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ABSTRACT
We propose a type-based taint analysis for Android. Con-
cretely, we present DFlow, a context-sensitive information
flow type system, and DroidInfer, the corresponding type in-
ference analysis for detecting privacy leaks in Android apps.
We present novel techniques for error reporting based on
CFL-reachability, as well as novel techniques for handling of
Android-specific features, including libraries, multiple entry
points and callbacks, and inter-component communication.
Empirical results show that our approach is scalable and
precise. DroidInfer scales well in terms of time and memory
and has false-positive rate of 15.7%. It detects privacy leaks
in apps from the Google Play Store and in known malware.

1. INTRODUCTION
Android is the most popular platform on mobile devices.

As of the second quater of 2014, Android has reached 84.4%
share of the global smartphone market [19]. Android’s success
is partly due to the enormous number of applications available
at the Google Play Store, as well as other third-party app
stores. However, Android apps often collect sensitive data
such as location and phone state, usually for the purpose of
tracking and targeted advertising.

In this paper we consider a threat model where an app,
legitimate or malicious, obtains sensitive data and leaks
this data to either logs or the network. Logs are an issue,
because until Android 4.0 any app that held the READ LOG
permission could read all logs. We track log flows, but we
emphasize network flows (e.g., flows of the device identifier
to the Internet through an Http request), which present a
more pertinent and challenging problem.

Taint analysis detects flows from sensitive data sources
(e.g., location, phone state) to untrusted sinks (e.g., logs, the
Internet). Many researchers have tackled taint analysis for
Android. Dynamic analyses such as Google Bouncer [11],
TaintDroid [4], DroidScope [41], CopperDroid [32], and Aura-
sium [40] instrument the app bytecode and/or use customized
execution environment to monitor the transition of sensitive
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data. Unfortunately, dynamic analysis slows execution and
typically lacks code coverage.

Static taint analysis detects privacy leaks without running
the app. There has been considerable effort on static taint
analysis, with the majority of work focusing on dataflow and
points-to-based approaches [23, 42, 20, 10, 22, 7, 1]. Yet a
solution remains elusive.

FlowDroid, a highly-precise, context-, flow-, field-, object-
sensitive and lifecycle-aware static taint analysis for An-
droid [1], is the state-of-the-art. Unfortunately, FlowDroid is
computationaly- and memory-intensive. Further, while it re-
ports numerous log flows in apps from the Google Play Store,
it reports no network flows. This is surprising, given the
common knowledge that apps track their users pervasively.

We propose type-based taint analysis for Android lever-
aging previous work on type-based taint analysis for web
applications [16]. Our approach is modular and composi-
tional. It can analyze any given set of classes. Modular
analysis is particularly suitable for Android apps because 1)
the Android app is an “open” program with multiple entry
points through callbacks, and 2) it uses large libraries that
can be suitably handled with conservative defaults. The anal-
ysis requires annotations only on sources and sinks. Once the
sources and sinks are built into annotated libraries, Android
apps are analyzed without any input from the user.

Concretely, we propose DFlow, a context-sensitive infor-
mation flow type system and DroidInfer, the corresponding
type inference analysis. In contrast to FlowDroid, Droid-
Infer is lightweight and runs in ≈ 2 minutes on average,
within a memory footprint of 2GB. It uncovers numerous
network flows in apps from the Google Play Store and in
known malware. DroidInfer posts an F-measure of 0.88 on
DroidBench [7, 1], the standard for evaluating static taint
analysis for Android. FlowDroid’s F-measure is 0.89.

DroidInfer scales because it completely avoids points-to
analysis. It is precise because in essence it is CFL-reachability
computation, a highly-precise analysis technique [33]. An
important contribution of our work is that it explains source-
sink flows intuitively in terms of CFL-reachability paths.

This paper makes the following contributions:

• DFlow, a context-sensitive information flow type system
and DroidInfer, the corresponding worst-case cubic
inference analysis which amounts to CFL-reachability.
DroidInfer works on Application Package files (APKs).

• Effective handling of Android-specific features: “open”
programs with multiple entry points, callbacks and
large libraries, and a technique that improves precision
in the handling of inter-component communication.



1 public class WallpapersMain extends Activity {
2 private String BASE URL, deviceId;
3 private int pageNum, catId;
4 private DisplayMetrics metrics;
5 private WebView browser1;
6 protected void onCreate(Bundle b) {
7 start();
8 }
9 protected void onActivityResult(int rq, int rs, Intent i){

10 navigate();
11 }
12 private void start() {
13 BASE URL = ”getWallpapers Android2/”;
14 TelephonyManager mgr =
15 (TelephonyManager)this.getSystemService(”phone”);
16 deviceId = mgr.getDeviceId(); // source
17 }
18 private void navigate() {
19 String str = BASE URL + pageNum + ”/”+ catId + ”/”

+ deviceId + ”/”+ metrics.widthPixels + ”/”+
metrics.heightPixels;

20 browser1.loadUrl(str); // sink
21 }
22 }

Figure 1: WallpapersMain leaks the device identifier
(the source at line 16) to a content server (the sink
at line 20) in a URL.

• An extensive empirical evaluation on three sets of An-
droid apps: 1) DroidBench [7, 1], 2) 22 malware apps
from the Contagio website [24] and 3) 144 apps from
the Google Play Store [12]. DroidInfer achieves the
same F-measure as FlowDroid on DroidBench. It un-
covers all network flows in the Contagio apps, as well
as numerous network flows across 40 Play Store apps.

The rest of the paper is organized as follows. Sect. 2 gives
a motivating example and a brief discussion of our type-
based approach. Sect. 3 presents the DFlow type system
and the inference analysis. Sect. 4 outlines the connection
with CFL-reachability and the reporting technique. Sect. 5
describes the handling of Android-specific features. Sect. 6
presents the empirical evaluation. Sect. 7 discusses related
work and Sect. 8 concludes.

2. OVERVIEW
We begin with a motivating example that shows a privacy

leak in an Android app and proceed to outline our approach.

2.1 Motivating Example
The example shown in Fig. 1 is refactored from one of our

benchmarks, Backgrounds HD Wallpapers version 2.0.1
from the Google Play Store. The WallpapersMain activity
first obtains the device identifier by calling the getDeviceId
method and stores it into a field deviceId when it is created
(onCreate). Then it appends the deviceId into a search URL
url, which is sent to a content server in the navigate method.
Finally, the navigate method is called in callback method
onActivityResult, resulting in a privacy leak.

This example illustrates several challenges. First, unlike
Java programs, Android apps do not have a single entry point.
Instead, each callback method is a potential entry point as
it could be called by the Android framework. In Wallpa-
persMain, both onCreate and onActivityResult are callback
methods that are implicitly called by the Android framework.

An Android app consists of a number of components, each of
which can be instantiated and run within the Android frame-
work. The Android app defines its own behaviors at different
states of the component lifecyle by overriding pre-defined
callback methods. Multiple entry points present a challenge
to traditional points-to-based static analyses, which usually
require whole-program analysis. Furthermore, control flow is
interrupted by callbacks from Android. In the Wallpapers-
Main example, control from onCreate to onActivityResult must
be captured in order to detect the leak.

2.2 Type Qualifiers
In our type-based approach, each variable is typed by

a type qualifier. There are two basic qualifiers in DFlow:
tainted and safe.

• tainted: A variable x is tainted, if there is flow from a
sensitive source to x. In the WallpapersMain example,
the return value of TelephonyManager.getDeviceId is
typed as tainted.

• safe: A variable x is safe if there is flow from x to
an untrusted sink. For example, the parameter url of
WebView.loadUrl(String url) is a safe sink.

Note that our analysis for Android is actually a confiden-
tiality analysis. We keep the term taint analysis and qualifiers
tainted and safe only in deference to previous work [4, 7].

In order to disallow flow from tainted sources to safe sinks,
DFlow enforces the following subtyping hierarchy:

safe <: tainted1

where q1 <: q2 denotes q1 is a subtype of q2. (q is also a
subtype of itself q <: q.) Therefore, it is allowed to assign a
safe variable to a tainted one:

safe String s = ...;
tainted String t = s;

However, it is not allowed to assign a tainted variable to a
safe one:

tainted String t = ...;
safe String s = t; // type error!

In the WallpapersMain example, the return value of getDe-
viceId is typed as tainted and the url parameter of loadUrl is
typed as safe, as they are a source and a sink, respectively.
The field deviceId is tainted and so is the local variable str
since it contains the value of deviceId. Because it is not al-
lowed to assign a tainted str to the safe parameter of loadUrl,
the program results in a type error, signaling the leak.

Once the sources and sinks are given, type qualifiers are
inferred automatically by our inference tool (Sect. 3.2). If
there is a valid typing, then there is no flow from a source
to a sink. Otherwise, the tool reports type errors, signaling
potential privacy leaks.

