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Abstract—Trust is an important yet complex and little under-
stood dyadic relation among actors in a social network. There
are many dimensions to trust; trust plays an important role in
the formation of communities in social networks, in assessing
quality and credibility of information as well as in determi ning
how information flows through the network.

In this paper, we present algorithmically quantifiable measures
of trust which can be determined from the communication behav-
ior of the actors in a social communication network. The basis
for our study is a proposition that trust results in characteristic
communication behavior patterns which are statistically different
from random communication in a network. Detecting the statis-
tically significant realizations of this trust-like behavior allows us
to develop a quantitative measure of thewho-trusts-whom relation
in the network.

Since our measure of trust is based on quantifiable behavior,
we call it behavioral trust. We develop algorithms to efficiently
compute behavioral trust and we validate these measures on the
Twitter network.

I. I NTRODUCTION

Trust is an important aspect of the relationship between two
entities. The trust landscape of a social network (who trusts
whom) plays an important role in the intelligence and security
domain. Trust forms a basis for formation of coalitions (strong
communities are formed by entities which “trust” each other);
it can serve to identify influential nodes in a network; and,
it determines how information will flow in a social network:
whether nodes will believe information they receive, choose
to transmit it to some other node. The reverse is also true:
communities can induce greater trust among the members;
continued information flow between members can enhance the
trust relationship between them.

Trust is a complex relationship. In general, when we are
deciding whether or not to trust a person, we are all influenced
by a host of factors, such as: (1) our own predisposition to
trust, which is linked to our psychology, which itself was
influenced by various events over our lifetime; these events
can be completely unrelated to the person we are deciding to
trust or not trust; (2) our relationship and past experiences with
the person and with his or her friends, including rumors and
gossip; and (3) our opinions of actions and decisions the person
has made in the past.

In order to be able to capture and/or quantify trust, we focus
on some specific properties of trust, which are simplified, so
that these properties can be captured algorithmically. We aim to
quantitatively measure dyadic trust (trust between two entities)
based on observed communication behavior in social networks
– we call thisbehavioral trust. A useful analogy to keep in
mind is the saying “imitation is the best form of flattery” –
imitation is a behavior which is indicative of some dyadic

relationship; similarly, there are behaviors which are indicative
of trust.

A typical social network consists of actors (individuals) and
some form of communication between them, which could be
phone calls, emails, blog posts, etc. Increasingly, a great deal
of social relationships take place predominantly in the form
of electronic communications. People meet and form trust
relationships, participate in activities without any face-to-face
contact. As a result, the interactions between individuals in the
social network is a good indicator of their social relationships
with these individuals. An aspect of trust is based on the notion
of embeddedness [1] which shows that the interactions between
individuals form a basis from which a trust relationship may
grow. Sometimes these interactions may not require trust.
However, they establish a relationship that can be used to build
trust. The various characteristics of these relationships, such as
persistence of communications and the balance in participation,
may signal the existence or formation of a trusting relationship.

The social mechanisms with which people form trusting
relationships in online communities is a fairly new topic with
a lot of unknowns. In this paper, we study a number of
social behaviors that take place in this space: conversations
and propagation of information from one person to another. We
developstatistical measures based on the timing and sequence
of communications, not the textual content. We give efficient
algorithms for computing our measures, making them scalable
to social networks on millions of nodes. We show that these two
types of behavior correlate strongly with each other in terms
of the individuals involved and the communities formed. We
also show that they correlate with actual forwarding behavior
indicative of trust. These results give us a new set of behavioral
measures that can be used to measure existence, emergence or
dissolution of trusting relationships in social networks.
Related Work. There has been work done on trust in computer
science as well as in social science. In [2], Beth et al.
present a method for valuation of trustworthiness in open
networks. In [3], Buskens discusses proposes explanations for
the emergence of trust in social networks when actors can
label others as untrustworthy, and when actors are informed
regularly about trustworthy behavior of others. Abdul-Rahman
and Hailes [4] and Aberer and Despotovic [5] study reputation
based trust and trust management. Abdul-Rahman and Hailes
present a model in which agent’s tune their measures of trust
based on observed reputations, and Aberer and Despotovic
discuss a trust model that is grounded in real-world social
trust characteristics, and based on a reputation mechanism,
or word-of-mouth. Their proposed model allows agents to
decide which other agents’ opinions they trust the most, and



