Algorithmic Detection of Computer Generated Text

Allen Lavoie — lavoia@rpi.edu
Mukkai Krishnamoorthy — moorthy@cs.rpi.edu
Rensselaer Center for Open Source Software (RCOS)
Rensselaer Polytechnic Institute

August 3, 2010

1 Abstract

Computer generated academic papers have been used
to expose a lack of thorough human review at several
computer science conferences. We assess the problem
of classifying such documents. After identifying and
evaluating several quantifiable features of academic
papers, we apply methods from machine learning to
build a binary classifier. In tests with two hundred
papers, the resulting classifier correctly labeled pa-
pers either as human written or as computer gener-
ated with no false classifications of computer gener-
ated papers as human and a 2% false classification
rate for human papers as computer generated. We
believe generalizations of these features are applicable
to similar classification problems. While most cur-
rent text-based spam detection techniques focus on
the keyword-based classification of email messages,
a new generation of unsolicited computer-generated
advertisements masquerade as legitimate postings in
online groups, message boards and social news sites.
Our results show that taking the formatting and con-
textual clues offered by these environments into ac-
count may be of central importance when selecting
features with which to identify such unwanted post-
ings.

2 Introduction
A project called Scigen[8] made waves in 2005 when

it produced a paper which was accepted to WM-
SCI 2005. Unfortunately this was not due to break-

throughs in artificial intelligence which allowed Sci-
gen to write about computer science effectively. In-
stead, Scigen relies on sentence generation based on
a context free grammar. It effectively produces an
assortment of random keywords spliced into prede-
fined sentence structures. With the addition of ran-
domly generated graphics and references, the papers
are practically indistinguishable from papers that hu-
mans have written until true understanding is at-
tempted by someone who could reasonably expect to
understand an equivalent but meaningful paper. The
question then arises as to whether a human review is
required to classify such papers.

The difficulty of this problem is quite dependent
on the approach used and that approach’s expected
applicability. On one extreme we could look for for-
matting quirks or other metadata which are irrelevant
to the paper itself, but which could easily be used to
identify Scigen papers specifically. This approach has
very little general applicability, but would be almost
trivial to implement. Another extreme is the most
general case of identifying papers as either examples
of good scholarly work or not. A solution here would
be of great practical use, but seems unlikely at the
present time. A good approach, then, is one which
maximizes its general applicability while remaining
practical.

This paper attempts to show that there exists a
non-empty subset of approaches ranging from trivial
to hopelessly complex which are both practical and
useful in a broader context. While practicality has
objective measures such as algorithmic complexity,

the usefulness of an approach is necessarily subjec-
tive. Thus we will analyze one approach for practi-
cality and effectiveness in dealing with Scigen papers
specifically, and then discuss other potential applica-
tions.

2.1 General Approach

Having decided not to exploit shallow flaws in Scigen
and lacking any true understanding of the academic
papers we seek to classify, we draw candidate fea-
tures from several simple observations about human
writing.

1. If a paper claims to be about a specific topic, it
should actually be about that topic.

2. Papers follow a central theme.

3. Cited papers are related to the paper which cites
them.

Unfortunately none of these observations are directly
quantifiable as stated. Note that even the above
criteria are necessary but not sufficient for identify-
ing good scholarly work. They do, however, suggest
heuristics which can easily be quantified. We can
rewrite each of these observations in terms of key-
words, sacrificing accuracy for computability.

1. Keywords which appear in the title and abstract
of a paper should appear frequently in the body
of that paper.

2. Certain keywords should be favored throughout
a paper.

3. A paper should mention keywords from the titles
of articles it cites.

Whereas our original observations capture part of
what it means for a paper to be an example of true
scholarly work, the keyword heuristics are merely
plausible substitutes. On the other hand, these fea-
tures are readily quantifiable. Since our features are
no longer directly tied to the definition of scholarly
work, a paper generator could easily be adapted to
superficially fulfill the above heuristics. The simplic-
ity of keyword heuristics in general, however, also

allows us to readily produce additional features. For
example, we could examine repetition within para-
graphs or patterns in the usage of certain sentence
structures. Domain-specific features, such as the oc-
currence of keywords from a user-submitted summary
in a linked article on a social news website, are also
feasible.

Having a basis for quantifying the abstract concept
of scholarly work, we can now build a classifier and
test our intuitive notions empirically.