A longstanding issue with type inference is explaining type
errors [21, 39]. In general, the inference tool can issue
a type error anywhere along the (usually long) flow path
from source to sink! We map each type error into intuitive,
humanly-readable CFL-reachability flow paths (Sect. 4). For
example, the type error in Fig. 1 (roughly) maps to

source
[deviceId→ thisstart → thisnavigate

]deviceId→ str→ sink

1This is the desired subtyping. However, it is not safe when
mutable references are involved [29, 35].



1 class Util {
2 poly String id(tainted Util this, poly String p) {
3 return p;
4 }
5 }
6 ...
7 Util y = new Util();
8 tainted String src = ...;
9 safe String sink = ...;

10 tainted String srcId = y.id10(src);

11 safe String sinkId = y.id11(sink);

Figure 2: Context sensitivity example.

meaning that the source flows into field deviceId of implicit
parameter this of start, which in turn flows into this of navigate,
where field deviceId is read into str and str flows to sink.

The problem is not limited to type inference. Any static
analysis (e.g., [1]) faces the issue of error reporting and
there are no satisfying solutions at this point. Our approach
presents a step forward.

2.3 Context Sensitivity
DFlow achieves context sensitivity by using a polymorphic

type qualifier, poly, and viewpoint adaptation [3].

• poly: poly is interpreted as tainted in some contexts
and as safe in other contexts.

The subtyping hierarchy becomes

safe <: poly <: tainted

The concrete value of poly is interpreted by the viewpoint
adaptation operation. Viewpoint adaptation of a type q′

from the viewpoint of another type q, results in the adapted
type q′′. This is written as q�q′ = q′′. Viewpoint adaptation
adapts fields, formal parameters, and method return values
from the viewpoint of the context at the field access or method
call. DFlow defines viewpoint adaptation below:

� tainted = tainted
� safe = safe

q � poly = q

The underscore denotes a “don’t care” value. Qualifiers
tainted and safe do not depend on the viewpoint (context).
Qualifier poly depends on the viewpoint: e.g., if the viewpoint
(context) is tainted, then poly is interpreted as tainted.

The type of a poly field f is interpreted from the viewpoint
of the receiver at the field access. If the receiver x is tainted,
then x.f is tainted. If the receiver x is safe, then x.f is safe.
The type of a poly parameter or return value is interpreted
from the viewpoint of qi, the context at the method call.
Consider the example in Fig. 2, where method id is typed
as follows (code throughout the paper makes parameter this
explicit when necessary):

poly String id(tainted Util this, poly String p)

This enables context sensitivity because id can take as input
a tainted String as well as a safe one. poly is interpreted as
tainted at callsite 10, and as safe at callsite 11.

3. TYPE SYSTEM
In this section, we define the DFlow type system and

present the type inference technique.

cd ::= class C extends D {fd md} class
fd ::= t f field
md ::= t m(t this, t x) { t y s; return y } method
s ::= s; s | x = new t() | x = y | x = y.f

| y.f = x | x = y.m(z) statement
t ::= q C qualified type
q ::= tainted | poly | safe qualifier

Figure 3: Syntax. C and D are class names, f is a field
name, m is a method name, and x, y, and z are names
of local variables, formal parameters, or parameter
this. As in the code examples, this is explicit. For
simplicity, we assume all names are unique.

(tnew)

Γ(x) = qx q <: qx

Γ ` x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx

Γ ` x = y

(twrite)

Γ(y) = qy typeof (f) = qf Γ(x) = qx qx <: qy � qf

Γ ` y.f = x

(tread)

Γ(y) = qy typeof (f) = qf Γ(x) = qx qy � qf <: qx

Γ ` x = y.f

(tcall)

typeof (m) = qthis, qp → qret Γ(y) = qy Γ(x) = qx Γ(z) = qz
qy <: qi � qthis qz <: qi � qp qi � qret <: qx

Γ ` x = y.mi(z)

Figure 4: Typing rules. Function typeof retrieves
the DFlow types of fields and methods, Γ is a type
environment that maps variables to DFlow qualifiers.
qi is the context of adaptation at call site i.

3.1 Typing Rules
We define our typing rules over a syntax in “named form”

where the results of field accesses, method calls, and instan-
tiations are immediately stored in a variable. The syntax
is shown in Fig. 3. Without loss of generality, we assume
that methods have parameter this, and exactly one other
formal parameter. The DFlow type system is orthogonal to
(i.e. independent of) the Java type system, which allows us
to specify typing rules over type qualifiers q alone.

The typing rules are defined in Fig. 4. Rules (tnew) and
(tassign) enforce the expected subtyping constraints. The
rules for field access, (tread) and (twrite), adapt field f from
the viewpoint of receiver y and then enforce the subtyping
constraints. Recall that the type of a poly field f is interpreted
in the context of the receiver y. If the receiver y is tainted,
then y.f is tainted. If the receiver y is safe, then y.f is safe.

The rule for method call, (tcall), adapts formal parameters
this and p and return value ret from the viewpoint of callsite
context qi, and enforces the subtyping constraints that cap-
ture flows from actual arguments to formal parameters, and
from return value to the left-hand-side of the call assignment.

The callsite context qi is a value that is not important, ex-
cept that it should exist. It can be any of {tainted, poly, safe}.



Consider the example in Fig. 2. At callsite 10, q10 is tainted
and q10 � poly is interpreted as tainted. The following con-
straints generated at callsite 10 are satisfied2:

y <: q10 � tainted src <: q10 � poly q10 � poly <: tainted

At callsite 11, q11 is safe and q11 � poly is interpreted as safe.
Therefore, the constraints at callsite 11 are satisfied:

y <: q11 � tainted sink <: q11 � poly q11 � poly <: safe

We compose DFlow with ReIm, a reference immutability
type system [17]. This is necessary to overcome known issues
with subtyping in the presence of mutable references [29, 35].
Specifically, if the left-hand-side of an assignment (explicit
or implicit) is immutable according to ReIm, we enforce
a subtyping constraint; otherwise, we enforce an equality
constraint. For example, at (tassign) x = y, if x is immutable,
i.e. x is not used to modify the referenced object, we enforce
qy <: qx; otherwise, we enforce qy = qx. The more variables
are proven immutable, the more subtyping constraints there
are, and hence, the more precise DFlow is [25].

Method overriding is handled by the standard constraints
for function subtyping. If n overrides m, we require typeof (n) <:
typeof (m) and thus

(qthisn , qpn → qretn) <: (qthism , qpm → qretm)

This entails qthism<:qthisn , qpm<:qpn , and qretn<:qretm .

3.2 Type Inference
Given sources and sinks, type inference derives a valid

typing, i.e. an assignment from program variables to type
qualifiers that type checks with the typing rules in Fig. 4. If
type inference succeeds, then there are no leaks from sources
to sinks. If it fails the app may contain leaks.

Type inference first computes a set-based solution S, which
maps variables to sets of potential type qualifiers. Then it
uses method summary constraints, a technique that refines
the set-based solution and helps derive a valid typing.

3.2.1 Set-based Solution
The set-based solution is a mapping S from variables to

sets of qualifiers. For instance, if S(x) = {tainted, poly},
that means variable x can be tainted or poly, but not safe.
Programmer-annotated variables, including sources and sinks,
are initialized to the singleton set that contains the provided
type qualifier. For example, sources and sinks from the
annotated library map to {tainted} and {safe}, respectively.
Fields f are initialized to S(f) = {tainted, poly}; we forgo
safe fields, which makes the inference converge faster. All
other variables and callsite contexts qi are initialized to the
maximal set of qualifiers, i.e. S(x) = {tainted, poly, safe}.

The inference then creates constraints for all program state-
ments according to the typing rules in Fig. 4. It takes into
account the mutability of the left-hand-side of assignments
as discussed in Sect. 3. Then the set-based solver iterates
over constraints c and calls SolveConstraint(c). Solve-
Constraint(c) removes infeasible qualifiers from the set of
variables in c [14]. Consider constraint c: qy <: qx where
S(y) = {tainted} and S(x) = {tainted, poly, safe} before solv-
ing the constraint. The solver removes poly and safe from
S(x), because there does not exist a qy ∈ S(y) that satisfies

2For brevity and clarity, we omit q when dealing with vari-
ables from code examples, i.e., we write y instead of qy.

