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Abstract. Static taint analysis detects information flow vulnerabilities.
It has gained considerable importance in the last decade, with the majority
of work focusing on dataflow and points-to-based approaches.
In this paper, we advocate type-based taint analysis. We present SFlow, a
context-sensitive type system for secure information flow, and SFlowInfer,
a corresponding worst-case cubic inference analysis. Our approach effec-
tively handles reflection, libraries and frameworks, features notoriously
difficult for dataflow and points-to-based taint analysis.
We implemented SFlow and SFlowInfer. Empirical results on 13 real-
world Java web applications show that our approach is scalable and also
precise, achieving false positive rate of 15%.

1 Introduction

Information flow vulnerabilities are one of the most common security problems
according to OWASP [22]. A common information flow vulnerabiltiy is SQL
injection, shown in the example in Fig. 1 (adapted from [15]).

1 HttpServletRequest request = ...;
2 Statement stat = ...;
3 String user = request.getParameter(‘‘user’’);
4 StringBuffer sb = ...;
5 sb.append(”SELECT ∗ FROM Users WHERE name = ”);
6 sb.append(user);
7 String query = sb.toString();
8 stat.executeQuery(query);

Fig. 1. SQL Injection Example.

In this example, the user parameter of the HTTP request is obtained through
request.getParameter(“user”) and stored in variable user, which is later appended to
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an SQL query string and sent to a database for execution: stat.executeQuery(query).
At a first glance, this code snippet is unremarkable. However, if a malicious
end-user supplies the user parameter with the value of “John OR 1 = 1”, the
unauthorized end-user can gain access to the information of all other users,
because the WHERE clause always evaluates to true. Other information flow
vulnerabilities include cross-site scripting, HTTP response splitting, path traversal
and command injection [15].

Static taint analysis detects information flow vulnerabilities. It automatically
detects flow from untrusted sources to security-sensitive sinks. In the example
in Fig. 1, the return value of HttpServletRequest.getParameter() is a source, and
the parameter p of Statement.executeQuery(String p) is a sink.

Research on static taint analysis for Java web applications has largely focused
on dataflow and points-to-based approaches [8,15,29,31,32]. One issue with these
approaches is that they usually rely on context-sensitive points-to analysis, which
is expensive and non-modular (i.e., it requires a whole program). Arguably the
toughest issue is dealing with reflection, libraries (JDK and third-party), and
frameworks (Struts, Spring, Hibernate, etc.), features notoriously difficult for
dataflow and points-to analysis, and yet ubiquitous in Java web applications.

In this paper, we advocate type-based taint analysis. Specifically, we present
SFlow, a context-sensitive type system for secure information flow, and SFlowInfer,
a corresponding worst-case cubic inference analysis. We leverage the inference and
checking framework we built in previous work [13], which we have used to infer
and check object ownership [13] and reference immutability [14]. Programmers
only add a few annotations to specify sources and sinks, and the inference
analysis infers a concrete typing or reports type errors indicating information
flow violations. Evaluations on 13 real-world Java web applications have shown
that our type-based taint analysis achieves both precision and scalability. It has
zero false positive for most benchmarks and about 15% false positives on average.

Our inference is modular and compositional. It is modular in the sense that
it can analyze any given set of classes L. Unknown callees in L are handled
using appropriate defaults. Callers of L can be analyzed separately and composed
with L without reanalysis of L. The inference requires annotations only on
sources and sinks. Once the sources and sinks are built into annotated libraries,
web applications are analyzed without any input from the user. Our approach
effectively handles reflection, libraries, and frameworks. This handling is possible
because SFlow does not require abstraction of heap objects, as it models flow
from one variable to another through subtyping. To the best of our knowledge,
this is the first type-based taint analysis for Java web applications, as well as the
first analysis that is provably low polynomial and yet precise.

The paper makes the following contributions:

– SFlow, a context-sensitive type system for secure information flow.
– SFlowInfer, a novel, cubic inference analysis for SFlow.
– Effective handling of reflection, libraries and frameworks.
– An empirical evaluation on Java web applications of up to 126kLOC, com-

prising 473kLOC in total.
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The rest of the paper is organized as follows. Sect. 2 describes the SFlow
type system. Sect. 3 presents the dynamic semantics and soundness argument.
Sect. 4 describes the inference analysis. Sect. 5 describes techniques for handling
of reflection, libraries and frameworks. Sect. 6 presents the empirical evaluations.
Sect. 7 discusses the related work, and Sect. 8 concludes the paper.

2 SFlow Type System

This section first describes the basic type qualifiers in SFlow (Sect. 2.1) followed
by the extension for context sensitivity (Sect. 2.2). It proceeds to formalize SFlow
(Sect. 2.3), and combine SFlow with reference immutability (Sect. 2.4).

2.1 SFlow Qualifiers

There are two basic type qualifiers in SFlow: tainted and safe.

– tainted: A variable x is tainted, if there is flow from a source to x. Sources, e.g.,
the return value of ServletRequest.getParameter(), are annotated as tainted.

– safe: A variable x is safe if there is flow from x to a sensitive sink. Sinks, e.g.,
the parameter p of Statement.executeQuery(String p), are annotated as safe.

SFlow disallows flow from tainted sources to safe sinks. Therefore, we define
the following subtyping hierarchy1:

safe <: tainted

where q1 <: q2 denotes q1 is a subtype of q2 (q is also a subtype of itself: q <: q).
Thus, assigning a safe variable to a tainted one is allowed:

safe int s = ...;
tainted int t = s;

but assigning a tainted variable to a safe one is disallowed:

tainted int t = ...;
safe int s = t; // type error!

In the SQL injection example in Fig. 1, the return value of getParameter() is
annotated as tainted, and the parameter of executeQuery(String p) is annotated as
safe, as they are a source and a sink, respectively. The other variables are tainted:

2 ...
3 tainted String user = request.getParameter(‘‘user’’);
4 tainted StringBuffer sb = ...; // it includes the tainted user
5 sb.append(”SELECT ∗ FROM Users WHERE name = ”);
6 sb.append(user);
7 tainted String query = sb.toString();
8 stat.executeQuery(query); // type error!

1 Note that this is the desired subtyping. Unfortunately, this subtyping is not always
safe, as we discuss in detail in Sect. 2.4.
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1 String user = request.getParameter(‘‘user’’);
2 StringBuffer sb1 = ...; StringBuffer sb2 = ...;
3 sb1.append(”SELECT ∗ FROM Users WHERE name = ”);
4 sb2.append(”SELECT ∗ FROM Users WHERE name = ”);
5 sb1.append(user);
6 sb2.append(‘‘John’’);
7 String query = sb2.toString();
8 stat.executeQuery(query);

Fig. 2. Context sensitivity example.

Since it is not allowed to assign the tainted query to the safe parameter of
executeQuery(String p), statement 8 does not type-check, resulting in a type error.
The type error signals an information flow violation.

2.2 Context Sensitivity

Context sensitivity is crucial to the typing precision of SFlow. Note that in the
context-insensitive typing above, methods append and toString must be typed as
follows (code throughout the paper makes parameter this explicit):

tainted StringBuffer append(tainted StringBuffer this, tainted String s) {...}
tainted String toString(tainted StringBuffer this) {...}

Such context-insensitive typing is imprecise, because it types the return value
of toString as tainted. Consider the example in Fig. 2. query at line 7 is not tainted,
but it is typed tainted because of the tainted return value of toString. Therefore,
the program is rejected, even though it is safe.

SFlow achieves context sensitivity by making use of a polymorphic type
qualifier, poly, and viewpoint adaptation.

– poly: The poly qualifier expresses context sensitivity. poly is interpreted as
tainted in some invocation contexts and as safe in other contexts.

The subtyping hierarchy becomes

safe <: poly <: tainted

and append and toString are typed as follows:

poly StringBuffer append(poly StringBuffer this, poly String s) {...}
poly String toString(poly StringBuffer this) {...}

The poly qualifiers must be interpreted according to invocation context. Intu-
itively, the role of viewpoint adaptation (which we elaborate upon shortly), is to
interpret the poly qualifiers according to the invocation context. In Fig. 2, poly is in-
terpreted as tainted at call sb1.append(user), and as safe at call sb2.append(”John”).
As a result, the tainted argument in the call through sb1 does not propagate to
sb2; thus, query at line 7 is typed safe, and the type error at line 8 is avoided.
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The type of a poly field f is interpreted in the context of the receiver at the
field access. If the receiver x is tainted, then x.f is tainted. If the receiver x is safe,
then x.f is safe. An instance field can be tainted or poly, but it cannot be safe;
this is necessary to ensure soundness.

