d(S,“C)d(Sij) > d(Si,C)d(Sj,C) S R2 —U*
Let U* be a desired uncertainty threshold a@d’T be | sin Zsjcs;|
an optimal placement. We will first present an algorithm tblowever, this means that OPT exceeds the error threshold on
compute a placemerft with |S| < 3|OPT| andU(S,W) < ¢. A contradiction! [

6U* whereU* is the uncertainty threshold. Let us call such a In the second phase, we use the set of centers to determine
placement as aompetitive placementWe assume thaty C the placement of cameras.

IR? and cameras can be placed on the entire plane. However,

as we will see shortly, no competitive placement can afford Algorithm placeSensors(centersC):

place cameras too far from the workspace. . for eache; € C
Let R = vU*. The proposed placement algorithm consists — W — {w: d(ci,w) < 2R,w € W}

of two phases. In the first phase, we choose a set of centers = ,

hich will be used to determine the location of th | ri = maxvew, d(c;, v)
which will be used to determine the location of the camenas. — Place three cameras,, 812’51_3 oncircle(c;, r!) with
the second phase, we place cameras on circles whose centers B | g lin 11# See Fi 2
coincide with the chosen centers and whose radii are at most i \/7“ at anglesz, g an (See Figure 2).
2R. We will show that this placement is a competitive one.

The centers are chosen by the following algorithm:

Herecircle(c, r) denotes the circle centeredatvith radius

Algorithm selectCenters(workspaceW): r. The angles are with respect to a coordinate frame whose
«e C=0, W W origin is at the center of the circle and orientation is a#it.
o While W #£0 Clearly, algorithmplaceSensorplaces at mos8 - |OPT|
— w « an arbitrary point ini/’ cameras (Lemma 1). All we need to show is that for any point
- C— CU{w} w in the workspace, we can find two camesgsand s, s_uch
- W — W\ {z:d(z,w) < 2R,z € W} thatU (w, s;, s;) < 6U*. The next lemma shows the existence

of such camera pairs.
Lemma 2:For each center; € C, let W, be the set
points defined in algorithmplaceSensorsLet S; =

The following lemma shows that the number of centers
small with respect tdOPT|. sil,sig,§i3} be j[he set of three cameras placed dsice-
Lemma 1:Let C be the set of centers chosen by selectCerrensorsinside circle(c;,r;), along the circumference of
ters and OPT be an optimal placeme@PT| > |C|. circle(c;,r; = i/}n), at anglesy, 7 and ™. For any point
Proof: For each centet € C, let us defineD,. to be a w € W;, there exists an assignment of two sens@ets,s;x),
disk centered at with radius R. Since the distance betweersuch thatU (w, s;;, six) < 6U* wheres;;, s;; € S;.
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Fig. 3. We divide As;s2s3 into three parts using the bisectors of the
triangle. The shaded area shows the possible set of losafwnu such that
the assignmentss, s3) satisfiesU (w, sz, s3) < 572,

Fig. 4. Inside the region bounded hyrc(m/,, s3), seg(s3, m13) and
seg(mi3, m]y), anyw seessy andsz with properties:y < Zsawss < %’“

. . . and U (w, s2, s3) < 2r2.
Proof: For each pointv insidecircle(c, ), we will show (w, 52, 83) < 37

that one can pick two sensors such that the uncertainty in

observingw from these two sensors is less thgn®. The . . . .
lemma follows since-2 < 40/*. w would lie outside ofB). Further, ¢ is restricted by the

We divide the set of points insideircle(c,r) into three tqng:ant linel arr:d Sfeg(sffmw)' whicz SEO"L’)S th:at) <0 Sblgh .
parts: A — Asisss, B — circle(e,r’) \ A and ¢ — Finaly, using the fact: = 5+ v and the bounds establishe

i - T 2m
circle(c,r) \ cirele(c,r”). Here, we abused the notation tCa/er, We can boundsywss: 3 < Zsywss < 7. The

avoid additional notationzircle(c, r) refers to all points inside d|s|tancehsdz'st(52,w) ,an(_j dist(s3,w) reach their m/aX|mudm
the circle. Note that\s, sys3 is an equilateral triangle. This V&'U€ WHEMW IS onmys, L.e. dist(sz,w) < dist(sz, my5) an
fact is used throughout our proof. Let be any point inside 4/5t(s3,w) < d(s3,mi3). |‘2|S£]C€, the bo2und on uncertainty of
circle(c,r). We consider three cases € A, w € B and @ € BisU(w,s2,83) < 5s < 0.92r%,

w € C, and show that the uncertainty atin all cases is less Case (v € C):

then 312, We partition C' into 6 equal pieces using bisectors of
Case (v € A): As18283 as shown in Figure 2. In what follows, we establish a
We partition A into three regions using angular bisectors &und for an arbitrary point inside the regiort’; 3. The proof

shown in Figure 2. In present the proof for the case A,;. for the regionC{; is symmetric with respect to the bisector of