allows agents to progressively tune their understanding of
another agents subjective recommendations. In [5], Aberer
and Despotovic present scalable algorithms that require no
central control and allow for estimating trust by computing
an agents reputation from its interactions with other agents.
In [6], Gray, Seigneur, Chen and Jensen develop trust-based
security mechanisms using small world concepts to optimize
formation and propagation of trust among entities in a massive,
networked infrastructure of diverse units. They summarize
that, in a very large mobile ad hoc network, trust, risk, and
recommendations can be propagated through relatively short
paths connecting entities. In [7], Kuter and Golbeck describe
a different approach for estimating trust in various computing
systems. They give an explicit probabilistic interpretation for
confidence in social networks. They describe SUNNY, a new
trust inference algorithm that uses a probabilistic sampling
technique to quantify confidence and trust. SUNNY computes
an estimate of trust based on only those information sources
with high confidence estimates.

All the methods proposed above use semantic information
in some way and/or focus on a static snapshot of a social
network, which does not capture all of the communication
behavior and dynamics. Conversely, we study the problem
of behavioral trust purely from the observed communication
statistics, using no semantic information. We give measures
of behavioral trust which apply to rapidly changing dynamic,
streaming communication networks, for example the Twitter
network.

We adopt the notion of interpersonal trust as proposed by
Kelton et al. in [8], which treats trust as a social tie between a
trustor and a trustee [9]. Trust develops as part of an emotional
relationship between a pair of people akin to the concepts of
emotional and relational trust [10], [11].

II. B EHAVIORAL TRUST

Let us formally define the problem now. The input is the
communication streamD of a social network, specified by a
set ofcommunication 3-tuples,

〈sender, receiver, time〉;

note that we do not use communication content, only the
sender-receiver-time data. The output is a behavioral trust
graph T induced from these inputs. The participants of the
communication are the nodes of this graph. The edges (to be
defined below) are weighted; the edge weightwij indicates the
strength of the trust relationship from nodei to nodej (trust
can generally be an asymmetric, directed relationship).

The basis for this work is the observation that trust between
two nodesA and B will result in certain typical behaviors.
These behaviors are not only an expression of trust, but can
also facilitate the development of further trust. The simplest
such behavior is just conversation. Two people who trust each
other are likely to converse; in addition, continued conversation
can lead to an enhancing of their trust relationship. Note that
such behavioral expressions are not guaranteed expressions of
trust. It is possible to have a conversation with someone who

you do not trust; it is also possible to trust someone but not
converse with them. Thus, such behavioral expressions of trust
should be more viewed as noisy indicators. The more often
they occur, the more likely that a trust relationship is likely to
exist or to develop. Further, since our measures are statistical,
they ignore some of the contextual aspects of trust. For example
you trust your doctor for medical advice and your accountant
for tax advice. From the behavioral point of view, you would
converse with both your doctor and accountant, however, they
are distinct forms of trust. The contextual aspect could be added
back through the notion of “trust communities” but our present
goal is to simply measure whether there isa trust relationship
between two entitiesA andB.

Note that it is also possible to measure distrust through
typical behavior expressed by distrust. For example, seeking of
a second opinion could be considered a measure of distrust. For
the scope of this present work, we focus on measuring dyadic
trust. We will focus on two particular behavior patterns as an
expression of trust: conversation and propagation. Specifically,
if two nodes converse, then they are more likely to trust each
other; and a prolong conversation reinforces this conclusion. If
one node propagates information from another then it suggests
that the propagator trusts the information. Similarly, a repeated
propagation makes the conclusion stronger.

Conversation Propagation

A B A B

X

Y

A and B trust each other B trusts A

Our goal is to develop algorithmic measures of conversation
and propagation, and validate these as measures of trust in the
Twitter network.

A. Conversational Trust

We postulate that the longer and more balanced a conversa-
tion is between two nodes, the more likely it is that they have
a trust relationship; in addition, the more conversations there
are between such a pair of nodes, the more tightly connected
they are. The basic task is to first identify when two nodes are
conversing.