Viewpoint adaptation is a concept from Universe Types [5]. , which can
be adapted to Ownership Types [4] and ownership-like type systems such as
AJ [6, 33]. Viewpoint adaptation of a type q′ from the viewpoint of another type
q, results in the adapted type q′′. This is written as q B q′ = q′′. Viewpoint
adaptation adapts fields, formal parameters, and method return values from the
viewpoint of the receiver at the field access or method call.

The viewpoint adaptation operation is as follows:

B tainted = tainted
B safe = safe

q B poly = q

The underscore denotes a “don’t care” value. Qualifiers tainted and safe do not
depend on the viewpoint (context). Qualifier poly depends on the viewpoint; in
fact, it adapts to that viewpoint (context).

2.3 Typing Rules

Now we are ready to define the typing rules for SFlow. For brevity, we restrict
our formal attention to a core calculus in the style of Vaziri et al. [33] whose
syntax appears in Fig. 3. The language models Java with a syntax in a “named
form”, where the results of field accesses, method calls, and instantiations are
immediately stored in a variable. Without loss of generality, we assume that
methods have parameter this, and exactly one other formal parameter. Features
not strictly necessary are omitted from the formalism, but they are handled
correctly in the implementation. We write t y for a sequence of local variable
declarations. A type t has two orthogonal components: type qualifier q and Java
class type C. The SFlow type system is orthogonal to (i.e., independent of) the
Java type system, which allows us to specify typing rules over type qualifiers q
alone.

Fig. 4 shows the typing rules. The rules create subtyping constraints at explicit
assignments (e.g., x = y, x = y.f) and at implicit assignments (e.g., assignments
from actual arguments to formal parameters). The rules for field access, (tread)

and (twrite), adapt the field f from the viewpoint of the receiver y, and create the
expected subtyping constraints. The rule for method call, (tcall), adapts formal
parameters this and p and return value ret from the viewpoint of the receiver y,
and creates the subtyping constraints that capture flows from actual arguments
to formal parameters, and from return value to the left-hand-side of the call
assignment.

Let us return to the example in Fig. 2. Method append is polymorphic, i.e., it
is typed as follows:

poly StringBuffer append(poly StringBuffer this, poly String s) {...}
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cd ::= class C extends D {fd md} class
fd ::= t′ f field
md ::= t m(t this, t x) { t y s; return y } method
s ::= s; s | x = new t() | x = y | x = y.f | y.f = x | x = y.m(z) statement
t ::= q C qualified type
q ::= tainted | poly | safe qualifier
t′ ::= q′ C field qualified type
q′ ::= tainted | poly field qualifier

Fig. 3. Syntax. C and D are class names, f is a field name, m is a method name, and x,
y, and z are names of local variables, formal parameters, or parameter this. As in the
code examples, this is explicit. For simplicity, we assume all names are unique.

Let sb1 be typed tainted. The call at line 5, namely sb1.append(user), accounts
for the following constraint (for brevity, for the rest of the paper, we typically
use only the variable, e.g., user, instead of the more verbose quser):

user <: s1 B s ≡ user <: s1 B poly ≡ user <: s1

Since user and s1 are tainted, the call at line 5 type-checks. Now let sb2 be typed
safe. The call at line 6, sb2.append(”John”), accounts for constraint:

“John” <: s2 B s ≡ “John” <: s2 B poly ≡ “John” <: s2

Since string constant “John” and s2 are both safe, this type-checks as well. In
the first context of invocation of append we interpreted poly s as tainted, while in
the second context, we interpreted it as safe.

Method overriding is handled by the standard constraints for function sub-
typing. If m′ overrides m we require

typeof (m′) <: typeof (m)

and thus,
(qthism′ , qpm′ → qretm′ ) <: (qthism , qpm → qretm)

This entails qthism <: qthism′ , qpm <: qpm′ , and qretm′ <: qretm .
As it is evident from these typing rules, we consider only explicit flows

(i.e., data dependences). To the best of our knowledge, all effective static taint
analyses [1, 2, 8, 15,29,31,32] forgo implicit flows.

2.4 Composition with Reference Immutability

The reader has likely noticed that subtyping safe <: poly <: tainted is not always
sound. Suppose the field f of class A is poly in the following example:

tainted B tf = ...;
safe A s = ...;
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(tnew)

Γ (x) = qx q <: qx

Γ ` x = new q C

(twrite)

Γ (y) = qy typeof (f) = qf Γ (x) = qx qx <: qy B qf

Γ ` y.f = x

(tassign)

Γ (x) = qx Γ (y) = qy qy <: qx

Γ ` x = y

(tread)

Γ (y) = qy typeof (f) = qf Γ (x) = qx qy B qf <: qx

Γ ` x = y.f

(tcall)

Γ (y) = qy typeof (m) = qthis, qp → qret Γ (x) = qx Γ (z) = qz
qy <: qy B qthis qz <: qy B qp qy B qret <: qx

Γ ` x = y.m(z)

Fig. 4. Typing rules. Function typeof retrieves the SFlow types of fields and methods,
Γ is a type environment that maps variables to SFlow qualifiers.

tainted A t = s; // because of safe <: tainted
t.f = tf; // t.f is tainted
safe B sf = s.f; // s.f is safe, unsafe flow!

The program type-checks, but the tainted variable tf flows to safe variable sf. This
is the known problem of subtyping in the presence of mutable references, also
known as the issue with Java’s covariant arrays [21].

The standard solution is to disallow subtyping for references [25]. This so-
lution demands two sets of qualifiers, safe <: poly <: tainted for simple types
(e.g., int,char), and Safe,Poly,Tainted for reference types. While subtyping
is allowed for simple types, it is disallowed for reference types. For example,
EnerJ [25] defines two sets of qualifiers: precise <: poly <: approx for simple types,
and Precise,Poly,Approx for references. While subtyping is allowed for simple
types, it is disallowed for references. Unfortunately, disallowing subtyping for
reference types leads to imprecision, i.e., the type system rejects valid programs.
It amounts to using equality constraints as opposed to subtyping constraints, and
thus, propagating safe and tainted qualifiers bi-directionally, resulting in often
unnecessary propagation [18]. Disallowing subtyping is in some sense analogous
to using unification constraints as opposed to subset constraints in points-to
analysis. It is well-known that Steensgaard’s points-to analysis [30], which uses
unification (i.e., equality) constraints, is substantially less precise than Andersen’s
points-to analysis [3], which uses subset constraints.

The following example illustrates the problem:

1 ServletRequest request = ...;
2 String user = request.getParameter(‘‘user’’);
3 String str = ‘‘abc’’;
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4 user = str; // Equality constraint: user and str are of same type!
5 PrintWriter writer = resp.getWriter();
6 writer.print(str); // type error!

Recall that the return value of ServletRequest.getParameter() is tainted, and
the parameter of PrintWriter.print() is safe. If we disallowed subtying for references,
the program would be rejected, even though there is no unsafe flow. This is
because statement user = str would trigger an equality constraint instead of a
subtyping constraint. The equality constraint would force user and str to be of
the same type. However, this is impossible for a well-typed program, because
statement 2 requires that user be tainted and 6 requires that str be safe.

We propose a solution using reference immutability, which allows for limited
subtyping and improves precision. It is a theorem that subtyping is safe when
the reference on the left-hand-side of the assignment (explicit or implicit) is an
immutable reference, that is, the state of the referenced object, including its
transitively reachable state, cannot be mutated through this reference.

We compose SFlow with ReIm, a reference immutability type system we
developed in previous work [14]. We run ReImInfer [14], ReIm’s inference tool,
and obtain ReIm types for all variables. If the ReIm type of the left-hand-side
of an assignment is readonly, i.e., it is guaranteed that this left-hand-side is
immutable, we use a subtyping constraint in SFlow. Otherwise, i.e., if the ReIm
type is not readonly, we use an equality constraint. For example, at (tread) x =
y.f, if x is readonly in ReIm, we use constraint qy B qf <: qx; otherwise, we use
constraint qy B qf = qx. Sect. 3 outlines the dynamic semantics and soundness
argument.

Returning to the above example, user is readonly and therefore statement 4
induces subtyping constraint str <: user. Therefore, str can be safe and user can
be tainted, and the program type-checks.