1: procedure SummarySolver
2: repeat
3: for each c in C do
4: SolveConstraint(c)
5: if c is qx <: qy � qf and S(f) is {poly} then . Case 1
6: Add qx <: qy into C
7: else if c is qx � qf <: qy and S(f) is {poly} then . Case 2
8: Add qx <: qy into C
9: else if c is qx <: qy then . Case 3
10: for each qy <: qz in C do Add qx <: qz to C end for
11: for each qw <: qx in C do Add qw <: qy to C end for

12: for each qw <: qi � qx and qi � qy <: qz in C do . Case 4
13: Add qw <: qz to C
14: end for
15: end if
16: end for
17: until S remains unchanged
18: end procedure

Figure 5: Initially, S is the result of the set-based
solution and C is the set of constraints for program
statements. Cases 1 and 2 add qx <: qy to C be-
cause qy � poly always yields qy. Case 3 adds con-
straints due to transitivity. Case 4 adds constraints
between actual(s) and left-hand-side(s) at calls: if
there are constraints qw <: qi � qx (flow from actual
w to formal x) and qi � qy <: qz (flow from return
value y to left-hand-side z), and also qx <: qy (flow
from formal to return value), Case 4 adds qw <: qz.
Line 4 calls SolveConstraint(c): the solver infers new
constraints, which remove additional infeasible qual-
ifiers from S. This process repeats until S stays un-
changed. We represent equality constraints as two
subtyping constraints (e.g., qx <: qy and qy <: qx),
hence no explicit mention of equality constraints.

qy <: poly and qy <: safe. In the case that the infeasible
qualifier is the last element in S(x), the solver reports a type
error. For example, y{tainted} <: x{safe} is a type error
because it is not satisfiable.

The solver keeps removing infeasible qualifiers for each
constraint until it reaches a fixpoint. If there are type errors,
this indicates potential flows from sources to sinks.

3.2.2 Valid Typing
Unfortunately, even if the set-based solver terminates with-

out type errors, a valid typing still may not exist. That is,
there still may be undiscovered flows from sources to sinks.

We adapt method summary constraints, a technique that
removes additional infeasible qualifiers, and helps arrive at a
valid typing or uncover additional type errors. The algorithm,
adapted from [16] to DFlow, is shown in Fig. 5.

The method summary constraints are constraints that
“connect” parameters to return values. Recall the id example
in Fig. 2. p <: ret is a method summary constraint reflecting
the flow from the parameter p to the return value ret.

In many cases however, the flow from formal parameters to
return values is “connected” indirectly. For example, the pa-
rameter p and the return value ret can be connected through
two constraints: qp <: qx and qx <: qret. Due to transitivity,
we have qp <: qret. The algorithm “searches” for a subtyping
chain from the formal parameter (including this) to the re-
turn value of method m (Cases 1, 2, and 3 in Fig. 5). It uses
the method summary constraints to “connect” the actual
argument and the left-hand-side of the call assignment at
calls to m (Case 4).



1 public class Data {
2 String secret;

3 String get(Data this) {return this.secret;}
4 void set(Data this, String p){this.secret = p;}
5 }
6 public class FieldSensitivity2 extends Activity {
7 protected void onCreate(Bundle b) {
8 Data dt = new Data();

9 TelephonyManager tm = (TelephonyManager)
getSystemService(”phone”);

10 String sim = tm.getSimSerialNumber();

11 dt.set(sim);
12

13 SmsManager sms = SmsManager.getDefault();
14 String sg = dt.get();
15

16 sms.sendTextMessage(”+123”,null,sg,null,null);
17 }
18 }

Constraints Set-based solution New constraints�� ��S(secret) = {poly}

thisget � secret <: retget
�� ��S(retget) = {poly, safe} thisget <: retget

p <: thisset � secret
�� ��S(p) = {tainted, poly} p <: thissecret

�� ��S(dt) = {tainted, poly, safe}

q10 � tainted <: sim
�� ��S(sim) = {tainted}

sim <: q11 � p sim <: dt

dt = q11 � thisset
�� ��S(thisset) = {tainted, poly}

dt <: q14 � thisget
�� ��S(thisget) = {poly, safe}

q14 � retget <: sg dt <: sg
�� ��TYPE ERROR!

sg <: q16 � safe
�� ��S(sg) = {safe}

Figure 6: FieldSensitivity2 example refactored from DroidBench. The frame box beside each statement shows
the corresponding constraints the statement generates. We omitted uninteresting constraints. The oval
boxes show propagation during the set-based solution. 16 forces sg to be {safe}, then 14 forces retget to be
{poly, safe} and then 3 forces thisget to be {poly, safe} and secret to be {poly} (recall that fields are initialized to
{tainted, poly}, Sect. 3.2.1). 10 forces sim to be {tainted}, which in turn forces the parameters p and thisset to be
{tainted, poly}. There are no type errors in the initial set-based solution. The red frame boxes in the fourth
column (New constraints) show the constraints due to SummarySolver. Since field secret is poly, constraint
thisget � secret <: retget leads to method summary constraint thisget <: retget, which in turn leads to dt <: sg due to
the call at 14. Similarly, p <: thisset � secret leads to p <: thisset, which in turn leads to sim <: dt due to the call
at 11. Since sim is {tainted} and sg is {safe}, these constraints cause a TYPE ERROR, detecting the leak.

Consider again the id method in Fig. 2. We have p <: ret
due to the return statement return p. The inference adds
constraints between actual arguments and left-hand-sides at
callsites 10 and 11. First, p <: ret implies q10�p <: q10� ret.
This constraint and the constraints at callsite 10

src <: q10 � p <: q10 � ret <: srcId

entail src <: srcId. The inference adds src <: srcId, connecting
the actual argument src and the left-hand side srcId at callsite
10. Similarly, the inference adds sink <: sinkId at callsite 11.
Such new constraints remove additional infeasible qualifiers,
and help arrive at a valid typing or uncover new type errors.

When SummarySolver (Fig. 5) terminates without type
errors, the inference derives a concrete typing by picking
up the maximal element of S(x) according to the ranking
tainted > poly > safe. Such maximal typing almost always
type-checks, which guarantees that there is no unsafe flow
from sources to sinks. Even in the rare cases when the
maximal typing does not type check, there is no unsafe
flow [27]. In contrast, the maximal typing derived from the
set-based solution before running SummarySolver, usually
does not type check.
SummarySolver, which dominates the inference, has

worst-case complexity of O(n3), where n is the size of the
program. There are at most O(n) iterations of the outer
loop (line 2) because at least one of O(n) variables is up-
dated in each iteration. There are at most O(n2) iterations
of the inner loop (line 3) because in the worst case every
two variables can form a constraint, resulting in O(n2) con-
straints. Note that lines 10-12 need to run only when a new
constraint is first discovered, so they contribute O(n3) over
all constraints. Altogether, we have worst-case complexity

of O(n3). Soundness of DFlow is argued as in [15].

3.2.3 Example
Let us consider the FieldSensitivity2 example refactored

from DroidBench [7] in Fig. 6. The return of Telephony-
Manager.getSimSerialNumber (line 10) is a source and the
parameter msg of SmsManager.sendTextMessage (line 16) is
a sink. The serial number of the SIM card is obtained and
stored into a Data object. Later, it is retrieved from the Data
object and sent out through an SMS message without user
consent. Fig. 6 demonstrates the analysis.

4. EXPLAINING TYPE ERRORS
Type inference produces type errors whenever there may

be flow from a source to a sink. Unfortunately, type errors
by themselves are rarely useleful. For example, DroidInfer
produces the following type error at statement 10 in Fig. 6:

q10 � retgetSimSerialNumber{tainted} <: sim{safe}

meaning that the right-hand-side of the call assignment is
tainted while the left-hand-side is inferred safe. The challenge
is to map each type error into a concise and intuitive source-
sink path that explains the error.

In recent work [26], we studied the connection between
DFlow/DroidInfer and CFL-reachability [33, 6]. The key
idea is that the type constraints in Fig. 4 correspond to edges
in an annotated dependence graph, and that type inference
amounts to CFL-reachability computation over the graph.

Field access constraints correspond to field-annotated edges
(those constraints account for structure-transmitted depen-
dences in Reps’ terminology [34]). In the example in Fig. 6,



the field read return this.secret and its DFlow constraint
thisget � secret <: retget correspond to edge

thisget
]secret→ retget

As it is standard in CFL-reachability, the open bracket [f
denotes a write to field f, and the close bracket ]f denotes
a read of f. Similarly, callsite constraints correspond to
callsite-annotated edges (those account for call-transmitted
dependences). In the example in Fig. 6, callsite 14 gives rise
to the following constraints:

dt <: q14 � thisget q14 � retget <: sg

which correspond to the following edges:

dt
(14→ thisget retget

)14→ sg

Again standard in CFL-reachabililty, the open parenthesis
(i denotes a call at callsite i, and the closed parenthesis )i
denotes a return at callsite i.

The constraints in Fig. 6 give rise to source-sink path

source → sim
(11→ p

[secret→ thisset
)11→ dt

(14→ thisget
]secret→ ret

)14→ sg→ sink

which presents an intuitive explanation of the type error we
showed at the beginning of this section: the source flows into
local variable sim, which in turn flows to formal parameter
p at callsite 11, where in turn p is written into field secret
of this, etc. Perhaps the only unintuitive part is the edge

this
)11→ dt (naturally, the flow at callsite 11 is from dt to this).

This inverse edge is due to the mutation of thisset, which
amounts to a return from set at 11.