Let A andB be a pair of users, and letM = {t1, t2, . . . , tk}
be a sorted list of the times when a message was exchanged
betweenA and B. The average time between messages is
defined asτ = (tk−t1)/k. We would like to split the message
set M into a set of disjoint conversations. To do this, we
introduce a user-defined “smoothing” factorS, and say that
two consecutive messagesti, ti+1 are in the same conversation
if ti+1−ti ≤ S ·τ . A straightforward algorithm can be used to
construct the set of conversationsC = {C1, . . . , Cℓ}, making
a single pass throughM based on the following observation.
Suppose we are working on conversationC = {ti1 , . . . , tic

};
if tic+1−tic

< S ·τ , then we addtic+1 to the conversationC,
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otherwise we start a new conversation. We only use conversa-
tions of length at least 2 in our experiments, in which caseC
may not be a complete partition ofM.

The measure of conversational trust will be based on the
conversations inC, obeying the following postulates:

• Longer conversations imply more trust.
• More conversations imply more trust.
• Balanced participation byA andB implies more trust.

Note that one could add other requirements, for example,
if people who did trust each other stop keeping in touch,
their trust will likely deteriorate over time - i.e. more spaced
apart conversations implies less trust. However, the above three
properties are a good starting point.

We define the conversational trustTc(A, B) as follows:

Tc(A, B) =

l
X

i=1

‖Ci‖ · H(Ci)

WhereH(Ci) is a measure of the balance in the conversation.
We use the entropy function to measure balance:

H(Ci) = −p log p − (1 − p) log(1 − p),

where p(Ci) is the fraction of messages in the conversation
Ci that were sent byA. One can verify that many, long
and balanced conversations lead to high trust as measured by
Tc. Given the stream of communications, we construct the
conversation trust graph,Tc(V, Ec), where the weight between
a pair of agents{A, B} is Tc(A, B); we normalize so that
the maximum weight is 1 and only keep edges with weight
at least 0.01 (this choice is arbitrary, and leads to roughly
the same order of edges as in the propagation trust graph
as we describe below). The complexity of the algorithms for
computing conversational trust isO(|D| log |D|), where |D|
is the size of the communication stream.

B. Propagation Trust

Our second measure of trust is based on the propagation of
information. IfA sends a message toB, and ifB, within some
time intervalδ, propagates the message to some third person
x, this is indicative of trust. IfB propagates information from
A often, then we propose thatB must be trustingA. Note
that finding whetherB is propagating information fromA is
a hard problem even with processing of text – for example,
the text from A may be altered asB propagates it. We
develop a measure of propagation trust using only statistical
communication data, without semantic information, similar to
conversational trust. Each timeB propagates information from
A, it may be to a different person; each such propagation
signifies trust inA even though it may be to different people.
Note that this measure of trust (unlike the conversational trust
measure) is directed. It is possible forB to be propagating
information fromA but not vice versa.

We now describe how to get the propagation trust graph
Tp = (V, Ep). We need to construct the directed edgeB → A,
which means thatB trustsA. We begin with two sorted time
lists: the set of messages incoming toB; and, the set of

messages sent byB. We wish to associate pairs of messages
(one from the received list, and one from the sent list) as prop-
agations. Based on communication statistics alone, we cannot
definitely determine which messages fromB are propagations;
however, we can identify “potential propagations”. Specifically,
we say that a messagem1 received byB was potentially
propagated by a messagem2 sent byB if their times are close
enough to satisfy the propagation constraint:

τmin ≤ tm2
− tm1

≤ τmax.

To find the maximum number of potential propagations by
B, and in particular, the number ofA’s messages whichB
potentially propagated, we need to match messages incoming
to B with messages outgoing fromB. These matches are the
potential propagations, as illustrated below.

x → B B → y

t1 s1

t2 s2

t3 s3

...
...

tn sm

The first step is to find the maximum number of potential
propagations; this corresponds to finding a maximum sized
matching, where each match satisfies the propagation con-
straint. This matching problem can be solved efficiently in
linear time [12]. A subset of messages in this maximum
matching will be fromA; these message pairs are the ones
we take asB’s (potential) propagations of information from
A. We only consider as a valid propagation edges the pairs
(A, B) for which there were a statistically significant number
of propagations, as compared to a random communication data
stream with the same in and out-degree distributions (a similar
approach was used in [12]).