3 Dynamic Semantics and Soundness

This section presents a dynamic semantics of information flow (Sect. 3.1). It
proceeds to outline the argument for soundness of SFlow (Sect. 3.2).

3.1 Dynamic Semantics

First, we define the notion of the chain, which captures flow of values from one
variable to another. Intuitively, there is a chain from local variable x to local
variable y, denoted (x, y), if the value of x flows from x to y. Chains provide a
mechanism for reasoning about aliasing.

Chains Fig. 5 shows the rules of the semantics. For brevity, we omit the parts
of the semantics that are not strictly necessary. The rules record chains (x, y)
in set C. Rule (dassign) x = y adds a new chain (w, x) for every chain (w, y) ∈ C.
There is a chain (y, y) ∈ C (we explain why shortly), and therefore, x = y adds
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(dassign)

C′ = C ∪ { (w, x) | (w, y) ∈ C }

{C} x = y {C′}

(dwrite)

{C} y.f = x {C}

(dread)

pointsto(x) = o lastwrite(o.f) = y′.f = x′

C′ = C ∪ { (w, x) | (w, x′) ∈ C }

{C} x = y.f {C′}

(dcall)

mbody(m) = this, p, l, ret

C′ = C ∪ { (w, this) | (w, y) ∈ C } ∪ { (w′, p) | (w′, z) ∈ C } ∪ { (l, l) }

{C} x = y.m(z) {C′}

(dreturn)

mbody(m) = this, p, l, ret
C′ = C ∪ { (w, x) | (w, ret) ∈ C }

{C} x = y.m(z) {C′}

Fig. 5. Dynamic semantics that records chains. Each statement s takes as input a set
of chains C, and produces a new set of chains C′; this is denoted as {C} s {C′}.
Function pointsto(x) returns the object o x refers to, and lastwrite(o.f) returns the last
statement y’.f = x’ that wrote location o.f. Function mbody takes as argument the called
method m, and returns the body of m. The body consists of implicit parameter this,
formal parameter p, set of local variables l and return variable ret.

the chain (y, x) as expected. Rule (dwrite) has no effect on C. Chains are defined
over local variables: one end of the chain, x, is a local variable in one frame, and
the other end, y, is another local variable that may be in a different frame. In
our semantics, (dwrite) y’.f = x’ plays a role only in combination with (dread) x =
y.f, where y and y’ refer to the same heap object o and y’.f = x’ was the last write
to o.f before the read x = y.f. (dwrite) y’.f = x’ and (dread) x = y.f contribute a
chain (x′, x) (as well as other chains).

As it is customary in dynamic semantics [6, 17,33], we break the static rule
(tcall) into two parts: (dcall) and (dreturn). Rule (dcall) has two roles. First, it
adds new chains due to the implicit assignments to this and formal parameter
p. Second, it adds a self-chain (l, l) for every local variable l. Rule (dreturn) adds
new chains that account for the flows due to the implicit assignment of ret to the
left-hand-side x of the call assignment. Consider:
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1 class X {
2 Y f;
3 void set(Y param) {
4 this.f = param;
5 }
6 Y get() {
7 ret = this.f;
8 return ret;
9 }

10 }

1 main() {
2 x = new X() o

3 x.set(a);
4 y = x
5 b = y.get();
6 }

Line 3 in main and rule (dcall) contribute chains (x, thisset) and (a, param). Line
4 in X.set does not contribute any new chains. Line 4 in main contributes chain
(x,y), and line 5 contributes (y, thisget) and (x, thisget). Line 7 in X reads the f field
of object o. Since the last write to o.f is at line 4, line 7 and (dread) contribute
chains (param,ret) and (a,ret). Finally, line 5 in main and (dret) contribute (ret,b),
(param,b) and (a,b).

An important aspect of this semantics is that it forgoes the heap. It turns out,
chains provide a sufficient mechanism for reasoning about aliasing. Specifically,
the following proposition holds. If y’ and y refer to the same object o, making
y′.f and y.f aliases, then there are chains (w, y′) and (w, y) in C, where w is the
left-hand-side of the object creation assignment that created o. In our running
example, thisset and thisget refer to the same object, the one created at line 1 in
main and denoted by o. As we showed earlier, there are chains (x, thisset) and
(x, thisget) in C before the execution of ret = this.f. In our static semantics, i.e.,
the SFlow type system, chains are tracked through subtyping, which obviates
the need for pointer analysis.

Extended Chain In addition to the chain, we define the extended chain, which
captures flows from the transitively reachable state of x to y. Informally, there
is an extended chain from local variable x to local variable y, denoted (x, y)+, if
the value of x, or a value that is part of x’s transitively reachable state, flows to
y. The dynamic semantics that records extended chains in E is the same as the
semantics that records chains (Fig. 5), except for rule (dread):

(dread)

pointsto(x) = o lastwrite(o.f) = y′.f = x′

E′ = E ∪ { (w, x)+ | (w, x′)+ ∈ E } ∪ { (w′, x)+ | (w′, y)+ ∈ E }

{E} x = y.f {E′}

The rule “connects” y and x, which is needed to account for the transitive state
reachable through a variable. In the running example, the extended chains that
originate at x are the following: (x, thisset)

+, (x, y)+, (x, thisget)
+, (x, ret)+, and

(x, b)+. The targets of these extended chains account for the state, including
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transitive state, reachable from x. Intuitively, an extended chain (x, y)+ captures
“interference” or ”information flow” from the source x to the target y.

3.2 Soundness

Runtime Interpretation of SFlow Types Recall the SFlow type system and
its 3 qualifiers:

safe <: poly <: tainted

At runtime, qualifier poly is interpreted as safe or tainted, depending on the
invocation context [26]. Qualifier safe is always interpreted as safe, regardless of
invocation context, and tainted is always interpreted as tainted.

The frame abstraction of a stack frame F , denoted by τ(F ), is the viewpoint
adapter at the call x = y.m(z) that pushed F on the stack. For SFlow, the frame
abstraction is the static type of the receiver y, qy. Let x be a reference variable
with static type qx = Γ (x), in frame Fk, and let there be the following stack
configuration:

S = 〈Fmain〉〈F1〉 . . . 〈Fk−1〉〈Fk〉

The runtime interpretation of the SFlow type of x, denoted RiSFlow(x), is
defined as follows:

RiSFlow(x) = τ(F1) B . . . τ(Fk−1) B τ(Fk) B qx

We note that viewpoint adaptation B is associative, and therefore parentheses
are unnecessary. Clearly, if qx is safe or tainted, then RiSFlow(x) is safe or
tainted, respectively. In other words, when qx is safe or tainted, the invocation
context of x’s method is irrelevant. The interesting case arises when qx is poly. x
assumes the first type of τ(Fk), τ(Fk−1), etc. that is not poly, i.e., that is safe
or tainted. To ensure that poly always has well-defined runtime interpretation
as safe or tainted, we require that no variable in main is poly. Therefore, if
all of τ(Fk), τ(Fk−1) . . . τ(F2) are poly, RiSFlow(x) = τ(F1) 6= poly. We write
Stack B qx instead of τ(F1) B . . . τ(Fk−1) B τ(Fk) B qx whenever the sequence of
frames on the stack is not important.

Recall the example from the previous section, now with SFlow types:

1 class X {
2 poly Y f;
3 void set(poly X this, poly Y param) {
4 this.f = param;
5 }
6 poly Y get(poly X this) {
7 ret = this.f;
8 return ret;
9 }

10 }

1 main() {
2 safe X x = new safe X() o

3 x.set(a);
4 safe Y y = x
5 safe Y b = y.get();
6 }

X is a polymorphic class that is instantiated to safe in main. Let F1 be the
frame for method set, pushed on the stack as a result of the call in line 3 of main.
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RiSFlow(thisset) and RiSFlow(param) in set are interpreted as follows:

τ(F1) B poly = qx B poly = safe

Runtime interpretation can be applied to ReIm [14] as well. The runtime
interpretation of the ReIm type of x, denoted RiReIm(x), is computed as in
SFlow, with the difference that in ReIm the viewpoint adapter is not the receiver
y, but the left-hand-side x of the call assignment x = y.m(z).

Well-formedness The well-formedness rules are shown in Fig. 6. Essentially,
the rules require that for every chain (w, x) and extended chain (w, x)+, the
runtime type of the source w is a subtype of the runtime type of the target x.
Thus, well-formed runtimes cannot form chains or extended chains, where w is
tainted and x is safe. Well-typedness guarantees well-formedness, which we argue
shortly, and this entails that well-typed programs guarantee the absence of flow
from tainted sources to safe sinks (of course, given that the extended chain is a
suitable representation of information flow).