Let L(F ) denote the context-free language of balanced
open and closed brackets, and let L(C) denote the analogous
language of balanced open and closed parentheses. For ex-
ample, string [f ]f [g ]g is in L(F ) but [f ]g is not in L(F ). For
precise treatment, we refer the interested reader to [26]. A
feasible source-sink path is a path where the field string be-
longs to L(F ) and the call string belongs to L(C). The above
path is feasible because its field string [secret ]secret ∈ L(F ) and
its call string (11 )11 (14 )14 ∈ L(C). Our goal is to map each
type error to one or more feasible source-sink paths.

We run DroidInfer with the option that pushes type errors
towards sources. (This can be done with a prioritization of
the constraints in SummarySolver in Fig. 5.) The result is
that when DroidInfer terminates, the safe sinks have affected
the set-based solution of each variable that flows to a sink.
More precisely, if x flows to a sink, then tainted /∈ S(x).
Thus, we can construct the dependency graph from the
constraints for program statements, omitting all nodes whose
set-based solution contains tainted. The resulting graph
can be viewed as a backward slice that excludes the parts
of the program unaffected by the sinks. This significantly
reduces the size of the dependency graph and renders CFL-
reachability reasoning practical.

For each type error, we run CFL-explain, which prints fea-
sible paths from the source at the type error, to all reachable
sinks. CFL-explain, a breadth-first-search (BFS) augmented
with CFL-reachability, is described in detail in Fig. 7. Note
that one must restrict the keys of map M to ensure termi-
nation. Currently we distinguish keys by the last two open
parentheses and the last two open brackets. This means
that if CFL-Explain has recorded in M a path to x with a
call string, say, that ends at (i (j , and it later arrives at a

1: procedure CFL-Explain
2: Add 〈start, ε, ε〉 to Q
3: Add 〈start, ε, ε〉 → [] to M
4: while Q is not empty do
5: dequeue next node 〈n, f, c〉 from Q
6: if n is a sink node then
7: print the path in M associated with 〈n, f, c〉
8: end if
9: for each edge e = 〈n,m, f ′, c′〉 s.t. Method(m) ∈ CG do
10: Let p be the path in M associated with 〈n, f, c〉
11: Let p′ be the path formed by appending e to p
12: if f+f ′∈L(F ) ∧ c+c′∈L(C) ∧ 〈m, f+f ′, c+c′〉 /∈M then
13: Add 〈m, f+f ′, c+c′〉 → p′ to M
14: Add 〈m, f+f ′, c+c′〉 to Q
15: end if
16: end for
17: end while
18: end procedure

Figure 7: CFL-Explain is a BFS augmented with
CFL-reachability. M maps graph nodes n, aug-
mented with field-access strings f ∈ L(F ) and call
strings c ∈ L(C), to paths in the graph. f ′ is a
field write [f , a field read ]f or ε. Similarly, c′ is
(i, )i or ε. For each edge, f ′ or c′ is empty (e.g.,
e = (thisget, ret, ]secret, ε)) CG is a precomputed call
graph. Method(m) gives the enclosing method of m.

different path to x, whose call string also ends at (i (j , the
latter path will not be recorded.

Continuing with the example in Fig. 6, CFL-explain takes
as input the variable on the right-hand-side of the type error,
sim, and produces the source-sink path we showed earlier:

sim
(11→ p

[secret→ thisset
)11→ dt

(14→ thisget
]secret→ ret

)14→ sg→ sink

Type inference and CFL-reachability inherently provide a
data-flow guarantee but lack a control-flow guarantee. In
other words, in order for the flow from source to sink to
happen, control must reach the statements on the path in
the particular order specified by the path. But does control
reach the path? DroidInfer takes as input the entire APK
and infers types and source-sink paths across the entire APK,
even though some classes and methods may be unreachable.

To provide a (degree of) control-flow guarantee, we incor-
porate a conservative call graph. Concretely, line 9 in Fig. 7
verifies that the target node m appears in a method, which
is live in the call graph CG.

CFL-Explain can refute a type error reported by DroidInfer
for one of two reasons: 1) one or more methods on the path
from source to sink is unreachable on the call graph and 2)
the type error is a false positive due to the approximation in
structure-transmitted dependences employed by DroidInfer
(see [26]), and CFL-Explain cannot confirm a feasible path.

5. ANDROID-SPECIFIC FEATURES
In this section, we discuss our techniques for handling

Android-specific features, including libraries, multiple entry
points and callbacks, and inter-component communication.

5.1 Libraries
Libraries are ubiquitous in Android apps. An effective

analysis should keep track of flows through library method
calls. Unfortunately, analyzing the Android library is a signif-
icant challenge. Computing safe summaries for the Android
library is an open problem (to the best of our knowledge).



Analyzing library calls on-demand, i.e., using some form of
reachability analysis faces challenges due to callbacks and
reflection, which are pervasive in Android. The most popular
solution appears to be manual summaries for common library
methods [20, 7], which is clearly unsatisfying.

DroidInfer inserts annotations (type qualifiers) into the
Android library for sources (e.g. location access, phone state)
and for sinks (e.g., Internet access) by using the Stub Gener-
ation Tool and the Annotation File Utility from the Checker
Framework [31]. DroidInfer uses conservative defaults for
all unknown library methods. For any unanalyzed library
method m, it assumes the typing poly, poly → poly. This
typing conservatively propagates a tainted receiver/argument
to the left-hand side of the call assignment. Similarly, it
propagates a safe left-hand-side to the receiver/arguments.
Consider the following code snippet:

1 public class MyListener implements LocationListener {
2 @Override
3 public void onLocationChanged(Location loc){//source
4 double lat = loc.getLatitude();
5 Log.d(”History”, ”Latitude: ”+ lat); // sink
6 }
7 }

LocationListener.onLocationChanged(tainted Location l) is a
callback method. Parameter l is a tainted source that must
propagate throughout the overriding user-defined method
MyListener.onLocationChanged(Location loc). The method
overriding constraints (Sect. 3) lead to:

typeof (MyListener.onLocationChanged(Location loc))
<:

typeof (LocationListener.onLocationChanged(tainted Location l))

This entails l <: loc, forcing loc to be tainted as well.
DroidInfer assumes that library method Location.getLatitude()

is typed as follows:
poly double getLatitude(poly Location this)

and creates the following constraints at Statement 4:

loc <: q4 � poly q4 � poly <: lat

Because loc is tainted, the callsite context q4 is inferred as
tainted. Consequently, lat is inferred as tainted as well, which
leads to a type error because Statement 5 requires a safe
argument. (Here the parameter msg of Log.d(String tag,
String msg) is a safe sink.)

We apply these conservative defaults to the Java and
Android libraries. We can apply these defaults to any third-
party library we do not wish to analyze.

5.2 Multiple Entry Points and Callbacks
Multiple entry points and the ubiquitous use of callbacks

in Android apps cause difficulty for traditional dataflow and
points-to-based analysis. The Android app is not a closed
program. Instead, it runs within the Android framework,
which implicitly creates objects of the user-defined classes
and calls user-defined methods in the app through callbacks.

DroidInfer is type-based and modular. Therefore, it can
analyze any given set of classes.

However, the analysis of an Android app is different from
the analysis of an open library and it requires special con-
sideration. Roughly speaking, we need to capture the “con-
nections” among callback methods, or DroidInfer might miss
privacy leaks through fields. Consider the LocationLeak2
example refactored from DroidBench in Fig. 8. The tainted

1 public LocationLeak2 extends Activity implements
LocationListener {

2 private double latitude;
3 protected void onResume() {
4 double d = this.latitude; // TYPE ERROR!
5 Log.d(”Latitude”, ”Latitude: ”+ d); // sink
6 }
7 public void onLocationChanged(Location loc) {
8 double lat = loc.getLatitude(); // loc is a source
9 this.latitude = lat;

10 }
11 }

Figure 8: LocationLeak2 refactored from DroidBench,
highlights DroidInfer’s novel handling of callbacks.

lat of the current location, obtained in callback method on-
LocationChanged, flows through field latitude and reaches
the safe parameter of Log.d in another callback method,
onResume. Local variables lat and d are tainted and safe,
respectively. If DroidInfer analyzed the app as a stan-
dard open library (e.g., as in [17]), it would infer this of
onResume as safe. This is because of (tread) constraint
thisonResume � latitude <: d where S(latitude) = {tainted, poly}
and S(d) = {safe}. Due to this constraint, S(latitude) would
be updated to {poly}. Further, DroidInfer would infer this of
onLocationChanged as tainted, because of (twrite) constraint
lat <: thisonLocationChanged � latitude where S(lat) = {tainted}.
The inferred typing would type check and the leak through
field latitude would be missed.

If the app were a standard open library, it would be com-
posed with user code, which would instantiate the Activity
and reveal the leak. Consider this hypothetical user code:

1 Activity a = new LocationLeak2();
2 a.onLocationChanged(loc);
3 a.onResume();

When composing this code with the inferred typing for Loca-
tionLeak2, there would be a type error because Statement 2
requires a to be tainted (thisonLocationChanged is mutable; thus,
there is equality constraint at 2: a = q2 � thisonLocationChanged),
while Statement 3 requires a to be safe.