Notice that in the matching illustrated above, none of the
links cross. This corresponds to a causality constraint, namely
that if B propagated two messages which he received at times
t1 < t2, the times of the propagations must also satisfy this
ordering. One can show that some maximum matching satisfies
this constraint, and infact a greedy matching which starts with
the first possible match is one such matching. Given that the
maximum matching can be computed in linear time, the entire
algorithm to find propagations (which includes sorting the
message times) takesO(|D| log |D|).

Given the valid propagations(A, B), we define the quan-
tities: mAB , the number of messagesA sent toB; propB ,
the number of propagations byB (the size of the matching
above); propAB , the number of messagesA sent toB that were
propagated (the subset of the matching containing messages
from A). We consider two intuitive ways to measure the
directed trust weightTp(B, A) from B to A:

(i) Tp(B, A) =
propAB

propB

; (ii) Tp(B, A) =
propAB

mAB

.

The first measure captures how much ofB’s propagation
energy is spent propagating messages fromA; the second
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captures the fraction ofA’s messagesB considers worthy
of propagating. We have tried both in our experiments, and
they yield similar results. We only report the results of (i). In
extremely heterogeneous networks, these two measures could
capture different aspects of trust, however in homogeneous
networks they behave similarly.

Next we discuss the Twitter data followed by experiments
to study and validate our trust measures.

III. T WITTER DATA

Twitter is a popular online free service that enables one
to broadcast short messages to ones friends or “followers”,
or engage in directed conversations with specific individuals.
“Tweets” are text-based posts of up to 140 characters displayed
on the author’s profile page that are delivered to the author’s
subscribers (followers). Senders can restrict delivery to those
in their circle of friends or, by default, allow open access.

We constructed a dataset by collecting the publicly available
communications between tweeters. We reduced it into our
standard input format (sender, receiver, time). The dataset
consists of more then 2 million distinct users, of which about
1,910,000 are senders (not all of the users are active). There
are about 230,000 public directed messages (tweets) per day.

Twitter provides a convenient, explicit way to identify that
you are propagating a message through the notion of aretweet.
When we gather retweets, we only gather the information about
the original sender of the message and the retweeter. There
are two types of retweeting: directed and broadcast: directed
retweeting is to a particular receiver, and a broadcasted retweet
goes to all followers of the retweeter. Short of interviewing
people and asking who they trust, a retweet (a true propagation)
is the next best construct within Twitter for users to explicitly
indicate trust in another user. Thus, retweeting gives us a way
to validate our behavioral trust measures.

IV. EXPERIMENTSON TWITTER DATA

We first ran some experiments to compare the conversation
and propagation trust graphs. In many aspects, they are similar.
We then used Twitter retweets to validate our measures of trust,
and we show that our measures fare better than random and
prominence based null hypotheses.

A. Computing Conversation and Propagation Trust Graphs

We used messages over a 10 week period, containing
15,563,120 directed messages and 34,178,314 broadcast mes-
sages. We use only directed messages to identify conversations
for the conversation trust graphTc; for the propagation trust
graphTp, we use directed and broadcast messages (broadcasts
are only used for outgoing messages).

To determine the statistically unlikely behavior, specifically,
to determine how many propagations are a significant number,
we built a random graph model for the Twitter data. The runs
with over M = 1000 random data sets, showed that four
propagations of the formA → B → x never happened, which
(using standard Chernoff bounds) gives a greater than 99%p-
value at the 95% confidence level that four propagations in the
Twitter data would not happen under the null hypothesis that

Twitter is a random graph without dyadic relationship structure.
A summary of some of the properties of the computed trust
graphs, and how they relate to each other are in the table below.

Tc Tp

Smoothing par.S = 4 τmin = 1; τmax = 120 (min)
202,058 undir. edges 323,820 dir. edges

Node set overlap
Tc Tp

Tc 82,947 69,203 (83%)
Tp 69,203(70%) 99,534

Edge set overlap
Tc Tp

Tc 202,058 173,638 (86%)
Tp 173,638(70%) 323,820

We treat the undirected edges inTc as two directed edges
for purposes of comparing edge sets. We note that there is
significant similarity betweenTc andTp, which is significantly
above random considering that there are over 2 million users
in our data. This says that the type of relationship the two trust
graphs are capturing is similar.