Note the stronger requirement for chains — when the ReIm runtime type of
the target x is mutable, the SFlow types of the source and the target must be
equal. This is necessary for the safe handling of aliasing.

(wf-chain)

∀(w, x) ∈ C
{

RiSFlow(w) = RiSFlow(x) if RiReIm(x) = mutable
RiSFlow(w) <: RiSFlow(x) if RiReIm(x) = readonly

C is WF

(wf-extended-chain)

∀(w, x)+ ∈ E RiSFlow(w) <: RiSFlow(x)

E is WF

(wf-configuration)

C is WF E is WF

CE is WF

Fig. 6. Well-formedness rules.

Soundness Theorems We are ready to state the two soundness theorems.

Theorem 1. (preservation) If CE is WF and CE
s−→ C ′E′, then C ′E′ is WF.
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Proof. We sketch the proof of the theorem. As it is customary for such proofs, we
must consider cases for all kinds of statements: (dassign), (dwrite), (dread), (dcall)

and (dreturn). The proof is by induction on the steps of the dynamic semantics.
The most interesting case is (dread) x = y.f. Let o be the object y refers to, let

y’.f = x’ be the last write to o.f, and let C be the set of chains just before the
execution of x = y.f. As we claimed earlier, since y and y’ refer to the same object,
there must exist chains (w, x) ∈ C and (w, y) ∈ C, where w is the left-hand-side
at the object creation assignment that created o. By the inductive hypothesis,
we have RiSFlow(w) = RiSFlow(y′) (since y’ is mutated at y’.f = x’, RiReIm(y′)
is clearly mutable), and RiSFlow(w) <: RiSFlow(y). Thus, we have

RiSFlow(y′) <: RiSFlow(y)

We write RiSFlow(y′) <: RiSFlow(y) as

Stack y′ B qy′ <: Stack y B qy

We must show that all new chains are well-formed. Thus, we must show
RiSFlow(x′) <: RiSFlow(x), or equivalently,

Stack y′ B qx′ <: Stack y B qx

(Strictly, we must show that Stack y′ B qx′ = Stack y B qx if RiReIm(x) is mutable,
and that at least Stack y′ B qx′ <: Stack y B qx if RiReIm(x) is readonly. This can
be proven with appropriate reasoning about ReIm. For brevity, we only show the
above special case.)

Clearly, x’ and x are in the frames of y’ and y respectively; the runtime
interpretation of x’ uses Stack y′ just as y’ does, and the runtime interpretation
of x uses Stack y just as y.

The well-typedness of the program entails

qx′ <: qy′ B qf and qy B qf <: qx

If qf is tainted, then qx is tainted and Stack y′ B qx′ <: Stack y B qx holds for
any value of Stack y′ B qx′ because Stack y B qx is tainted.

If qf is poly then we have

qx′ <: qy′ and qy <: qx

We say that viewpoint adaptation is order preserving if for every triple of
qualifiers q, q′, q′′, q′ <: q′′ ⇒ qBq′ <: qBq′′. One can easily show that viewpoint
adaptation in SFlow is order preserving.

Since viewpoint adaptation is order preserving, we have

Stack y′ B qx′ <: Stack y′ B qy′ and Stack y B qy <: Stack y B qx

and since Stack y′Bqy′ <: Stack yBqy holds (see above), Stack y′Bqx′ <: Stack yBqx
as well.

We must show that all new extended chains are well-formed as well. This can
shown analogously.

Theorem 2. (progress) If CE is WF then CE
s−→ C ′E′.
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4 Type Inference

Type inference derives a valid typing, i.e., an assignment of qualifiers to program
variables that type-checks with the rules in Fig. 4. If inference succeeds, then the
program is safe, i.e., there are no flows from sources to sinks. If it fails, then a
valid typing does not exist, meaning that there could be unsafe flow from sources
to sinks.

Type inference leverages the framework we developed in [13]. It first computes
a set-based solution S, which maps variables to sets of potential type qualifiers.
The key novelty over [13] is the use of method summary constraints, which refine
the set-based solution, and help derive a valid typing.

4.1 Set-based Solution

The set-based solution is a mapping S from variables to sets of qualifiers. The
variables in the mapping can be (1) local variables, (2) parameters (including
this), (3) fields, and (4) method returns. For example, S(x) = {poly, safe} denotes
the type of variable x can be poly, or safe, but not tainted. Programmer-annotated
variables, including annotated library variables, are initialized to the singleton set
that contains the programmer-provided qualifier. In SFlow, all sources and sinks
are programmer-provided, i.e., sources and sinks are annotated as tainted and safe,
respectively. Fields are initialized to S(f) = {tainted, poly}. All other variables
are initialized to the maximal set of qualifiers, i.e., S(x) = {tainted, poly, safe}.

The inference creates constraints for all program statements according to the
typing rules in Fig. 4. It takes into account ReIm: if the left-hand-side of the
assignment is readonly, the inference creates a subtyping constraint; otherwise, it
creates an equality constraint. Consider (tread) x = y.f. If x is readonly, the inference
creates constraint qy B qf <: qx; otherwise, it creates an equality constraint
qy B qf = qx. In the latter case, the inference actually creates two subtyping
constraints that are equivalent to the equality constraint. In the above example,
it creates qy B qf <: qx and qx <: qy B qf .

Subsequently, the set-based solver iterates over these constraints, and runs
SolveConstraint(c) for each constraint c. SolveConstraint(c) removes
infeasible qualifiers from the set of variables that participate in c. It works as
follows (for a more formal description, see [13]). Consider x = y.f again, and
suppose x is readonly, thus creating the sole subtyping constraint qy B qf <:
qx. Suppose that before processing this constraint, we have S(x) = {poly},
S(y) = {tainted, poly, safe}, and S(f) = {tainted, poly}. The solver removes tainted
from S(y) because there do not exist qf ∈ S(f) and qx ∈ S(x) that satisfy
tainted B qf <: qx. Similarly, tainted is removed from S(f). After processing the
constraint, S is updated to S(x) = {poly}, S(y) = {poly, safe}, and S(f) = {poly}.
If the infeasible qualifier is the last element in S(x), SolveConstraint(c) keeps
this qualifier in S(x), and reports a type error at c (we keep the qualifier in
order to produce better error reports: a type error x{tainted} <: y{safe} is more
informative than x{} <: y{safe}).



Type-based Taint Analysis for Java Web Applications 15

1 void doGet(A this, ServletRequest request, ServletResponse response) {
2 StringBuffer buf = ...;
3 this.foo(buf,buf,request,response); buf = thisdoGet B b1

�� ��S(buf) = {tainted}

4 } buf <: thisdoGet B b2
�� ��S(b2) = {tainted, poly}

5 void foo(A this, StringBuffer b1, StringBuffer b2,
6 ServletRequest req, ServletResponse resp) {
7 String url = req.getParameter(”url”); req B tainted <: url

�� ��S(url) = {tainted}

8 b1.append(ural); url <: b1 B poly
�� ��S(b1) = {tainted}

9 String str = b2.toString(); b2 B poly <: str
�� ��S(str) = {tainted, poly}

10 PrintWriter writer = resp.getWriter();
11 writer.print(str); str <: writer B safe

�� ��TYPE ERROR!

12 }

Fig. 7. Aliasing5 example from Stanford SecuriBench Micro. The frame box beside
each statement shows the corresponding constraints the statement generates. The oval
boxes show propagation during the set-based solution. The constraint at 7 forces url to
be tainted, and the constraint at 8 forces b1 to be tainted. The constraint at 3 forces buf
to be tainted and the one at 4 forces b2 to be tainted or poly (i.e., the set-based solver
removes safe from b2’s set). The constraint at 9 then forces str to be tainted or poly.
There is a TYPE ERROR at writer.print(str).

The set-based solver iterates over the constraints and refines the sets until it
reaches a fixpoint. There are two outcomes: (1) there are no type errors, and (2)
there are one or more type errors. If the set-based solver arrives at type errors,
this means that the programmer-provided sources and sinks are inconsistent, and
the program cannot be typed. In other words, a type error indicates that there
could be unsafe flow from a source to a sink.