The Android app is not composed with user code. Instead,
the Activity, as well as other component objects, are instanti-
ated by the Android framework. Therefore, DroidInfer needs
to handle the implicit instantiation of app objects. DroidIn-
fer creates equality constraints for all pairs of this parameters
of callback methods in the same class. This “connects” this of
callback methods. If the app type checks, this means there
is a solution for constraints

qa <: qi1 � qthiscallback1
qa = qi2 � qthiscallback2

...

which correspond to the calls to callback methods in the
Android framework.

In the LocationLeak2 example, the inference creates an
equality constraint for the this parameters of onResume and
onLocationChanged:

thisonResume = thisonLocationChanged

thisonResume becomes tainted. There is a type error at State-
ment 4, thus detecting the privacy leak.



1 public class SmsReceiver extends BroadcastReceiver {
2 public void onReceive(Context c, Intent i) {
3 Bundle bundle = intent.getExtras();
4 Object[] pdusObj = (Object[]) bundle.get(”pdus”);
5 StringBuilder sb = new StringBuilder();
6 for (int i = 0; i < pdusObj.length; i++) {
7 SmsMessage msg = SmsMessage.createFromPdu((byte

[]) pdusObj[i]); // source
8 String body = msg.getDisplayMessageBody();
9 sb.append(body);

10 }
11 Intent it = new Intent(c, TaskService.class);
12 it.putExtra(”data”, sb.toString());
13 startService(i);
14 }
15 }
16 public class TaskService extends Service {
17 public void onStart(Intent it, int d) {
18 String body = it.getSerializableExtra(”data”);
19 List list = new LinkedList();
20 list.add(body);
21 HttpClient client = ....getHttpClient();
22 HttpPost post = new HttpPost();
23 post.setURI(URI.create(”http://103.30.7.178/getMotion.

htm”));
24 Entity e = new UrlEncodedFormEntity(list, ”UTF8”);
25 post.setEntity(e); // sink
26 client.execute(post);
27 }
28 }

Figure 9: SMS message stealing in Fakedaum. The
SMS message is intercepted in SmsReceiver and passed
to TaskService via Intent. Finally, the message is sent
out to the Internet using HTTP post method, re-
sulting in a message leak.

5.3 Inter-Component Communication (ICC)
Android components (activity, service, broadcast receiver

and content provider) interact through ICC objects — mainly
Intents. Communication can happen across applications as
well, to allow functionality reuse. There are two forms of
Intent in Android: 1) Explicit Intents have an explicit
target component — the exact target class of the Intent
is specified, and 2) Implicit Intents do not have a target
component, but they include enough information for the
system to implicitly determine the target component.

Capturing data flow through Intents is important for de-
tecting privacy leaks in Android. Consider the example
refactored from a real malware app, Fakedaum3 in Fig. 9,
where the return value of SmsMessage.createFromPdu is a
source and the parameter of HttpPost.setEntity is a sink. The
broadcast receiver SmsReceiver intercepts the SMS messages,
then puts the messages into an Intent and starts the back-
ground service TaskService with the Intent. Then TaskService
sends the messages to the Internet without user consent. If
the communication between the broadcast receiver SmsRe-
ceiver and the background service TaskService is not captured,
there is no way to detect the privacy leak.

We propose a technique to improve analysis precision in
the presence of ICC through Intents. For an explicit Intent
whose target class is specified by a final or constant string,
DroidInfer connects the data carried by the Intent using
placeholders. DroidInfer replaces the Intent with a “typed”

3http://contagiominidump.blogspot.com/2013/11/
fakedaum-vmvol-android-infostealer.html

Figure 10: Architecture of the inference framework.

Intent at both the sender and the receiver components. In
addition, each putExtra and getExtra are treated as writing
and reading a field in the “typed” Intent, respectively. Since
the target class of Intent it in Fig. 9 (line 11) is specified by
constant TaskService.class, DroidInfer transforms the program
into:

10 ...
11 TaskService Intent it = new TaskService Intent();
12 TaskService Intent.data = sb.toString();
13 ...
18 String body = TaskService Intent.data;

As a result, the intercepted message is connected to the post
data via placeholder data of TaskService Intent. The leak is
captured by DroidInfer.

For explicit Intents whose target class is not specified
by a constant string, a string analysis, which we leave for
future work, is required to determine the target. DroidInfer
makes the worst-case assumption for such explicit Intents,
as well as for implicit Intents carrying sensitive data, as
their content can be intercepted by any, possibly malicious,
component. This is achieved by annotating as safe the Intent
parameter of library methods that start new components,
such as startActivity and startService. Suppose it2 refers to an
implicit Intent carrying current location information, then
there is a type error at statement startSerivce(it2) because
startSerivce requires a safe argument, but it2 is tainted as it
contains tainted data.

6. EMPIRICAL RESULTS
We have built a type inference and checking framework

and we have instantiated the framework with several type
systems and their corresponding inferences. Initially, the
framework had one front-end, built on top of the Checker
Framework [31] (CF). CF takes as input the Java source code,
which unfortunately is not available for most Android apps, as
they are usually delivered as Android Package Files (APKs).
Therefore, we extended our type inference framework by
building an Android constraint generation front-end, based
on Soot [37] and Dexpler [2]. The architecture of our inference
framework is shown in Fig. 10. It is worth noting that
we came upon DFlow and DroidInfer as instances of our
framework and they proved very effective.

The Android front-end takes as input the Jimple files
transformed by Soot and Dexpler and outputs the constraints
generated according to the typing rules in Sect. 3. Next, the
generated constraints along with the annotated libraries
where sources and sinks are defined, are supplied to the type
inference engine, which computes the set-based solution then
either extracts a valid typing or reports type errors for the
analyzed program. All sources and sinks are listed in the



Tool Name AppScan Source Fortify SCA FlowDroid DroidInfer
Sum, Precision and Recall–excluding implicit flows√

, higher is better 14 17 26 28
×, lower is better 5 4 4 8
©, lower is better 14 11 2 0
Precision p =

√
/(
√

+×) 74% 81% 86% 78%
Recall r =

√
/(
√

+©) 50% 61% 93% 100%
F-measure 2pr/(p + r) 0.60 0.70 0.89 0.88

Figure 11: Summary of comparison on DroidBench [7] with other taint analysis tools (
√

= correct warning,
× = false warning, © = missed flow).

Appendix. They are the union of the sources and sinks of
DroidBench [7, 1] and the network sinks of Contagio [24].
The sources are various phone sata and location. The sinks
include the expected log sinks and the following Internet sinks:
WebView.loadUrl, URL.openConnection, and Http request. The
sinks include Intents, which are necessary for the flows in
DroidBench. The type inference framework, including DFlow
and DroidInfer, is publicly available at http://code.google.
com/p/type-inference/.

We build 0-CFA callgraphs using WALA4. Recall that we
use the set of reachable methods from the call graph to check
that the finding of DroidInfer occurs entirely within those
methods (Sect. 4). We use support in WALA, contributed
by SCanDroid[9], to build call graphs of APKs.

All experiments run on a server with IntelR© XeonR© CPU
X3460 @2.80GHz and 8 GB RAM. The maximal heap size
is set to 2 GB. The software environment consists of Oracle
JDK 1.6 and the Soot 2.5.0 nightly build.

6.1 Hypotheses
We evaluate the DroidInfer system along three hypotheses:

(H1) High recall and precision. DroidInfer misses few
true flows and reports few false positive flows.
(H2) Network flows. DroidInfer detects leaks of phone or
location info to the network, in known malicious apps and
in Google Play Store apps.
(H3) Scalability. DroidInfer scales to large apps.

We run DroidInfer on three sets of apps: 1) DroidBench [7],
2) 22 apps from the Contagio website [24], known to contain
leaks, and 3) 144 popular apps from the Google Play store,
including the top 30 apps at the time of writing.