3 Algorithm

3.1 Preprocessing

We begin by converting a subject paper to plain text
from the typical PDF. There are several freely avail-
able tools for accomplishing this task. Next, a paper
is split into word tokens.

Before additional processing is done to clean up the
text, we search for certain keywords denoting the ti-
tle, abstract, introduction and references sections of
a paper. Keeping such structure allows us to base
features on comparisons between sections, and doing
it early ensures that our text processing does not in-
terfere. In the case of missing keywords, we simply
fall back to taking a certain fraction of the paper at
the desired section’s expected location.

Next, we clean the text by selecting only parts
of speech which might reasonably have keywords re-
lated to the topic of the paper. This entails standard
part of speech tagging followed by aggressive filtering.
Specifically we selected nouns, adjectives and foreign
or unrecognized words. Words which were unrecog-
nized by the tagging algorithm often turned out to be
the most valuable, as many times they were examples
of unique technical jargon.

The selected tokens are finally stemmed to avoid
confusion between different forms of a single word.
This allows for a straightforward character based
comparison, which turned out to be good enough
for our purposes. A more advanced approach might
make use of a semantic difference metric [5].

3.2 Feature scoring

The text can then be scored numerically based on our
selected features. We need to make the three features
discussed in the previous section slightly more specific
in order to accomplish this. Again we trade some
semantics for ease of computation as we introduce
fairly arbitrary nuances to our features, but this time
the sacrifices are fairly subtle.

3.2.1 Title and abstract score

For our first feature, we could perform a straightfor-
ward count of keywords from the title and abstract
of a paper in that paper’s body. This is a decent first
approximation, but favors long papers unduly. Thus,
we normalize this feature by scoring papers based on
the number of times keywords from the title or ab-
stract of a paper are mentioned divided by the length
of the part of speech filtered body of that paper. Let
A be the set of keywords from the title and abstract
of a paper after part of speech filtering, and B be the
corresponding multiset for the remainder of the paper
similarly filtered. Here, mg(q) denotes the multiplic-
ity of element ¢ in the multiset). Then our first
feature’s score s; can be written as follows:

ZaGA mp (a‘)

S1 =
We must be careful to treat B as a multiset and not
simply as a set, since this feature seeks to quantify
the repetition of ideas from the title and abstract
of a paper in its body. We could similarly take the
repetition of keywords from the title and abstract of
a paper into account by making A a multiset as well,
but doing this simply rewards repetition rather than
completeness. Whereas the abstract and title of a
paper taken together should be a succinct summary
of the paper’s content, rephrasing and repetition is
both common and desirable in a paper’s body.

3.2.2 'Word repetition score

Next, we seek to quantify the repetition of a certain
set of words throughout a paper. Here we have cho-
sen to compare the occurrence of the top N most

used words in a paper to the occurrence of all other
words. Let P denote the multiset of all words in a
given paper, and let W = {w;} denote the set of
distinct elements in P sorted in decreasing order of
their multiplicity mp(w;). Thus wg occurs with the
highest frequency in the paper, followed by w; and
so on. Here |[P| =}y mp(w;). Then the second
feature can be written as follows:

Yiro mp(w:)
Pl = 30 map ()

In general N must be between 1 and |W|—1 inclusive,
but we have found that N = 10 is a fairly good trade
off for this feature. Note that part of speech tagging
and filtering plays a very important role here. With-
out it we would almost certainly be selecting words
which are simply common in the English language, at
which point our feature would cease to make sense.

(2)

S9 =

3.2.3 References score

Our final feature is calculated much like the first.
Without parsing references at all, we simply use the
tokenized, filtered and stemmed set of keywords from
the references section. This includes paper titles, au-
thors and a lot of other irrelevant information. The
irrelevant tokens do not affect the feature’s score since
we do not normalize on the number of tokens in the
references section.

If we let R denote the set of tokens from the ref-
erences section of a paper and again let B denote a
multiset of keywords in the remainder of the paper,
we can compute the third feature as follows:

2rer™B(7)

SRV

(3)

While feature three’s computation is nearly identi-
cal to (1), its semantics are quite different. While
our first feature attempts to quantify the relevance
of the title and abstract of a paper, our third feature
seeks to quantify the relevance of its chosen refer-
ences. Thus despite the similar computation, we do
not see a strong linear dependence between these two
features.