Consider the Aliasing5 example from Ben Livshits’ Stanford SecuriBench Mi-
cro benchmarks2 in Fig. 7. foo is safe when b1 and b2 refer to distinct StringBuffer
objects. However, when b1 and b2 are aliased, foo creates dangerous flow from
source req.getParameter to a sink, the parameter of PrintWriter.print. Note that
the constraint at line 3 is an equality constraint: b1 is mutated at b1.append(url),
ReIm infers b1 as mutable, and hence the equality constraint. The set-based
solver reports a type error at statement 11; the constraint at 11 is unsatisfiable as
it requires that str is safe, which contradicts the finding that str is {tainted, poly}.

4.2 Valid Typing

The set-based solver removes many infeasible qualifiers and in many cases, it
discovers type errors. In our experience, the set-based solver, which is worst-
case quadratic and linear in practice, discovers the vast majority of type errors,
and therefore it is useful on its own. Unfortunately, when the set-based solver
terminates without type errors, it is unclear if a valid typing exists or not, and

2 http://suif.stanford.edu/~livshits/work/securibench-micro/
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1: procedure RunSolver
2: repeat
3: for each c in C do
4: SolveConstraint(c)
5: if c is qx <: qy B qf and S(f) is {poly} then . Case 1
6: Add qx <: qy into C
7: else if c is qx B qf <: qy and S(f) is {poly} then . Case 2
8: Add qx <: qy into C
9: else if c is qx <: qy then . Case 3

10: for each qy <: qz in C do add qx <: qz to C end for
11: for each qw <: qx in C do add qw <: qy to C end for
12: else if c is qz <: qy B qp then . Case 4
13: if qp <: qp′ and qy B qp′ <: qx in C then Add qz <: qx to C end if
14: end if
15: end for
16: until S and C remain unchanged
17: end procedure

Fig. 8. Computation of method summary constraints. C is the set of constraints, which
initially contains the constraints for program statements, derived as described in Sect. 4.1
(recall that each equality constraint is written as two subtyping constraints). Cases 1
and 2 add qx <: qy into C because qy B poly always yields qy. Case 3 adds constraints
due to transitivity; this case discovers constraints from formals to return values. Case 4
adds constraints between actual(s) and left-hand-side(s) at calls: if there are constraints
qz <: qy B qp (flow from actual to formal) and qy B qp′ <: qx (flow from return value to
left-hand-side), and also qp <: qp′ (flow from formal to return value, usually discovered
by Case 3), Case 4 adds qz <: qx. Note that line 4 calls SolveConstraint(c): the
solver infers new constraints, which remove additional infeasible qualifiers from S. This
process repeats until C and S stay unchanged.

therefore, there is no guarantee of safety. The question is, how do we extract a
valid typing, or conversely, show that a valid typing does not exist?

The key idea is to compute what we call method summary constraints, which
remove additional qualifiers from the set-based solution. These constraints reflect
the relations (subtyping or equality) between formal parameters (including this)
and return values (ret). Such references are usually “connected” indirectly, e.g. this
and ret can be connected through two constraints this <: x and x <: ret. Note that
intuitively, the subtyping relation reflects flow: there is flow from this to x, there
is flow from x to ret, and due to transitivity, there is flow from this to ret. Once
we have computed the relations between formal parameters and return values
of a method m, we connect the actual arguments to the left hand sides of the
call assignment at calls to m. The computation of method summary constraints
is presented in Fig. 8. As an example, consider the following code snippet:
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class A {
String f;
String get()

{return this.f;} this B f <: ret
}

A y = ...;
PrintWriter writer = ...;

String x = y.get(); y <: y B this y B ret <: x

writer.print(x); x <: writer B safe

where generated constraints are shown in the frame boxes beside statements.
The set-based solver yields S(x) = {safe}, S(y) = {tainted, poly, safe}, S(this) =
{poly, safe}, S(ret) = {poly, safe}, and S(f) = {poly}. Case 2 in Fig. 8 creates
this <: ret. This entails y B this <: y B ret since viewpoint adaptation preserves
subtyping [18]. Case 4 combines this with constraints y <: yBthis and yB ret <: x,
yielding a new constraint y <: x. Because tainted and poly are not subtypes of
safe, SolveConstraint removes them from S(y), and S(y) becomes {safe}.

RunSolver terminates either (1) without type errors, or (2) with type errors,
just as the set-based solver. When it terminates without errors, SFlowInfer types
each variable x by picking the maximal element of S(x), according to the following
preference ranking: tainted > poly > safe. This maximal typing practically always
type-checks. In the above example, typing Γ (x) = Γ (y) = safe, Γ (this) = Γ (ret) =
Γ (f) = poly type-checks (in contrast, the maximal typing extracted from the
set-based solution, does not type-check). In our experiments, the maximal typing
always type-checks, except for 2 constraints in one of our benchmarks, jugjobs.
Fortunately, even if the maximal typing does not type-check, it is a theorem that
the program is still safe, i.e., there is no flow from sources to sinks. We confirmed
this for the 2 constraints in jugjobs.

4.3 Complexity

The inference is dominated by RunSolver. To better reason about complexity,
we present an equivalent algorithm in Fig. 9 (i.e., it computes the same fixpoint
S). This algorithm merges Case 3 and Case 4 and removes C from the repeat
condition. Below, we sketch the proof of why it is safe to remove C. Consider the
iteration i, when S stayed unchanged. It is easy to see that C stayed unchanged
as well. Suppose that iteration i discovered new constraints, and let qx <: qy be
the first such constraint. The new constraint cannot be due to Case 1 or Case
2 because S(f) did not change from iteration i− 1 to iteration i (as S already
reached the fixpoint). It cannot be due to Case 3 either: if it were, then there
would be two constraints qx <: qz and qz <: qy already in C due to previous
iterations; but then qx <: qy would have been discovered in a previous iteration
as well (through line 10 if qz <: qy were discovered before qx <: qz, or through
line 11, if qx <: qz were discovered before qz <: qy). It cannot be due to Case 4
either, due to similar reasons.

The algorithm in Fig. 9 reaches the fixpoint (when S stays unchanged) in
O(n3) time, where n is the size of the program. There are at most O(3n) iterations
of the outer loop (line 2), because in each iteration at least one of O(n) references
is updated to refer to a smaller set of qualifiers, and each set has at most 3
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1: procedure RunSolver
2: repeat
3: for each c in C do
4: SolveConstraint(c)
5: if c is qx <: qy B qf and S(f) is {poly} then . Case 1
6: Add qx <: qy into C
7: else if c is qx B qf <: qy and S(f) is {poly} then . Case 2
8: Add qx <: qy into C
9: else if c is qx <: qy then . Case 3

10: for each qy <: qz in C do add qx <: qz to C end for
11: for each qw <: qx in C do add qw <: qy to C end for
12: for each qw <: qa B qx and qa B qy <: qz in C do . Case 4
13: Add qw <: qz to C
14: end for
15: end if
16: end for
17: until S remains unchanged
18: end procedure

Fig. 9. An improved version of the algorithm in Fig. 8 to better reason about complexity.
Notice Case 4 is merged into Case 3 and C is removed from the repeat condition. When
the inner loop (line 3) discovers a new constraint, it is appended at the end of C, and
processed in the same iteration of the outer loop (line 2).

qualifiers. The inner loop (line 3) iterates over at most O(n2) constraints, because
in the worst case every two references can form a constraint, resulting in O(n2)
constraints. Altogether, we have worst-case complexity of O(n3). Although at
first glance lines 11-13 (Cases 3-4) appear to contribute O(n) ∗O(n2) ∗O(3n), a
closer look reveals they contribute only O(n) ∗O(n2), or O(n3) (this is because
lines 10-13 run only when a new constraint qx <: qy is discovered, and there are
at most O(n2) such new constraints).

4.4 Examples

To demonstrate the precision of the type system and inference analysis, we
illustrate the handling of one example which has posed challenges for previous
taint analyses [15,31].

The example, shown in Fig. 10 illustrates the handling of context sensitivity.
There are two instances of DataSource, one that holds a tainted string in its
f field, and another one that holds a safe string. The code is safe because s2,
which flows to the sensitive sink, is read from the “safe” DataSource object. A
context-insensitive taint analysis would merge the flows through setUrl and getUrl
across the two different instances of DataSource, and report a spurious warning.