6.2 DroidBench
We run DroidInfer on DroidBench, which is a suit of 39

Android apps designed by Fritz et al. [7, 1]. DroidBench
exercises many difficult flows, including flows through fields
and method calls, as well as Android-specific flows. Droid-
Bench is the standard evaluating taint analyses for Android.
We compare with three other taint analysis tools – AppScan
Source [18], Fortify SCA [13], and FlowDroid [7, 1], using
the results presented by Fritz et al. [7]. Fig. 11 summarizes
the comparison. DroidInfer outperforms AppScan Source
and Fortify SCA, which miss substantial amount of flows.
The low recall contributes to the slightly higher precision
reported by Fortify SCA. FlowDroid is slightly more pre-
cise than DroidInfer because it uses a flow-sensitive analysis.
DroidBench tests for flow sensitivity and our analysis, which
is flow-insensitive, misses those tests. In our experience
with real-world apps however, flow sensitivity will not help.
Overall, the F-measures for FlowDroid and DroidInfer are

4http://wala.sourceforge.net

AwesomeJokes (4)
DeviceId→URLConnection

Backflash (3)
SmsMessage→URLConnection

BatteryDoctor (5)
Location→HttpEntity
DeviceId→HttpEntity
DeviceId→WebView

BatteryImprove (1)
DeviceId→URLConnection

Beita (4)
DeviceId→HttpEntity
Location→HttpEntity

DroidKungFu (1)
DeviceId→HttpEntity

FakeBanker (7)
PhoneNumber→HttpEntity
SimSerialNumber→HttpEntity
SmsMessage→HttpEntity
PhoneNumber →HttpEntity

Fakedaum (3)
SimSerialNumber→HttpEntity
PhoneNumber→HttpEntity
SmsMessage→HttpEntity

FakeTaobao (2)
PhoneNumber→HttpEntity
DeviceId→HttpEntity

Godwon (5)
DeviceId→HttpEntity
PhoneNumber→HttpEntity
SmsMessage→HttpEntity

Jollyserv (2)
DeviceId→sendTextMessage
PhoneNumber→HttpEntity

Kmin (2)
SubscriberId→URLConnection
DeviceId→URLConnection

Loozfon (4)
PhoneNumber→HttpEntity
DeviceId→HttpEntity
Contact→HttpEntity

Roidsec (4)
PhoneNumber
→Socket OutputStream
Locaion→Socket OutputSteam
Contact→Socket OutputStream
DeviceId→Socket OutputStream

Scipiex (1)
Contact→Socket OutputStream

Simhosy (3)
DeviceId→URLConnection
SubscriberId→URLConnection

Skullkey (1)
DeviceId→HttpEntity

Uranai (5)
DeviceId→HttpEntity
PhoneNumber→HttpEntity
SimSerialNumber→HttpEntity
Contact→HttpEntity

Zertsecurity (3)
DeviceId→HttpEntity
SmsMessage→HttpEntity

Figure 12: Leaks detected in Malware.

essentially the same. This strongly supports hypothesis H1.

6.3 Contagio
We analyzed all 22 apps tagged as “infostealer” on the

contagio website [24]. Fig. 12 summarizes the analysis result.
DroidInfer detects that 19 out of the 22 apps send out phone
state (e.g. DeviceId, SimSerialNumber, and PhoneNumber),
SMS messages, and/or location information through HTTP
or text messages, or write into a socket. DroidInfer detects
no leaks for the remaining 3 apps. For two of the APK files,
FakePlay and Repane, Soot/Dexpler did not generate Jim-
ple files and DroidInfer in turn did not generate constraints.
DroidInfer reports zero type errors on Phospy. (Phospy
appears to steal jpg and mp4 files, and such sources are not
included in DroidInfer at this point). All type errors on these
apps are explained and there are no false positives. These
results strongly support hypotheses H1 and H2.

6.4 Google Play Store

We analyze 144 free Android apps from the official Google
Play Store. These include the top 30 free apps (as of Jan
5th 2015, the time of writing) as well as other popular apps



2048 Number puzzle game 6.06 (8)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

AccuWeather 3.2.14.1 (8)
PhoneData→Log
PhoneData→Network
Location→Network

Location→Log
Location→Intent

Amazon 2.9.7 (2)
Location→Network

Backgrounds HD Wallpapers 2.0.1 (3)
PhoneData→Log
PhoneData→Network

Contact→Log

Chase Mobile 3.16 (2)
Contact→Intent

Clash of Mafias 1.0.45 (9)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

Clean Master 5.4.0 (6)
PhoneData→Network
Location→Log
Location→Network

Location→Intent
Contact→Intent

CSI: Hidden Crimes 1.6.0 (3)
PhoneData→Log Location→Log

Cut the Rope 2 1.3.0 (13)
PhoneData→Log
Location→Log

Location→Network

DealMoon 3.4.0 (4)
PhoneData→Log PhoneData→Network

Dice With Buddies 3.3.5 (14)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

Dictionary.com 4.4 (11)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

Don’t Tap The White Tile 2.2.3 (22)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

Dumb Ways to Die 2 1.1.1 (1)
PhoneData→Intent

ebay 2.6.0.98 (3)
Location→Log

ES File Explorer 3.1.3 (5)
PhoneData→Log
PhoneData→Network

Location→Log

ES Task Manager 1.4.2 (1)
PhoneData→Intent

ESPN Fantasy Football 1.1.6 (1)
PhoneData→Log PhoneData→Network

Expedia 3.6 (2)
PhoneData→Network Location→Log

Facebook 4.0.0.26.3 (2)
Location→Log

Facebook Messenger 5.0.0.16.1 (2)
Location→Log

Flow Free: Bridges 1.7 (3)
PhoneData→Log

GO SMS Pro 5.44 (14)
PhoneData→Log
PhoneData→Network

PhoneData→Intent
Contact→Intent

Groupon 3.1.3273 (6)
PhoneData→Log
PhoneData→Network

Location→Log

GUNSHIP BATTLE 1.3.0 (3)
Location→Log

HotPads 3.1 (2)
Location→Log

iHeartRadio 4.11.0 (5)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

Iron Force 1.5.2 (6)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

Job Search 2.3 (1)
Location→Log

Kakao Talk 4.6.8 (5)
PhoneData→Log
PhoneData→Intent
Location→Log

Contact→Log
Contact→Intent

LINE 4.3.0 (8)
PhoneData→Intent Contact→Intent

LinkedIn 3.4.3 (2)
PhoneData→Network Contact→Log

Looney Tunes Dash 1.45.11 (11)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