The proof for both cased, and A5 is symmetric. seg(s1,s3). The generalization of this proof to other regions
Let w be a point insided.; (Figure 3). First, we establish ais obtained by rotating theircle(c,r) in the counterclockwise

bound on the anglé sowss, which we use to bound distanceglirection around its origin by anglegx/3 and4r/3.

dist (s, w) anddist(sz,w). Finally, we obtain a bound on the For any pointw inside C3, we assign sensors, and s;

uncertainty using these separate bounds on the numerator &ee Figure 5). To obtain a bound on the uncertainty, we first

the denominator in the uncertainty formula. establish a lower bound asin(/s;ws3), followed by an upper
The angle/s,wss is always between the angless,s;ss  bound on the productist(s,,w) x dist(s3,w). Finally, we
and /sscs3. Hence, the angle between the sensors and the tftow that both bounds are reached at the same point.

get is bounded by < /sywsz < 27” It is easy to verify that ~ For any pointp inside C, p’ denotes the intersection of

dist(s2,w) < dist(sq, 1) anddist(s3, w) < dist(s3,s1), i.e. line(c,p) with circum(c,r’), andp” denotes the intersection

dist(sq,w), dist(s3,w) < +/3r'. Finally, the uncertainty at of line(c,p) with circum(c,r). Let w be a point insideC.

w € A is bounded byl (w, ss, s3) < % < 1.382, The angle/s wss is always between s;w’s; and /s w" ss.
Case (v € B): Note that, /syw's; = w/3 as it is an inscribed angle of
Let us partitionB into 6 equal parts using the bisectorgircle(c,r’). Therefore,sin(/siws3) is bounded from below

of triangle s1s2s3 as shown in Figure 2. The indiceg in by min(sin(Zs1w”s3), sin(27/3)).

By; correspond to the sensors assigned to all points inside=or the remaining part of the proof, we will represent

By;. Note that,B;; and B;; are symmetric with respect to thein polar coordinates as shown in Figure 5. Let us define

bisector of the line segmentg(s;, s;). three functions: Mult(p,0) = dist(s1,w) x dist(ss,w),
Suppose thatw lies in the region between the arc of adngle(p,0) = Zsywssz, and Uncert(p,0) is the uncertainty

circle arc(m)5, s3) and the line segmenteeg(sz, m3) and Of the target. These three functions are given by:

seg(mq3,m}s) (See Figure 4 and als@,3 in Figure 2).

Let [ be the tangent line tasircle(c,r) at the pointss.

For any pointp € B, p/ represents the intersection point Uncert(p.0) = tansiioey

between circumferenceircum(c,r) and the rayray(sa, p). Mult(p,8) = \/(p2—2pr’ sin -+172)(p2—2pr” cos(0+ % ) +7/2)

For clarity, let’s relabel the following anglest = /sswss, o o= poos(0+7)
. — 4, A r’—psin P

B = /[sow's3, v = /wssw’ and § = /sjs3w’. Since Angle(p,0) 3‘““““( pcos 6 )"'"‘mtan( pem(s+%) )

angle 38 is an inscribed angle3 = % holds. The angley
is lower bounded by and upper bounded by (otherwise, Note that,—7/6 < 6 < /6 andr, < p <r,.
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Assignment of points to sensor pairs
(1,3)

(23)

1,2)

-0.5 .5

Uncertainty function

y values

Fig. 5. In this figure, we represent with p and 6 parameters in polar
coordinate system. For alb € Ci3, sin(Zsjws3) < sin(Zs1s4s3) and
dist(s1,w) X dist(sz, w) < dist(s1,s3") x dist(s3,s3")

uncertaint
N

We showed before thatsin(/sjwss) is bounded
by min(sin(/Zsjw”s3),sin(2w/3)) where w” is a
point on circumference of circle(e,r). Notice that xvalues -1
sin(/s1s4s3) < sin(27/3), consequentlysin(/sjwss) y values
is bounded by min_,/5<g<r/6(sin(Angle(r,0))). The _ _ _ )
function Angle(r,6) has its local maxima and minima atf'?é%rg'Sﬁﬁ;’?ﬁ;iﬁtg‘p{;gg ;p:'cr;'e“(rcn gsls'gnmem’me(c’r) and bottom
6 = /6 and® = —7/6, respectively and it is increasing in
its domain. This can be shown by investigating the boundary
of domain and roots of the first derivative dingle(r, ). the results presented above, we haée3) approximation