3.3 Classification

Finally, we build a classifier based on all three fea-
tures. Let a paper p be represented by a point
(s1,82,83) in a three dimensional space, where si,
$o and s3 are our first, second and third features re-
spectively. We can then build a classifier based on one
of several well known methods from machine learn-
ing. A nearest neighbor classifier(4] which takes a
vote of the k nearest points (k = 3 in this case) with
known classifications was used for its simplicity on
small data sets for the purposes of this paper, but
support vector machines[3] or other more advanced
algorithms would be more efficient when dealing with
larger data sets.

3.4 Running time

The running time of our implementation of the al-
gorithm outlined above is dominated by the part of
speech tagging used during preprocessing. We use
the default part of speech tagger from the Natural
Language Tool Kit[6], but a faster and slightly less
accurate tagging algorithm could dramatically reduce
the running time of the algorithm presented above.
Tagging accuracy should not affect the accuracy of
the overall algorithm overmuch, since we are simply
using the tags to accept or reject word tokens.

After preprocessing, feature scores can be gener-
ally be calculated sub-quadratically in the length of
a paper by using either search trees or hash tables
for calculating the multiplicity of a given keyword.
In practice, this step is quite fast compared to pre-
processing.

Finally, classification relies on one of several well
known binary classifiers. For simplicity, we used a
nearest neighbor search with a KD-tree[9] based on
a Euclidean distance metric. A support vector ma-
chine or other classifier whose running time during
classification is independent of the size of the set of
training data can be substituted where efficiency is a
concern.

Error for k-nearest-neighbor classifiers

Figure 1: Error rates for nearest neighbor classifiers
of order k using leave one out cross validation.

4 Results

After scoring 200 papers based on the above features,
a 3-nearest-neighbor classifier misclassified only 2 pa-
pers for an error rate of 1%. For error estimation, we
used leave one out cross validation. The data set con-
sisted of 100 computer generated papers from Scigen
and 100 randomly chosen papers from the computer
science and mathematics sections of the ArXiv[1].

Of the two misclassified papers, the first[7] has
an exceptionally short abstract and a great deal of
formulas. The short abstract yields a low score for
feature 1, since it mentions very few relevant key-
words. The formulas did not translate well to text,
and our failure to filter out the artifacts of this trans-
lation made for a slightly reduced score for feature 2.
The second[2] paper had no exceptionally low score,
but simply did not score well on any feature, plac-
ing it well within a cluster of computer generated
papers. Neither paper appears to be computer gen-
erated upon human inspection.

Notably, we did not have any false negative classi-
fications. While human papers showed a great deal
of variation leading to the errors mentioned above,
Scigen papers fell within fairly well defined ranges on
each feature.

We mention above that our error was measured
with a 3-nearest-neighbor classifier. This is perhaps
somewhat surprising, since the model provides al-
most no regularization and we do none outside of the

3 Nearest Neighbor Paper Classification

I Computer
EEE Human

° ° °
= > >
.

Word Repetition Score

o
N

09

Figure 2: A two dimensional cross section of the clas-
sifier, ignoring the references score.

model. However, Figure 1 indicates that this level
of regularization is preferable to that found in higher
order nearest neighbor classifiers. The same general
trend is visible when pruning is employed, and so we
do not believe that the trend is simply an artifact of
density effects.

Figure 2 shows the distribution of papers and
the classification boundary based on our 3-nearest-
neighbor classifier and two of the three features:
Word repetition and title and abstract scores. The
image is somewhat misleading, as the classifier works
with all three features in a three dimensional space.
All but two of the points which appear misclassified
in Figure 2 are differentiated by their references score.

The paper your are now reading was determined to
be a human product by the 3-nearest-neighbor clas-
sifier.

5 Conclusions

We have shown that the problem of computer genera-
tion of text is not quite so simple as stringing together
keywords from a predefined distribution. Coherent
human writing has many subtly self-referential ele-
ments which can be exploited to classify products of
unwary text generators. Relying simply on keyword-
based features, it is possible to exploit these elements
efficiently to attack the problem of paper classifica-
tion with only moderately sized data sets.