Make It Rain: Love of Money 1.2 (5)
Location→Log

Mint 3.1.1 (1)
Location→Log

MITBBS reader 8.5 (7)
Location→Log

Multi Touch Painting Demo 2.6.0 (3)
PhoneData→Log Location→Log

My Talking Angela 1.1 (4)
PhoneData→Log
PhoneData→Intent

Location→Log

My Talking Tom 2.1.1 (5)
PhoneData→Log
PhoneData→Network

PhoneData→Intent
Location→Log

Netflix 3.9.1 (2)
PhoneData→Log PhoneData→Network

Next Radio 2.0.757 (6)
PhoneData→Log
Location→Log

Location→Network

Noom Weight Loss Coach 4.0.5 (4)
PhoneData→Log
PhoneData→Network

Location→Network

NYTimes 3.6.3 (3)
Location→Log

ooVoo 2.1.3 (7)
PhoneData→Log PhoneData→Network

Pandora 5.4 (2)
Location→Log Location→Network

Paperama 1.1.0 (3)
PhoneData→Log Location→Log

Pool Billiards Pro 2.49 (1)
PhoneData→Log PhoneData→Network

Powerboat Racing 1.1 (1)
PhoneData→Log

Priceline 2.8.21 (5)
PhoneData→Log
PhoneData→Network

Location→Log

Real Fingerprint Scanner 3.4 (3)
PhoneData→Network

Skype 5.1.0.57240 (6)
PhoneData→Log Location→Log

Smash Hit 1.3.3 (3)
PhoneData→Log Location→Log

Snapchat 5.0.34.10 (3)
PhoneData→Log Location→Log

Solitaire 3.0.3 (11)
PhoneData→Log
PhoneData→Network
Location→Log

Location→Intent
Location→Network

Sound Cloud 14.10.27 (2)
Location→Intent

Spotify Music 1.0.0.82 (1)
PhoneData→Log

StudyBlue 5.4.2 (3)
PhoneData→Log
PhoneData→Network

Location→Log

Subway Surfers 1.33.0 (8)
PhoneData→Log Location→Log

Super-Bright LED FlashLight 1.0.3 (21)
PhoneData→Log
PhoneData→Network

Location→Log
Location→Network

Swype 1.7.3.28966 (4)
Location→Log

Tango Messenger 3.6.84179 (10)
PhoneData→Log
PhoneData→Intent

Location→Log
Contact→Intent

Temple Run 2 1.9 (1)
PhoneData→Log

textPlus 5.9.1.4671 (12)
PhoneData→Log
PhoneData→Network
PhoneData→Intent

Location→Log
Location→Network

The Weather Channel 4.2.5 (6)
Location→Log

Tinder 3.3.2 (6)
PhoneData→Log
PhoneData→Intent

Location→Log

Trigger 8.9.590 (2)
Location→Log Location→Intent

Trivia Crack 1.9.3 (10)
PhoneData→Log
Location→Log

Location→Network

TuneIn Radio 12.0 (3)
Location→Log

Twitter 5.32.0 (4)
PhoneData→Log Location→Intent

Uber 2.7.15 (5)
Location→Log

Venmo 6.4.2 (8)
PhoneData→Log
Location→Log

Contact→Intent

Viber 4.3.1.21 (18)
PhoneData→Intent Location→Network

Virtual Pet Care 1.52 (2)
Location→Log Location→Network

Walmart 1.7.2 (1)
Location→Log

WeatherBug 3.4.33 (10)
Location→Log Location→Network

WhatsApp Messenger 2.11.238 (16)
PhoneData→Log Contact→Intent

Words 7.1.4 (17)
PhoneData→Log
PhoneData→Network
PhoneData→Intent

Location→Log
Location→Network

World of Battleships 1.0.05 (3)
PhoneData→Log
PhoneData→Network

Location→Log

Yahoo Mail 3.1.3 (8)
PhoneData→Network

Yik Yak 2.0.002 (2)
PhoneData→Log

Yo 1.110640.50 (4)
PhoneData→Log Location→Log

ZEDGE Ringtones Wallpapers 4.3.1 (6)
Location→Log Contact→Intent

Zillow 5.7.257 (5)
PhoneData→Log
PhoneData→Network

Location→Log

Figure 13: Actual leaks (i.e., non-false-positives) in Google Play Store shown as Source→Sink pairs. The
number in parentheses (n) is the number of type errors reported by DroidInfer for the app (some of these n
errors are false positives and do not have Source→Sink pairs). Sometimes several errors correspond to one
Source→Sink pair. Some flows happen in advertising libraries such as InMobi, Millenial Media and Flurry,
called from the apps. 5 of the 88 apps with type errors had only false positives or all type errors were refuted
by CFL-Explain, and are not included here.
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Figure 14: A source-sink path in Fiksu. When a flow
is triggered by a library call, CFL-Explain labels the
edge with the corresponding library method. When
types change due to library calls, we show the new
type at the target (e.g., List r5). We keep the identi-
fiers exactly as they appear in the Jimple code.
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Figure 15: A source-sink path in Tremorvideo.
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Figure 16: Results.

from the Editor’s Choice list, and cover at least 24 categories.
DroidInfer throws an Internal error in Dexpler on 1 app
and an Out-of-memory error on 5 apps. (Recall that the
max heap size is set to 2GB.) It analyzes all other 138 apps
successfully.

6.4.1 Results
DroidInfer identifies sources and sinks in 111 apps and

reports 632 type errors over 88 apps. Two authors of the
paper inspected all type errors with CFL-Explain.

Fig. 16 summarizes our results. Of those 632, 161 type
errors are refuted by CFL-Explain. Almost all of the refu-
tations are due to the call graph. The false positive rate
is 15.7%, which is well within the accepted bounds. (The
reason false positives happen will be explained shortly.) 113
true flows (29%), spanning 40 apps, are network flows (i.e.,
Location or DeviceId flows to the Internet). The remaining
flows are flows of Location or DeviceId to Logs and to a lesser
extent to Intent. This strongly supports hypothesis H2.

DroidInfer takes 139 seconds per app on average. It takes
less than 3 minutes on 99 of the 138 apps, between 3 and 5
minutes on 31 apps, and between 5 and 8 minutes on 6 apps.
The 2 outliers run in 18 and 19 minutes. The call graphs are
built in, on average, 90 seconds per APK, with a range of 6s
to 373s and CFL-Explain prints source-sink paths instantly.
This timings strongly support hypothesis H3.

Fig. 13 summarizes the leaks we found. In contrast to the

FlowDroid researchers [1], who report no network flows, we
uncover many network flows. Almost one third of all apps
and almost one half of the apps with errors collect sensitive
data and send this data over the network. In numerous cases,
the DeviceId is sent over the network as part of the URL
string.

We examined several representative network flows. Droid-
Infer reports the following type error in the Fiksu tracking
library (com.fiksu.asotracking.*) included in the Zillow app:

qi � retgetDeviceId{tainted} <: r2{safe}

The source-sink path reported by CFL-Explain is shown
in Fig. 14. Source DeviceId is returned from method get-
DeviceId into method buildUrl, which forms a URL string
”https://...&deviceId=...&uiud=...”. buildUrl adds this string
to a list of saved URLs; subsequently it iterates over the
list, retrieves each URL string and sends the string as ar-
gument to method doUpload. DroidInfer reports an in-
teresting type error in the Tremorvideo video ad library
(com.tremorvideo.sdk.android.videoad.*) included in the ac-
cuweather app. The source-sink path reported by CFL-
Explain is shown in Fig. 15. Note that the path has interleav-
ing parentheses and brackets and yet the flow is quite obvious.
The deviceId source is returned at callsite i and written into
field f of the du object (names of classes and methods in
Tremorvideo appear to have been obfuscated.) The du flows
through several calls, until it’s f field is retrieved into String
r29 which is then put into a JSON object to form the uiud-
deviceId key-value pair. This complex and yet feasible path
attests to the power of DroidInfer and CFL-Explain.

Similarly to the FlowDroid researchers [1], we uncover
many flows of DeviceId and Location to logs. In one inter-
esting case, the Whatsapp app dumps the SMS message
body into the log when a certain IOException occurs. In the
majority of cases the logs appear for debugging purposes (to
the best of our understanding.) It is unclear why apps would
log so much sensitive info, usually in clear text, given that
malicious apps may read the logs and retrieve the info (until
Android 4.0, any app that held the READ LOGS permission
could read the logs).

One may wonder why false positives occur given that CFL-
Explain filters out infeasible paths. Recall that the DroidInfer
system does not analyze libraries. Thus, constraints due to
library calls result in “local” edges by CFL-Explain, that is,
edges connecting two local variables, with no field or call
annotations. Edge r4 → r5 in Fig. 14, constructed from
DroidInfer constraint r4 <: r5 is an example of such local
edge. These edges subsume the field accesses and method
calls that happen inside the library.

In rare cases, these edges cause infeasible paths. The most
common case writes sensitive data (e.g., DeviceId) into a field,
then calls a library method on the object: e.g., source →
r1

[f→ UserActivity : r2
getPackageName→ sink . We assume that the

library method does not retrieve sensitive information and
count these cases as false positives.

We conclude this section with a brief discussion of the
usability of the system. DroidInfer is completely automatic.
CFL-Explain requires users to enter an identifier and examine
the paths, because of the reason discussed above, i.e., that
library calls may give rise to false positive paths. In our
experience, it takes less than 1 minute to vet the flow paths
for a given type error, 2 minutes in rare cases. The tool
was used successfully by two of the authors of this paper,
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as well as an undergraduate research assistant with minimal
knowledge of program analysis.

6.4.2 Runtime Results
To gauge the usefulness of the static results, we run 10

random apps and collect and analyze their logs using Android
Device Monitor. There are 76 type errors reported as true
flows across the 10 apps. Despite short runs we covered 14
type errors, or almost 20% of all errors. These errors span
8 apps and expose flows of DeviceId to both logs and the
network. The flows are obvious tracking, as in Fig. 14, which
is covered.

Fig. 17 summarizes the results. Of the 62 type errors
we did not cover, 13 are beyond our runtime analysis. For
example, there are several type errors reported as flows to
the network. However, there are no logs around the network
call and we cannot judge if the flow is covered or not.

This experiment shows that the analysis reports a sub-
stantial number of type errors that reveal true, dangerous
flows. In the same time, it reports many ”difficult” errors,
i.e., type errors that are likely true flows, but are difficult to
trigger with runtime analysis. A lot of the uncovered type
errors are in ad libraries that never loaded during our runs.
Yet we found it impossible to trigger a specific ad library.
For example, in Cut the Rope 2 we observed ads from
AdMarvel and other libraries in unrecorded runs. (Our tool
reported several type errors in AdMarvel.) Unfortunately,
when recording the logs, we observed ads only from Unity3D
until the app stopped serving ads altogether.

We conclude this section with one of the most interesting
flows we observed. When the user requests the details of a
mortgage quote, the Zillow app grabs the phone number
(and other info) stores it into an Object array, then proceeds
to format the array into a URL string, log the string and
send it to a loadUrl. The CFL-Explain paths are as follows:
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The URL string with the phone number appears in the log!

6.4.3 Comparison with FlowDroid
We ran FlowDroid on the top 30 free apps from the Google

Play Store with max heap size set to 6 GB. FlowDroid threw
an Out-of-memory error on 28 of the apps (we confirmed
with the developers that FlowDroid indeed requires more
than 6 GB of memory5). In contrast, DroidInfer runs with
a max heap size of 2 GB and succeeds on 28 of the 30
apps. DroidInfer’s scales well because it avoids points-to
analysis, while FlowDroid uses computationally expensive

5Eric Bodden: personal communication.

field- and object-sensitive points-to analysis. This result
strongly supports hypothesis H3 well.

Of the remaining 114 apps, FlowDroid succeeds on 48. It
reports more than 4000 flow paths over the 50 apps. We
examined a random 21 of those apps and compared the
results with DroidInfer. In only 6 apps does FlowDroid report
“classical”flows: there are 4 log flows (DeviceId or Location to
log) and 2 network flows (DeviceId or Location to Internet).
In contrast, DroidInfer reports “classical” flows in all 21 apps.
FlowDroid reports thousands of flows from Bundle, Intent
and Context, as it is overly-conservative in its handling of
inter-process communication. These results are consistent
with Artz et al. [1]. It is unclear why FlowDroid reports no
network flows — it does specify DeviceId and Location as
sources and URL.openConnection and Http request as sinks.