Bothsin(Angle(n /6, 0)) andsin(Angle(—/6,0)) are less algorithm. Clearly, there is a trade-off betweermnd 3. Using
than 1, accordinglyin(Angle(r,0)) gets its minimum value algorithmplaceSensoras a subroutine, we can obtain a class
atf = —m/6. of approximation algorithms by covering each disk of radius

By Euclid’s exterior angle theorem (in any triangle the &g R (used byplaceSensojswith k disks of smaller radius.
opposite the greater side is greater), we hadis#(s;,w) < This guarantees a smaller deviation frdiff. The problem
dist(sy,w”) and dist(s3,w) < dist(s3,w”). Therefore, now becomes a disk-covering problem: Given a disk of radius
Mult(p,0) < Mult(r,0) holds. By the extreme value the-2R, find the smallest radius(k) < 1 required fork equal
orem, Mult(r,7/6) < Mult(r,0) < Mult(r, —7/6). disks to completely cover the original disk. Clearly, thisuld

We showed that both the maximum value of produguarantee a reduction efk)? in the performance guarantee
dist(s1,w) and dist(s3,w), and the minimum value of of placeSensors, at the expense of increasing the number of
sin(/sjws3) appears at the same poiat= s3. As a result, cameras by a factde. The interested reader can find different
the uncertainty ofw € C holds the following: values ofr(k) in [12].

U(w, s2,s3) < m% < 1.38r2.

Hence, in all cases we have an uncertainty value which|v. A LoG FACTOR APPROXIMATION ALGORITHM FOR
is less than%r? Finally, sinceplaceSensorguarantees that HANDLING OCCLUSIONS
r? <4U* for allw € W, UW,S) < 3r? < 6U*. [ ]

0

In this section, we present an approximation algorithm for

In. _Flg.ure 6, we present humerical resqlts for the .opt|mgl modified version of the uncertainty metric for triangudati
partitioning of the disk and the corresponding uncertairatly with bearing-only sensors such as cameras. As stated in

ues (for the placement given IpjaceSensojs The maximum e, iation 1, the uncertainty in estimating the position of a
uncertainty matches the bound obtained in Lemma 2. HoweV{%{l,(‘:]et at location: from sensors;; and s, is given by:

the optimal assignment scheme is slightly different thaa th
one used in the proof (cf. Figure 2).

Is it possible to obtain a better uncertainty guarantee? In Ul(sy,s9,2) =
general, let us define afw, 3)-approximation algorithm for
sensor placement be an algorithm which places at ndost Our goal is to design a placement algorithm which mini-
times the number of cameras used in an optimal placememitzes this uncertainty metric and addresses occlusionisein t
and guarantees a deviation of facterin uncertainty. From workspace.

d(s1,z) X d(s2,x)
| sin /sqxss|
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When there are obstacles in the workspace, a sensor plasecomputed such that, for eache X, there exists a sensor
ment strategy which solely minimizes this uncertainty @aluss(z) € Co such thatr is two-guarded by, (x) andsq(z) at
may result in a placement with some properties which aemglea/2. The existence of the sét; is guaranteed by the
undesirable in practice. For example, in an optimal placegmefollowing lemma.

a target may make a very large angle with the cameras itLemma 3 ([7]): Let C* be a set of sensors that two-guard
is assigned to. This is because the optimal solution may at anglea andC; be a visibility cover ofX. Then, for any
compensate the decrease in the value|gh /sjzs2] by point z € X there exist sensors; € C* ands; € C; that
putting the cameras too close and still obtain a low unagjtai two-guardz at anglec/2.

value. Or similarly, under this metric, two cameras can be Let OPT be the minimum set of sensors that two-guard
assigned to a target in a way that one camera is very far dods shown in [7] that one can computé, andC, above in
the other is very close. We note that the placement algorithyolynomial time such thatC; U Cy| = O(OPT log OPT).
presented in the previous section avoids these degenetacieln other-words, one can simultaneously satisfy conditipn (
design in the case where there are no obstacles. obtain a 2-approximation for (ii) and lag approximation to

Therefore, instead of minimizing the product, it makes senthe number of sensors.
to explicitly restrict the distances and the angle betwden t In the next section, we show how this result can be extended
sensors and the target. In this section, we present an @psatisfy condition (iii). That is, we show how two set§
proximation algorithm for the problem of placing a minimurmand C, can be computed in a way that simultaneously satisfy
number of sensors with the following properties. conditions (i) and (iii), obtain a 2-approximation for (&nd

Let S be a placement of sensors, antbe a target location. a log approximation to the number of sensors.