Fig. 10 illustrates our solution. The inferred typing types class DataSource
as polymorphic. The poly types are instantiated to tainted for object ds1 and to
safe for object ds2.
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1 class DataSource {
2 String f;
3 void setUrl(String url) {

�� ��S(thissetUrl) = {tainted, poly}

4 this.f = url; url <: thissetUrl B f
�� ��S(url) = {tainted, poly}

5 } url <: thissetUrl

6 String getUrl() {
�� ��S(thisgetUrl) = {tainted, poly}

7 return this.f; thisgetUrl B f <: retgetUrl
�� ��S(f) = {poly}

8 } thisgetUrl <: retgetUrl
�� ��S(retgetUrl) = {poly, safe}

9 }
10 String tUrl = req.getParameter(..); req B tainted <: tUrl

�� ��S(tUrl) = {tainted}

11 DataSource ds1 = new DataSource();
12 ds1.setUrl(tUrl); tUrl <: ds1 B url

13 ds1 = ds1 B thissetUrl
�� ��S(ds1) = {tainted, poly, safe}

14 String sUrl = ”http://localhost/”;
�� ��S(sUrl) = {tainted, poly, safe}

15 DataSource ds2 = new DataSource();
16 ds2.setUrl(sUrl); sUrl <: ds2 B url

17 ds2 = ds2 B thissetUrl
�� ��S(ds2) = {tainted, poly, safe}

18 String s1 = ds1.getUrl(); ds1 <: ds1 B thisgetUrl

19 ds1 B retgetUrl <: s1
�� ��S(s1) = {tainted, poly, safe}

20 ds1 <: s1

21 String s2 = ds2.getUrl(); ds2 <: ds2 B thisgetUrl

22 ds2 B retgetUrl <: s2

23 ds2 <: s2

24 writer.println(s2); s2 <: writer B safe
�� ��S(s2) = {safe}

Fig. 10. The DataSource example due to Ben Livshits [15]. The frame box beside each
statement shows the generated constraints correspondingly. The bold frame boxes show
the constraints generated by the algorithm in Fig. 8. The oval boxes show the set-based
solution, where overstruck qualifiers are eliminated by the the algorithm in Fig. 8. The
bold qualifiers are the final maximal typing. It type checks.

As illustrated, the analysis handles naturally these difficult idioms. The
handling of DataSource can be interpreted as object sensitivity [19]: essentially,
the analysis processes polymorphic setUrl and getUrl separately for object contexts
ds1 and ds2, just as standard object-sensitive analysis does.

4.5 Precision Improvements

We employ two techniques to improve the precision of SFlow and SFlowInfer.
One is the composition with ReIm we described earlier. The other one is special-
casing of global mapping data structures Properties from the java.util package,
and ServletRequest and HttpSession from the javax.servlet package. In order to
illustrate the problem, consider the example in Fig. 11 refactored from benchmark
blojsom. At line 6, the tainted inAuthor is put into the mapping of req. Then it is
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1 class BlojsomServlet {
2 public static final String AUTHOR = ”BLOJSOM AUTHOR”;
3 public void doGet(HttpServletRequest req, HttpServletResponse resp) {
4 String inAuthor = req.getParameter(‘‘author’’); // tainted source
5 req.setAttribute(BLOJSOM AUTHOR, inAuthor);
6 }
7 }
8 class html dcomments jsp {
9 public void jspService(HttpServletRequest req, HttpServletResponse resp) {

10 String outAuthor = (String) req.getAttribute(BlojsomServlet.AUTHOR);
11 PrintWriter out = ...;
12 out.print(outAuthor); // safe sink
13 }
14 }

Fig. 11. Imprecision caused by mapping data structures.

retrieved at line 13 through req.getAttribute() and printed to the client page. The
parameter of PrintWriter.print() is a safe sink according to [15]. Therefore, there
is unsafe flow from req.getParameter() to out.print().

If outAuthor = req.getAttribute(...) were handled according to the typing
rules in Fig. 4, the safe outAuthor would cause req to be safe, and safe would
propagate to all calls on receiver req, not only to the call with argument
req.setAttribute(...,inAuthor).

Therefore, we special-case set∗ and get∗ methods for such mapping data
structures, similarly to Sridharan et al. [29]. If the key of the set∗ method call
set(key, value) is a constant, the inference simply creates the equality constraint
key = value. Similarly, if the key of get∗ method call x = get(key) is a constant,
the set-based solver creates constraint x = key. For the example in Fig. 11, the
set-based solver enforces BlojsomServlet.BLOJSOM AUTHOR = inAuthor at line 5
and outAuthor = BlojsomServlet.BLOJSOM AUTHOR at line 10. Thus, inAuthor
and outAuthor are connected and outAuthor is typed as tainted. The unsafe
information flow is detected because there is a type error when passing tainted
outAuthor to the safe parameter of out.print().

5 Handling of Reflection, Libraries and Frameworks

Reflection, libraries (standard and third-party) and frameworks (e.g., Struts,
Spring, Hibernate) are the bane of static taint analysis. Yet they are ubiquitous
in Java web applications. The type-based approach we espouse, handles these
features safely and effortlessly.
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5.1 Reflection

Use of reflection in web application code is widespread. Therefore, ignoring
reflection (as many static analyses do) renders a static analysis useless. Consider
the example:

X x = Class.forName(”someInput”).newInstance();
x.f = a; // a is tainted, comes from source
y = x;
b = y.f; // b is safe, flows to sink

If a points-to-based static analysis fails to handle newInstance(), the points-to
sets of x and y will be empty, and the flow from a to b will be missed. On the
other hand, handling of reflection is notoriously difficult and generally unsound.

We handle newInstance() safely and effortlessly. The key is that SFlow does
not need to abstract heap objects ; instead, it tracks dependences between variables
through subtyping. It can be shown that, roughly speaking, if x flows to y, then
x <: y holds. In the above example, x <: y and subsequently a <: b holds.
SFlowInfer reports a type error because of the flow from tainted a to safe b.

5.2 Libraries

Our inference analysis is modular. Thus, it can analyze any given set of classes
L. If there is an unknown callee in L, e.g. a library method whose source code
is unavailable, the analysis assumes typing poly, poly→ poly for the callee. This
typing conservatively propagates tainted arguments to the receiver and left-hand-
side of the call assignment. Similarly, it propagates a safe left-hand-side to the
receiver and arguments at the call. E.g., String.toUpperCase() is typed as

poly String toUpperCase(poly String this)

At call s2 = s1.toUpperCase() we have constraint s1 B poly <: s2 or equivalently
s1 <: s2. Thus, a tainted s1 propagates to s2, and a safe s2 propagates to s1.

We apply the poly, poly→ poly typing to all methods in the standard library,
third-party libraries (e.g., apache-tomcat, xalan) and frameworks, with several
exceptions described in the next section.

5.3 Frameworks

Most Java web applications are built on top of one or more web application
frameworks such as Struts, Spring, Hibernate, and etc. The problem with these
frameworks is twofold. First, these frameworks contain “hidden” sources and
sinks, i.e., sources and sinks deep in framework code that affect the public API.
For example, Hibernate (version 2.1) contains a public method Session.find(String
s), where s flows to query at sink prepareStatement(query). This happens deep
in the code of Hibernate. We run a version of our inference analysis and “lift”
such hidden sources and sinks to the return values and parameters of the public
methods they affect. In the above example, Session.find() is typed as
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poly List find(poly Session this, safe String s)

Callers to find() in application code must handle the argument of find() as safe.
To the best of our knowledge, no other taint analysis attempts to “lift” these
“hidden” sources and sinks in the frameworks.

Second, these frameworks rely heavily on reflection and callbacks, which
must be handled in the analysis. These are notoriously issues for dataflow and
points-to based analysis, which usually relies on reachability analysis. Our type-
based analysis handles these features safely and effortlessly through the method
overriding constraints.

As an illustrating example, Struts defines framework classes ActionForm
and Action and method Action.execute(ActionForm form). The application built
on top of Struts defines numerous xxxForm classes extending ActionForm, and
numerous xxxAction classes extending Action. Framework code performs the
following (roughly):

1. Action a = Class.forName(”inputClass”).newInstance(); a instantiates one user-
defined xxxAction class.

2. ActionForm f = Class.forName(”inputForm”).newInstance(); similarly, this
instantiates one user-defined xxxForm class.

3. Framework populates the xxxForm object with tainted values from sources.
4. Framework calls a.execute(f), a callback to user-defined xxxAction.execute.

In our type-based analysis Action.execute is typed as

execute(poly Action this, tainted ActionForm form)

The method overriding constraints (recall Sect. 2.3) propagate tainted to the
form parameter of each execute method in user-defined subclasses. As a result, all
values retrieved through get methods from forms in user code are tainted, which
accurately reflects that the xxxForm object is populated with tainted values.