B. Trust Based Communities in Tc and Tp

Trust is the foundation of communities, and it should be
possible to discover communities in the Twitter network by
identifying groups of nodes with a high degree of trust between
members of the group. We do it by defining a cluster density
in terms of the trust-weights on the edges, and then using
local optimality together with the iterative search algorithm
for cluser identification as described in [13]. For the sake
of simplicity, we treat the graphs as undirected, though the
directed clustering method could also be used. Some basic
statistics of the communities are shown below.

# of Groups Max. Group Size Avg. Group Size
Tc 82947 280 7.06
Tp 81340 316 8.17

Notice that the two trust-graphs have roughly the same number
of communities with a very similar average community size.
Indeed this similarity can be more quantitatively measured by
comparing the sets of clusters arising fromTc versusTp. To
do this we use the best match method in [14]. The best match
method takes every cluster arising fromTc and compares it
with the best match cluster fromTp, and vice versa. The
similarity between the two sets of clusters is then the average
best match similarity. We can also consider the similarity
between theTc-clusters and a random set of clusters with the
same size distribution as theTp-clusters; this serves as a null
distribution for determining whether the observed similarity is
significant. We compare the set of trust based communities
to 1,000 different random sets of clusters to get an average
similarity. The results are shown below.
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Tc Tp Random
Tc 1.00 0.79 0.42
Tp 0.79 1.00 0.43
Random 0.42 0.43 1.00

We see that the trust-based communities coming fromTc and
Tp have a similarity larger than would be expected for random
sets with the same size distribution. This is a further indication
that both the conversational and propagation trust graphs are
capturing a similar dyadic relationship.

We have studied some of the properties of the conversation
and propagation trust graphs, to establish that though they
are measuring different behaviors, both these behaviors result
in establishing similar relationships between nodes, both at a
local edge and node level, as well as on a collective level as
seen through the lens of trust-based communities. Thus, both
measures seem to be capturing at least some part of the same
phenomenon. We would like to now provide some evidence
that this phenomenon is indeed trust.

C. Validating Tc and Tp Using Retweets

A retweet is a definite propagation; we make the assumption
that when a user propagates information from some other user,
there must be some element of trust between the two users.
Thus, we take a retweet of the form

A −→ B
retweet
−→ x

as a proxy for directed trustB → A (x could be an
individual or group of individuals, eg. followers) – thus, we
may consider directed as well as broadcasted retweets. A
broadcast propagation is not as significant a trust indicator as
a directed propagation, since a directed retweet indicates that
the user has carefully processed the information and deemed
it appropriate to forward to some specific friend. Thus, we
consider the broadcast retweets as less significant measures of
trust than directed retweets. We therefore build theretweet-
trust graph Tr as follows. If there is at least one directed
retweetA → B → x, then the directed edgeB → A exists
in Tr; if there are at least two broadcast retweets by a node
B of two different messages fromA, then the directed edge
B → A exists inTr. The choice of 1 for the number of directed
retweets to indicate trust and2 for the number of broadcast
retweets to indicate trust are somewhat arbitrary and chosen for
illustration. For our 10 weeks of Twitter data,Tr had 90,057
nodes and 103,279 directed edges. About 20% of the node set
in Tr overlapped with the node sets ofTc andTp (recall that
the node sets ofTc andTp are very similar).

Our main experimental result is that the behavioral trust
graphs do indeed represent trust (at least as captured by
retweets). Every edge in the behavioral trust graphsTc andTp

represent a trust relationship. If the retweet graph is our proxy
for trust, we should therefore expect that every edge in the
behavioral trust graphs should be present in the retweet graph.
In fact the fraction of behavioral trust edges which are present
in the retweet graph is a measure of how well the behavioral
trust is capturing “retweet” trust, which in turn is a proxy for
trust. These results are shown in the table below.

Conversational Trust vs. Retweets
Fraction of edges inTr

Tc 11.6%
Trandom 2.5 %
Tdegree 2.7 %

About 12% of the edges inTc are also present in the retweet
graph. To understand whether this is significant, we consider
two alternate null models for building “trust” graphs. The first
is just a random model. So we select a set of nodes randomly;
the number of nodes we select is exactly the number of nodes in
Tc. We now consider all the communications incident with this
random set of nodes to construct the random trust graphTrandom.
As can be seen above, only 2.5% of these edges ofTrandom are
present in the retweet graph. Another plausible null model for
trust is the prominence model. Thus, one might hypothesize
that nodes which send many messages (i.e. nodes with high
communication degree) might be trusted nodes. Indeed this is
the type of hypothesis consistent with preferential attachment
type models. So, we construct the high degree graphTdegree in
a similar way to the random graph. Instead of selecting random
nodes, we select the highest degree nodes (the same number
as are present inTc), and the communications incident with
these nodes are the edges. As we see above, the high degree
nodes are no more trusted (with respect to the edges appearing
in the retweet graph) than the random set of nodes. A similar
picture arises in the propagation trust graphTp.