We assume that the workspace is represented by a polygon
and say that a camera &t seesa pointz inside the polygon, :
if the line segment; z lies completely inside the polygon. B. ComputingCy and €',

The placemens is called a valid placement if, for a#t in A standard algorithm to compute a cover of a given set
the workspace, two sensoss(z), s2(z) € S can be assigned system (X, R) is the greedy algorithm: we initialize all
to z such that elements inX to be uncovered. Next, we select a subset

(i) both s, () and sy () seex, R’ from R which contains the most number of uncovered

(i) o < /s1(z)wss(z) < 7 —a*, and elgments. We mark all elements &f as covered and repeat

(iii) d(s1(z),x) < D* andd(s,(z),z) < D* this process until all elements &f are covered (or we run out

where D* anda* are user defined threshold values. In [7]°f Subsets ink). Itis well known that the greedy algorithm is a

Efrat et al. present an approximation algorithm for placing9|X |-approximation, that is, the number of subsets chosen is
sensors that addresses constraints (i) and (ii). In thigosec guaranteed to be within a factor 6f(log | X{) of the optimal
we present an extension of their algorithm to accommodatglution.

constraint (iii) as well. We start with some preliminaries. ] For geometric set systems, however, once can usually do
etter:
o Definition 4: Given a set systeriX, R), let A be a subset
A. Preliminaries of X. We say A is shatteredby R if YY C A, 3R’ € R

A set system is a paitX, R) where X is a subset and® is such thatR’ N A = Y. The VC-dimensiorof (X, R) is the
a collection of some subsets &f. We say that a set of subsetscardinality of the largest set that can be shattered?bjL3].
R’ C R cover X if their union is equal taX. The minimum In what follows, we will utilize two well-known properties
set cover problem is to find a minimum cardinali® C R of set systems with bounded VC-dimension.
that coversX. (i) The VC-dimension of a set system obtained by the
As an example, consider the following camera placemeintersection or union of two set systems of constant VC-
problem: we are given a set of candidate target locatikins dimension is also constant [14].
(which lie inside a polygon) along with a set of candidate (ii) Let (X, R) be a set system andX’, R’) be its dual:
camera locationss. The goal is to place a minimum numberX’ = R and R’ = {R(z) : = € X} where R(x) is the set
of cameras such that every point ¥ is visible from at least of subsets inR which contain the element. If (X, R) has a
one camera. This problem (which we call visibility coverpcaconstant VC-dimension, so does its dual [15].
be formulated as a set-covering problem for the set systenOur algorithms rely on the fact that, for sets systems
(X, R) where R contains a subseR(s) for each candidate with finite VC-dimensiond, there are algorithms which can
sensor locatiors € S where R(s) = {z|z is visible froms}. compute a set-cover of the set system whose size is at most
The following definition is introduced in [7]: A point is  O(d-log OPT-OPT) whereOPT is the size of the minimum
two-guardedat anglea by sensorss; and s, if the angle set-cover [16], [17]. In other words, in the finite (or boudyle
/s1xs9 is in the intervalla, 7 — o] and both sensors can se&/C-dimension case, one can obtaitbg O PT approximation,
T. as opposed to théog|X| approximation obtained by the
The algorithm in [7] proceeds in two stages. In the firgjreedy algorithm.
stage, a visibility coverC; of X is computed. This gives Let (X, R) be a set system wher¥ is a set of points on
a placement where each locatianis assigned to a single the plane. We sayX, R) is adisk set systenf R is obtained
sensors; (z). In the second stage, a second set of senSgrs by intersectingX with the set of all possible disks on the
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Lemma 3 can be easily modified to show that ed@H(s)
is nonempty if the optimal solution which satisfies all three
constraints exists. We now show that, R”) has a constant
VC-dimension. Consider a point € X, together with sensor
s1(x) assigned in the previous stage. We say that a sensor
so coversz if it seesz, satisfies both the distance constraint
and the angle constraint together with(x). Now consider
a set systen(S, Q) where S is the set of candidate sensor
locations and@ is obtained by inserting for each target
location x € X, the set of sensors which cover. This
set system can be obtained as follows: First, construct a set
system corresponding to intersections with triangle paBs
shown in Figure 7. Second, intersect this new set system with
r\5isibi|ity and disk set systems. Since all these set systeaws
finite VC-dimension, the resulting set system has finite VC-
dimension as well. The set systgi, R"') is simply the dual
and hence, has a finite VC-dimension.