6 Empirical Results

SFlow and SFlowInfer are implemented within our type inference framework [13,
14], which is built on top of the Checker Framework (CF) [24]. The type inference
framework, including SFlow and SFlowInfer, is publicly available at http://

code.google.com/p/type-inference/.
The implementation is evaluated on 13 relatively large Java web applications,

used in previous work [15,29,32]. We run SFlowInfer on these benchmarks on a
server with IntelR© XeonR© CPU X3460 @2.80GHz and 8 GB RAM (the maximal
heap size is set to 2 GB). The software environment consists of Oracle JDK 1.6
and the Checker Framework 1.1.5 on GNU/Linux 3.2.0.

6.1 Experiments

We use the sources and sinks described in detail in Livshits and Lam [15, 16].
In addition, we use 59 sources and sinks in API methods of Struts, Spring, and
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Benchmark Version #File #Line Time (s)

blojsom 1.9.6 61 12830 15.1
blueblog 1.0 31 4139 7.5
friki 2.1.1 21 1843 4.5
gestcv 1.0 119 7422 10.1
jboard 0.3 89 17405 22.2
jspwiki 2.4 364 83329 126.9
jugjobs alpha 25 4044 18.7
pebble 1.6beta1 234 42542 50.3
personalblog 1.2.6 68 9943 17.6
photov 2.1 129 126886 640.2
roller 0.9.9 276 81171 213.4
snipsnap 1.0beta 488 73295 87.3
webgoat 0.9 35 8474 9.6

Fig. 12. Information about benchmarks and running time of SFlowInfer. The file and
line counts include Java files precompiled from JSP files. The time is for running
configuration [Parameter manipulation, SQL injection]. The time for running other
configurations is practically the same.

[Parameter,SQL] [Parameter,XSS ] [Parameter,HTTP ] [Parameter,Path]
Benchmark T1 T2 FP T1 T2 FP T1 T2 FP T1 T2 FP
blojsom 0 0 0 ( 0%) 0 0 0 ( 0%) 1 0 0 ( 0%) 10 1 0 ( 0%)
blueblog 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 3 0 0 ( 0%)
friki 0 0 0 ( 0%) 0 0 0 ( 0%) 1 0 9 (90%) 8 1 0 ( 0%)
gestcv 1 0 0 ( 0%) 0 8 2 (20%) 0 0 0 ( 0%) 1 0 0 ( 0%)
jboard 3 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
jspwiki 0 0 25 (100%) 73 12 20 (19%) 23 0 16 (34%) 72 0 23 (24%)
jugjobs 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
pebble 0 0 0 ( 0%) 2 0 0 ( 0%) 4 0 3 (37%) 43 3 0 ( 0%)
personalblog 6 0 0 ( 0%) 3 21 2 ( 8%) 0 0 0 ( 0%) 0 0 0 ( 0%)
photov 46 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
roller 0 0 0 ( 0%) 21 2 0 ( 0%) 1 2 1 (25%) 0 5 19 (79%)
snipsnap 0 0 3 (100%) 1 0 0 ( 0%) 6 0 0 ( 0%) 8 26 13 (28%)
webgoat 10 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 1 0 4 (80%)
Average ( 15%) ( 4%) ( 14%) ( 16%)

Fig. 13. Inference results for [Parameter, SQL], [Parameter, XSS ], [Parameter, HTTP ]
and [Parameter, Path]. The multicolumns show numbers of Type-1 (T1), Type-2 (T2),
and False-positive (FP) type errors for the four configurations; note that a large number
of benchmarks have 0 type errors, i.e., they are proven safe.

Hibernate, discovered as described in Sect. 5. There are 3 categories of sources [15]:
Parameter manipulation, Header manipulation, and Cookie poisoning. There are
4 categories of sinks [15]: SQL injection, HTTP splitting, Cross-site scripting
(XSS), and Path traversal. These sources and sinks are added to the annotated
JDK, Struts, Spring, and Hibernate, which is easily done with the CF. Once these
annotated libraries are created, individual web applications are analyzed without
any input from the user. We run the benchmarks with all 12 configurations.

Fig. 12 presents the sizes of the benchmarks as well as the running times of
SFlowInfer in seconds. The running times attest to efficiency — for all but 1
benchmark, the analysis completes in less than 4 minutes; we strongly believe
that these running times can be improved.

We examined the type errors reported by SFlowInfer, and classified them as
Type-1 (T1), Type-2 (T2), or False-positive (FP). Type-1 errors reflect direct
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[Header,SQL] [Header,XSS ] [Header,HTTP ] [Header,Path]
Benchmark T1 T2 FP T1 T2 FP T1 T2 FP T1 T2 FP
blojsom 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
blueblog 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
friki 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 3 (100%)
gestcv 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
jboard 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
jspwiki 0 0 53? (100%) 0 0 113? (100%) 0 0 50? (100%) 0 0 154? (100%)
jugjobs 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
pebble 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
personalblog 1 0 0 ( 0%) 0 16 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
photov 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
roller 0 0 0 ( 0%) 1 0 0 ( 0%) 1 0 0 ( 0%) 0 0 0 ( 0%)
snipsnap 0 0 0 ( 0%) 7 0 0 ( 0%) 2 0 0 ( 0%) 0 25 54 ( 68%)
webgoat 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
Average ( 8%) ( 8%) ( 8%) ( 21%)

Fig. 14. Inference results for [Header, SQL], [Header, XSS ], [Header, HTTP ] and
[Header, Path]. The multicolumns show numbers of Type-1 (T1), Type-2 (T2), and
False-positive (FP) type errors for the four configurations. Again a large number of
benchmarks have 0 type errors, i.e., they are proven safe. Due to time constraints, we
did not examine the type errors for jspwiki; instead, we conservatively classified them as
False-positive. Therefore, the actual False-positive rate is lower than the one reported.

[Cookie,SQL] [Cookie,XSS ] [Cookie,HTTP ] [Cookie,Path]
Benchmark T1 T2 FP T1 T2 FP T1 T2 FP T1 T2 FP
blojsom 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
blueblog 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
friki 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
gestcv 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
jboard 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
jspwiki 0 0 53? (100%) 0 0 172? (100%) 0 0 50? (100%) 0 0 155? (100%)
jugjobs 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
pebble 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
personalblog 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
photov 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
roller 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 1 (100%)
snipsnap 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 19 8 ( 30%)
webgoat 1 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%) 0 0 0 ( 0%)
Average ( 8%) ( 8%) ( 8%) ( 18%)

Fig. 15. Inference results for [Cookie, SQL], [Cookie, XSS ], [Cookie, HTTP ] and [Cookie,
Path]. The multicolumns show numbers of Type-1 (T1), Type-2 (T2), and False-positive
(FP) type errors for the four configurations. Again, we conservatively classified all
errors in jspwiki as False-positive and the actual False-positive rate is lower than the
one reported.

flow from a source to a sink. The following code, adapted from webgoat, is a
Type-1 error for configuration [Parameter,SQL] :

String u = request.getParameter(‘‘user”); //source
String s = ‘‘SELECT ∗ FROM users WHERE name = ’’ + u;
stat.executeQuery(s); //sink, type error!

Another example of a Type-1 error, adapted from benchmark blueblog, is
shown below. This is a type error for configuration [Parameter,Path]. This



Type-based Taint Analysis for Java Web Applications 25

example illustrates a complex flow that goes through heap objects and method
calls. It attests to the power of our analysis.

1 class BBServlet {
2 ...
3 String title = request.getParameter(”title”); //source
4 String content = ...
5 BlogData bd = new BlogData(title, content);
6 currentCategory.addNewBlog(bd);
7 ...
8 }
9 class FSCategory extends Category {

10 ...
11 Blog addNewBlog(BlogData bd) {
12 ...
13 return FSBlog.createNewBlog(...,bd,...);
14 }
15 }
16 class FSBlog extends Blog {
17 static FSBlog createNewBlog(...,BlogData blogData,...) {
18 String filename = blogData.getSuggestedId(); //type error!
19 File file = new File(filename+fileEndings); //sink
20 ...
21 }
22 }
23 class BlogData {
24 String title;
25 String suggestedId;
26 BlogData(String title, String content) {
27 this.title = title;
28 this.suggestedId = constructSuggestedId(title);
29 ...
30 }
31 }

Observe the complex flow from the source at line 3 to the sink at line 19. The
servlet creates a new BlogData object, and passes the tainted title to it. Fields
title and suggestedId of the BlogData object store tainted values. The BlogData
object is then passed as argument to addNewBlog in FSCategory (line 6) and then
to createNewBlog in FSBlog (line 13). createNewBlog reads the suggestedId field
of the BlogData object and sends it to the sink. SFlowInfer reports a type error
at line 18.