Propagation Trust vs. Retweets
Fraction of edges inTr

Tp 14.4%
Trandom 3 %
Tdegree 2.9 %

We conclude that the fraction of edges inTc or Tp which
appear in the retweet graph is significant when compared
to random nodes or the prominent nodes (as measured by
communication degree). This means that behavioral trust links
are capturing something more sophisticated than simply links
to prominent nodes. Several low degree nodes are also picked.
This is to be expected as trust is not a phenomenon restricted
to voluminous users. The surprising thing is that prominent
nodes do not yield better performance than random nodes, and
importantly, the behavioral trust measure performs more than
4 times better than random.

V. CONCLUSIONS

The main contribution of this paper is to presentmeasurable
behavioral metrics for trust. In this way we can quantify
dyadic trust (a highly complex relationship) through observable
communication behavior in social networks. In particular, our
behavioral trust measures require only the communication
traffic stream (sender, receiver, time), and does not look at
semantic content of the messages. We have used Twitter
data to illustrate our methods, which can be applied to very
dynamic social communication networks. We were able to use
retweet data available from Twitter to validate our measures
of behavioral trust because retweets are explicit propagations
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of information which indicate a trust in the information. Our
results indicate that our behavioral trust measures correlate
well with retweets (significantly better than a random null
hypothesis), and better than a simple measure of trust based
on prominence. The surprising result is that prominence based
trust does not fare better than random.

We emphasize that our measures of trust do not use the
retweet data (employed for validation purposes only), and so
are applicable to general social networks where all one can
observe are communications. The advantage of only using
statistical communication data (as opposed to semantic data) is
that our algorithms are scalable to larger networks (the Twitter
data we analyzed contained 2 million nodes). These results are
preliminary in the sense that there is a lot more information in
the behavioral trust graphs than is presented here, and so there
are many directions for future work:

1. The conversation graphTc can be thresholded at higher
values to yield a much larger graph than the propagation
graphTp. It would be interesting to study the behavior ofTc

and its relationship toTp as we increase this threshold. We
believe this relationship is interesting because we hypothe-
size that conversation is a beginning of a trust relationship
and information propagation relies on a pre-existing trust
relationship. Thus, we expect conversation trust to precede
propagation trust. Hence, it would be very interesting to
study how, in the real data, edges in the conversation trust
graphTc transition from low to high weight, and perhaps
eventually into propagation trust edges. If this was indeed
observed, it would verify the hypothesis.

2. The intersection of the conversation and propagation graphs
Tc ∩ Tp would be also interesting to study, as it provides
a more stringent measure of trust – not only is there
conversation but also propagation.

3. The advantage of statistical algorithms are that they are
efficient, but they ignore much information. For example
after building the statistical propagation trust graph, we
have a set of candidate edges. We may now filter these
edges using semantic analysis of content to see which edges
correspond to real propagations ofinformation, as measured
by , for example, partial matching of the content. Thus,
we would be identifying the “retweets” through semantic
information – this is important for networks where the
retweet functionality is not available.

4. Trust is a contextual relationship. In our trust graphs, all the
trust relationships are homogeneous. In reality, a node may
trust one set of nodes in one context (eg. medical advice)
and another set in another context (eg. movie advice).
Semantic analysis of the statistical behavioral trust graphs
could add the context to behavioral trust.

5. Efficient algorithms for statistically analyzing the value and
context of a message can considerably enhance the behav-
ioral trust measures (see for example [15] for methods to
estimate value of messages). Specifically, if a conversation
contains high value content, it is probably a better indicator
of trust. Similarly, if a propagation is a propagation of high
value information, it is probably an indication of a stronger

trust relationship. Thus, value analysis of messages could
considerably enhance the behavioral trust measures.
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