Fig. 7. The sensosy coversz because it satisfies the distance constrai
and, together withs; (), it satisfies the angle constraint as well.

plane. Similarly, we call(X, R) a triangle set systenit & ©°f (S,Q)
is obtained by intersectingd with all triangles. It is a well
known folklore fact that both disk and triangle set systems
have constant VC-dimension. Another example of a set systeml here are many different types of sensors with differ-
with finite VC-dimension is the following. LeX be a set of €nt measurement characteristics. Since the general péatem
points in a polygonP. For each possible poini € P, let problem is hard, when designing placement algorithms, con-
V(p) be the set of those points il that are visible from p. straints imposed by the estimation process must be utilized
In [18] it was shown that the set systefX, {V (p) : p € P} However, designing a dedicated placement algorithm foryeve
has a constant VC dimensionf is simply-connected or hastype of sensor is a tedious process. Therefore, in thisesgcti
a bounded number of holes. we present a general solution framework which can be utilize
We now present the details of the algorithm to consteict t0 Solve placement problems that arise in practice.
Recall thatX is a set of candidate target locations we would The general sensor placement problem can be formulated
like to cover ands is the set of candidate sensor location€S an integer linear programming (ILP) problem as follows:
Both C' and § are points sampled inside a polygon which  qinimize
represents the workspace. We are given threshéltisand

V. A MATHEMATICAL PROGRAMMING FORMULATION

o that specify the angle and distance constraints. Q. €t Zyi ®3)
be a minimum cardinality sensor placement which satisfies _ J
constraints (i) — (iii). subject to
To compute set’;, we first build the set systeraX, R’) (T Yu, i, ] 4)
where 2l =0 Yu,i,j with U(u,i,j) > U*  (5)
R = {R/(s)|seS} szzZ Yu (6)
R'(s) = {z|z € X Az is visible froms A d(z,s) < D*} :
Z T =2 Yu, j (7
The VC-dimension of this set system is constant. This is i
because the set system can be expressed as an intersection of Z Tl = ¥ Y, 1 (8)
L e . 3 J ’
a visibility set system and a disk set system. J

Since there is a set-cover O, 1) of size at mostOPT], We define a binary variablg, for every location; 2. If
one can find a cover of siZ8(OPT log OPT) in polynomial y 8 y J

time using [16], [17]. This gives us the s6%. For each target 7/ —_ 1, a serlsor W”JL be placed at locatign Other binary
. . SR variables are:?* andz}.. The indexu varies over all possible
locationz € X, let s1(x) be a sensor i’; which is visible v *J

. . target locations whereasand j vary over candidate sensor
from z with d(z, s1(z)) < D*. . . o )
In order to computa’s, we build the set systeriY, &) Iopauon;s. Variables; becom_e 1 whgn the sensor at location
2 X, i is assigned to target location Variablesz;; are set to 1

where if the target locatiorn: is monitored by sensors at locations
R = R cS andj. . . . .
. {7 (s)]s € S} Equation 3 is the cost function, i.e. the total number of
R(s) = Azlre XA sensors. The constraints on the placement are imposed by
x is visible froms A Equationsd — 8.
d(xz,s) < D* A

o o 2|f the sensors have more parameteys,is obtained by discretizing the
/si1(x)zs € [=,m— =]} entire parameter space. For example, for limited field-of-véameras, one
2 2 would define ay; variable for each (position, orientation) pair.
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The first constraint (Equation 4) forces that if a sensor ahvironment, however, it placed 18 sensors as opposed to the
location j will be assigned to a target, then a sensor must 16 placed by the ILP.
be placed at locatioj in the first place. Equation 5 enforces
sensing and quality constraints: it prevents sensor pairshw VIl. CONCLUSION AND FUTURE WORK

do not satisfy the constraints from being assigned to a targe .
fy g g %In this paper we addressed the sensor placement problem

location. . ; o
Equation 6 guarantees that two sensors are placed to monjfopccanos where robots operatln_g in a workspace query the
the targetu. nodes of a sensor-network to localize themselves. Spdbjfica