Type-2 errors reflect key-value dependences. The following code, adapted
from personalblog, is a Type-2 error for configuration [Parameter,XSS] :

HashMap map = ...; PrintWriter out = ...;
String id = request.getParameter(‘‘id’’); //source
User user = (User) map.get(id);
out.print(user.getName()); //sink, type error!
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The tainted id is used as a key to retrieve the user from the map, then user.getName()
is sent to a safe sink (the parameter of PrintWriter.print). This is a dangerous
flow according to the semantics of noninterference, because the tainted value of
the key affects the value of the safe sink.

We classified as FP all errors that we could not easily identify as Type-1 or
Type-2. The results over the 12 configurations are presented in Fig. 13, Fig. 14
and Fig. 15.

6.2 Comparison

Direct comparison with TAJ [32], F4F [29], and ANDROMEDA [31] is impossible
because the analysis tools are proprietary, and therefore unavailable. Instead, we
run SFlowInfer on DroidBench [8], which is a suit of Android apps, and compare
with three other taint analysis tools – AppScan Source [2], Fortify SCA [1], and
FlowDroid [8], using the results presented by Fritz et al. [8]. The comparison with
AppScan Source is an indirect comparison with TAJ, F4F, and ANDROMEDA,
because these analyses are built into AppScan Source.

Fig. 16 presents the result of the comparison. Although SFlowInfer performs
slightly worse in terms of precision (due to the conservativeness of the type
system), it outperforms all other tools in terms of recall, i.e. it detects more
vulnerabilities than all other tools. Commercial tools AppScan Source and Fortify
SCA detect less than 61% of all vulnerabilities, while SFlowInfer detects 100%.
FlowDroid, which targets Android apps, not Java web applications, is slightly
more precise than SFlowInfer. This is because it uses a flow-sensitive analysis,
which unfortunately tends to be costly. The cost is reflected by the fact that
FlowDroid takes about 31 seconds on InsecureBank [23], while SFlowInfer takes
only 4 seconds and produces the same result.

7 Related Work

There is a large amount of work on information flow control. Unfortunately, we
cannot include all related work on information flow control.

The most closely related to ours is the work by Shankar et al. [27]. They
present a type system for detecting string format vulnerabilities in C programs.
The type system has two type qualifiers, tainted and untainted; polymorphism is
not part of the core system. They include a type inference engine built on top
of CQual [7]. CQual, and its counterpart for Java JQual [10] rely on dependence
graphs built using points-to analysis. Thus, they still face the burden of reflection
and frameworks. In order to handle polymorphism, they provide the polymorphic
function as an extension. In contrast, SFlow and SFlowInfer handle polymorphism
naturally, as it is built into the type system using the poly qualifier and viewpoint
adaptation. In addition, we compose with reference immutability, thus improving
precision significantly. SFlow and SFlowInfer handle reflection and frameworks
seamlessly.
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Tool Name AppScan Source Fortify SCA FlowDroid SFlowInfer

Arrays and Lists
ArrayAccess1 × ×
ArrayAccess2 × × × ×
ListAccess1 × × × ×

Callbacks
AnonymousClass1 ©

√ √ √

Button1 ©
√ √ √

Button2
√
©©

√
©©

√√√
×

√√√
×

LocationLeak1 ©© ©©
√√ √√

LocationLeak2 ©© ©©
√√ √√

MethodOverride1
√ √ √ √

Field and Object Sensitivity
FieldSensitivity1
FieldSensitivity2
FieldSensitivity3

√ √ √ √

FieldSensitivity4 × ×
InheritedObjects1

√ √ √ √

ObjectSensitivity1
ObjectSensitivity2 × ××

Inter-App Communication
IntentSink1

√ √
©

√

IntentSink2
√ √ √ √

ActivityCommunication1
√ √ √ √

Lifecycle
BroadcastReceiverLifecycle1

√ √ √ √

ActivityLifecycle1
√ √ √ √

ActivityLifecycle2 ©
√ √ √

ActivityLifecycle3 © ©
√ √

ActivityLifecycle4 ©
√ √ √

ServiceLifecycle1 © ©
√ √

General Java
Loop1

√
©

√ √

Loop2
√

©
√ √

SourceCodeSpecific1
√ √ √ √

StaticInitialization1 ©
√

©
√

UnreachableCode × ×
Miscellaneous Android-Specific

PrivateDataLeak1 © ©
√ √

PrivateDataLeak2
√ √ √ √

DirectLeak1
√ √ √ √

InactiveActivity × × ×
LogNoLeak

Sum, Precision and Recall–excluding implicit flows√
, higher is better 14 17 26 28
×, lower is better 5 4 4 9
©, lower is better 14 11 2 0
Precision p =

√
/(
√

+×) 74% 81% 86% 76%
Recall r =

√
/(
√

+©) 50% 61% 93% 100%
F-measure 2pr/(p + r) 0.60 0.70 0.89 0.86

Fig. 16. Summary of comparison with other taint analysis tools (
√

= correct warning,
× = false warning, © = missed flow). multiple circles in one row: multiple leaks
expected, all-empty row: no leaks expected, none reported.

Tripp et al. [32] present TAJ, a points-to-based taint analysis for industrial
applications. TAJ is a dataflow and points-to-based analysis. In contrast, our type-
based taint analysis is modular and compositional. In order to handle Struts, TAJ
treats all Action classes as entry points. In addition, it simulates the passing of
all subclasses of ActionForm to Action.execute, by generating a constructor, which
assigns tainted values to all fields of the subclasses. In contrast, our inference
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analysis handles Struts by annotating the ActionForm parameter of Action.execute
as tainted. Our handling is simpler and equally precise. Finally, TAJ approximates
the behavior of Java reflection APIs by synthesizing an abstract object whenever
the instantiated class can be inferred. It is unclear how TAJ handles reflection
when the instantiated class cannot be inferred (e.g. the argument is not a string
constant). according to Sridharan et al. [29], TAJ’s reflection modeling is not
scalable. In contrast, our type-based analysis does not need abstract objects, and
handles reflection seamlessly and safely.

Livshits and Lam [15] present a static analysis based on a scalable and precise
points-to analysis. The analysis is built on top of a context-sensitive Java points-
to analysis [35] based on Binary Decision Diagrams (BDDs). In contrast, our
inference analysis is type-based and modular. In order to handle reflection, they
look for all calls to Class.forName(s) that may return className, then find all
constant strings that s may refer to, and finally augment the call graph by adding
an edge from the call site of newInstance to new S(), which is represented by s.
Similarly to TAJ, they handle reflection by trying to infer the value of string s at
forName(s).newInstance() calls. In addition, Livshits and Lam’s analysis does not
handle frameworks, which are essential for web applications.

Sridharan et al. [29] present F4F, a system for taint analysis of framework-
based web applications. In order to handle frameworks, F4F analyzes the ap-
plication code and XML configuration files to construct a specification, which
summarizes reflection and callback-driven behavior. In contrast, our analysis
handles frameworks by inferring or adding annotations to sources and sinks in the
frameworks, which propagate to user code through subtyping. Tripp et al. [31]
present ANDROMEDA, a demand-driven analysis that improves on F4F.

Very recent work by Fritz et al. present FlowDroid, a taint analysis for
Android [8]. The analysis is dataflow and points-to-based; also, it focuses on
Android apps. Our analysis is type-based and focuses on Java web applications.

Volpano et al. [34] and Myers [20] present type systems for secure information
flow. These systems are substantially more complex than SFlow. They focus
on type checking and do not include type inference or include only local (intra-
procedural) type inference. In contrast, SFlowInfer handles large web applications.

Snelting et al. [9,11,12,28] present information flow analysis based on Program
Dependence Graphs (PDGs). Their analysis relies on highly precise context-
sensitive dataflow and points-to analysis.

8 Conclusions

We have presented SFlow, a context-sensitive type system for secure information
flow, and SFlowInfer, the corresponding cubic inference analysis. Our approach
handled reflection, libraries and frameworks safely and effectively. Experiments
on 13 Java web applications showed that SFlowInfer is scalable and precise.
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