Traditionally, attempts to filter out automated
messages have focused on their keyword composition
rather than their structure. Such techniques are ideal
when very little context is available to the message
generator, such as in the case of a new email mes-
sage arriving. Previously received messages provide
a good deal of context for the classifier, but are un-
available when generating the unsolicited messages.
These techniques are less effective when a context is
readily available to all parties, where the keyword
composition of generated messages can be carefully
selected to avoid detection.

The structural elements described in this paper are
certainly not difficult to duplicate in a text genera-
tor. When generating papers, one must simply fa-
vor words chosen previously or in certain sections of
the text. However, the specific features discussed in
this paper only scratch the surface of possible struc-
tural considerations when building classifiers. As text
generation evolves, text classifiers have many aspects
of text structure from which to draw new heuristics.
Many of these heuristics will be domain specific, just
as some of the features discussed in this paper are
applicable only to academic papers.

As user generated content becomes more prevalent,
there is an increasing monetary incentive to pass un-
solicited and automated messages off as human con-
tent in information sharing networks. In many cases
is it undesirable or infeasible to have all such mes-
sages moderated by a human, in which case tech-
niques from machine learning such as those described
in this paper will become increasingly expedient.

5.1 Future Work

It is worth considering the limits of text classifiers
in general. Consider a perfect binary classifier of pa-
pers as either scholarly work or not. We could then
construct a program to enumerate all examples of
scholarly work by filtering an enumeration of the set
of all strings. This is certainly no proof of impossi-
bility, but does seem unlikely. It is then natural to
ask how close a classifier can reasonably get to the
aforementioned ideal, or even how effective a specific
classifier is.

In this paper we perform a straightforward char-

acter based comparison on stemmed words. There
has been some work[5] in determining semantic dif-
ferences between words. We could then ask how a
word relatedness heuristic in place of a simple char-
acter comparison affects a text classifier’s accuracy.

Is automatic deep reference checking feasible, and
if so can it make a reference score more effective?
There are automated tools which index academic pa-
pers and analyze citation networks, providing infor-
mation which could be very useful in creating ad-
ditional features for classifying computer generated
academic papers specifically.

We propose quantifying the effectiveness of text
classifiers as an open question above. An analogous
question can be asked about text generation. Can
we quantify the difficulty of classifying text generated
by certain means? Does the availability of a corpus
of human texts make text generation with plausible
structure easier?

6 Source code

The source code for an implementation of the algo-
rithm discussed in this paper is available online at
http://code.google.com/p/paper-detection/.

7 Acknowledgments

This work was made possible by the generous sup-
port from Sean O’Sullivan (RPI ’85) of the Rensselaer
Center for Open Source Software.

8 References
[1] ArXiv e-print archive. http://arxiv.org/.

[2] Vicente H. F. Batista, George O. Ainsworth
Jr., and Fernando L. B. Ribeiro. Paral-
lel structurally-symmetric sparse matrix-vector
products on multi-core processors. ArXiv e-
prints, 2010.

[3] Corinna Cortes and Vladimir Vapnik. Support-
vector networks. Machine Learning, 20(3), 1995.

[4]

T. Cover and P. Hart. Nearest neighbor pattern
classification. Information Theory, IEEE Trans-
actions on, 13(1):21-27, 1967.

Eiji Kawaguchi, Seiichiro Kamata, Masahiro
Wakiyama, and Koichi Nozaki. An algorithm to
compute semantic metric in the sd-form seman-
tics model. Information Modelling and Knowledge
Bases, IV, 1995.

Edward Loper and Steven Bird. Nltk: The nat-
ural language toolkit. In In Proceedings of the
ACL Workshop on Effective Tools and Method-
ologies for Teaching Natural Language Processing
and Computational Linguistics. Philadelphia: As-
sociation for Computational Linguistics, 2002.

P. Scholze. The Langlands-Kottwitz approach for
the modular curve. ArXiv e-prints, 2010.

Jeremy Stribling, Max Krohn, and Dan Aguayo.
Scigen: An automatic cs paper generator.
http://pdos.csail.mit.edu/scigen/.

Peter N. Yianilos. Data structures and algorithms
for nearest neighbor search in general metric
spaces. In Proceedings of the fourth annual ACM-
SIAM Symposium on Discrete algorithms, SODA
'93, pages 311-321, Philadelphia, PA, USA, 1993.
Society for Industrial and Applied Mathematics.