Finally, Equations 7 and 8 make the connection between HE studied the problem of computing the minimum number

variables:?, and =¥, The variabler?; can be 1 if and only if and placement of sensors so that the uncertainty at eveny poi

. . . : . . in, the workspace is less than a given threshold. We focused
1 andj are the locations for the sensor pair which is assigned ", - : &

; " . : on triangulation based state estimation where measurement
to monitor the target:.. All the otherz¥. variables with same

. ) . . ) . from two sensors must be combined for an estimation.
u but different: andj locations will be 0 (due to Equation 6). After showing that the general problem for arbitrary un-

Therefore, ifi’ and j/ are the two locations for the sensors . : )
: o certainty models is computationally hard, we focused on two
to be assigned for the target, the total of sumz};; will be

; / eometric instances and presented approximation algusith
equal toz; andz, . g b bp 9o

; s . | | , | with provable performance guarantees. We also presented a
Since the sensor placement problem is NP-Complete, thige\vork based on integer linear programming which can
ILP can not be solved in polynomial time in its full genemlit o 504 1o solve general placement problems in practice. We
However, there are many efficient algorithms for solvingsLPyeanstrated the practical feasibility of this approacthwi

in practice. In the next section, we demonstrate the prctic, ,|ations

feasibility of this approach in simulations. Our future work includes the deployment of a real camera

network in our building and to address placement (calibrti
VI. SIMULATIONS uncertainties. Future research also includes extending ou

In this section, we present two simulations to demonstraigSults to three dimensions.
the feasibility of using an ILP solver for sensor placement.
We computed optimal placements which satisfy all three ACKNOWLEDGMENT

constraints (visibility, angle and distance) given in SactV This work is supported in part by NSF CCF-0634823.
for two environments. The top rows in Figures 8 and 9

correspond to the solutions obtained by the ILP solver. For
these simulations, we used the Cbc ILP solver on the NEOS

server [19]. Both environments occupied the unit squardll V. Isler, “Placement and distributed ~deployment of = sensor
Th | . h B d the di teams for triangulation based localization,” iRroc. IEEE Int.
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The number ofvyj variables in the ILP introduced in Section V [3] J. O'Rourke Art Gallery Theorems and AlgorithmsOxford University
weremn? wherem is the number of target locations ands Press, 1987.

h b f did | h H 841] J. Corés, S. Mafinez, T. Karatas, and F. Bullo, “Coverage control
the number of candidate sensor locations. However, most for mobile sensing networks,JEEE Transactions on Robotics and

these variables were redundant. For examplé] (i, ¢, j) > Automation vol. 20, no. 2, pp. 243-255, 2004.
U*, we could remove the variablﬁ‘j. This alone reduced the [5] J. Spletzer and C. Taylor, “Dynamic sensor planning andtrod for

. . . optimally tracking targets,International Journal of Robotics Research
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to 3470 and for the second environment from 313600 to 23246] S. Aranda, S. Mafhez, and F. Bullo, “On optimal sensor placement and
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bi iables. For example. a variabj ere removed Robotics and AutomatigorBarcelona, Spain, Apr. 2005.

Inary varia - X p , Vi .' ﬁ w Vi [71 A. Efrat, J. S. B. Mitchel, and S. Har-Peled, “Approx-
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. . . L p:/Ivalis.cs.uiuc.edu/ sariel/papers/04/sensors

In these two S'mUIat'onSv we ChOSQ the maximum grid SIZE A. Kelly, “Precision dilution in mobile robot position &mation,” in
(number of locations) for each environment such that the Intelligent Autonomous Systemfsmsterdam, Holland, 2003.

ILP can be solved under 5 minutes. The ILP for the first®] T- F. Gonzales, “Clustering to minimize the maximum intesthr

. . . . distance,"Theoretical Comput. Sgino. 38, pp. 293-306, 1985.
environment contained 4612 variables and 2184 constraini$; j arilan and D. Peleg, “Approximation algorithms foelecting

The ILP for the second environment contained 3196 variables network centers,” inProc. 2nd Workshop on Algorithms and Data
and 1668 constraints. Structures 1991, pp. 343-354.

. . . . [11] U. Feige, “A threshold ofnn for approximating set coverJournal of
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