7. RELATED WORK
There is a large body of work on Android malware analysis,

both dynamic and static. We focus the discussion on static
analyses, excluding FlowDroid. LeakMiner [42] is a points-to
based static analysis for Android. It models the Android
lifecycle to handle callback methods. However, LeakMiner is
context-insensitive which may lead to false positives. It is
unclear whether LeakMiner supports ICC. SCANDAL [20] is
a static analyzer that detects privacy leaks in Android apps.
It directly processes Dalvik bytecode. SCANDAL is limited
by high false positive rate — the average false positive rate is
about 55%, primarily due to the unknown paths, which make
up more than half of the total paths [20]. AndroidLeaks [10]
finds potential leaks of private information in Android apps.
It uses WALA to construct a context-sensitive System De-
pendence Graph (SDG) and a context-insensitive overlay
for tracking heap dependencies in the SDG. CHEX [23] can
automatically vet Android apps for component hijacking
vulnerabilities. It models the vulnerabilities from a data-
flow analysis perspective and detects possible hijack-enabling
flows and data leakage. Unfortunately, these tools are not
publicly available and we cannot compare with DroidInfer.
Fritz et al. have contacted the authors of these tools, but
still, they were unable to compare due to various reasons [7].

SCanDroid [8] focuses on ICC. It formalizes the data flows
through and across components in a core calculus. Epicc [30]
discovers ICC for Android apps by identifying a specification
for every ICC source and sink, including the ICC Intent
action, data type, category, etc. We plan to integrate Epicc
in DroidInfer, which will provide more channels for privacy
leaks.

In previous work we built SFlow [16], a type-based taint
analysis for Java web applications, which can also analyze
Java source of Android apps. Although we build upon this
work, this paper has several substantial contributions. First,
we interpret type errors in terms of CFL-reachability, which
is a major step towards usability of type-based tools. Second,
we incorporate control-flow guarantees via call graphs; SFlow
provides no such guarantees, which means that many type
errors may be unreachable. Another key difference is that
SFlow uses the receiver, while DFlow uses the callsite context
at method calls. Thus, DFlow is more precise than SFlow
and accepts more programs. Consider again the example
in Fig. 2. SFlow generates these constraints at callsite 10:
y <: y� tainted src <: y� poly y� poly <: srcId. Because
src = tainted, y must be tainted. However, y being tainted
does not satisfy the SFlow constraints at callsite 11: y <:



y � tainted sink <: y � poly y � poly <: sinkId
where both sink and sinkId are safe. This is because y�poly =
tainted is not a subtype of sinkId = safe. As a result, SFlow
rejects this program, even though there is no flow from
the source to the sink. In contrast, DFlow accepts this
program as shown in Sect. 3.1. In addition, SFlowInfer, the
inference tool of SFlow, only works on Java source, which is
not available for most Android apps. DroidInfer works on
both Java source and Android APKs and therefore it can
analyze any real-world Android app. Last but not least, the
extensive evaluation on Google Play Store apps is a major
contribution over our previous work. IFC [5] is another
recent type-based taint analysis. It also works only on source
and therefore cannot analyze real-world apps. Furthermore,
it requires user annotations, while DroidInfer requires no
user annotations. Earlier work on type-based taint analysis
comes from Shankar et al. [36] who present a type system for
detecting string format vulnerabilities in C. Classical work
on type-based information flow control includes the type
systems by Volpano et al. [38] and Myers [28]. DFlow and
DroidInfer are substantially simpler and thus more practical.

8. CONCLUSION
We have presented DFlow, a context-sensitive information

flow type system, and DroidInfer, the corresponding inference
tool for detecting privacy leaks in Android apps. Empirical
evaluation has shown that our approach is effective.
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APPENDIX
A. LISTS OF SOURCES AND SINKS

PhoneData
In package android.telephony:
TelephonyManager.getDeviceId()
TelephonyManager.getLine1Number()
TelephonyManager.getSimSerialNumber()
TelephonyManager.getSubscriberId()
SmsManager.getAllMessagesFromIcc()
SmsMessage.createFromPdu(byte[] arg0)
SmsMessage.createFromPdu(byte[] arg0, String arg1)
SmsMessage.newFromCMT(String[] arg0)
SmsMessage.newFromParcel(Parcel arg0)
SmsMessage.createFromEfRecord(int arg0, byte[] arg1)

Location
In package android.location:
LocationListener.onLocationChanged(Location arg0)
LocationManager.onLocationChanged(Location arg0)
LocationManager.getLastLocation()
LocationManager.getLastKnownLocation(String arg0)
ILocationListener.onLocationChanged(Location arg0)
In package com.millennialmedia:
android.MMRequest.getUserLocation()

Contact
android.provider.Contacts.android.net.Uri.CONTENT URI
android.provider.ContactsContract.android.net.Uri.CONTENT URI

Figure 18: Sources in DroidInfer: Location, PhoneData and Contact. In each category, the specific source is
underlined for each item. If the source is a parameter of a method, the parameter is underlined, e.g. onLoca-
tionChanged(Location arg0). If the source is the return value, the method name is underlined, e.g. getLastLocation().
If the source is a field of a class, the field name is underlined, e.g. Uri.CONTENT URI.

Log
In package android.util:
Log.d(String arg0, String arg1)
Log.d(String arg0, String arg1, Throwable arg2)
Log.e(String arg0, String arg1)
Log.e(String arg0, String arg1, Throwable arg2)
Log.i(String arg0, String arg1)
Log.i(String arg0, String arg1, Throwable arg2)
Log.println(int arg0, String arg1, String arg2)
Log.println native(int arg0, int arg1, String arg2, String arg3)
Log.v(String arg0, String arg1)
Log.v(String arg0, String arg1, Throwable arg2)
Log.w(String arg0, String arg1)
Log.w(String arg0, String arg1, Throwable arg2)
Log.w(String arg0, Throwable arg1)
Log.wtf(String arg0, String arg1)
Log.wtf(String arg0, String arg1, Throwable arg2)

Network
android.telephony.SmsManager.sendDataMessage(String arg0, String
arg1,

short arg2, byte[] arg3, PendingIntent arg4, PendingIntent arg5)
android.telephony.SmsManager.sendTextMessage(String arg0,

String arg1, String arg2, PendingIntent arg3, PendingIntent arg4)
android.webkit.WebView.loadUrl(String arg0, Map<String,String> arg1)
android.webkit.WebView.loadUrl(String arg0)
android.webkit.WebView.postUrl(String arg0, byte[] arg1)
com.millennialmedia.android.MMRequest.setUserLocation(Location arg0)
java.net.URL.openConnection(Proxy proxy) this
java.net.URL.getOutputStream() this
java.net.Socket.getOutputStream() this
org.apache.http.client.methods.HttpPost.setEntity(HttpEntity arg0)
org.apache.http.client.methods.HttpEntityEnclosingRequestBase

.setEntity(HttpEntity arg0)

Intent
In package android.app:
Activity.setResult(int arg0, Intent arg1)
Activity.startActivities(Intent[] arg0)
Activity.startActivities(Intent[] arg0, Bundle arg1)
Activity.startActivity(Intent arg0)
Activity.startActivity(Intent arg0, Bundle arg1)

Intent (continued)
In package android.app:
Activity.startActivityAsUser(Intent arg0, Bundle arg1, UserHandle arg2)
Activity.startActivityAsUser(Intent arg0, UserHandle arg1)
Activity.startActivityForResult(Intent arg0, int arg1)
Activity.startActivityForResult(Intent arg0, int arg1, Bundle arg2)
Activity.startActivityFromChild(Activity arg0, Intent arg1, int arg2)
Activity.startActivityFromChild(Activity arg0, Intent arg1, int arg2, Bundle
arg3)
Activity.startActivityFromFragment(Fragment arg0, Intent arg1, int arg2)
Activity.startActivityFromFragment(Fragment arg0, Intent arg1,

int arg2, Bundle arg3)
Activity.startActivityIfNeeded(Intent arg0, int arg1)
Activity.startActivityIfNeeded(Intent arg0, int arg1, Bundle arg2)
Activity.startIntentSender(IntentSender arg0, Intent arg1, int arg2,

int arg3, int arg4)
Activity.startIntentSender(IntentSender arg0, Intent arg1, int arg2,

int arg3, int arg4, Bundle arg5)
Activity.startIntentSenderForResult(IntentSender arg0, int arg1,

Intent arg2, int arg3, int arg4, int arg5)
Activity.startIntentSenderForResult(IntentSender arg0, int arg1,

Intent arg2, int arg3, int arg4, int arg5, Bundle arg6)
Activity.startIntentSenderFromChild(Activity arg0, IntentSender arg1,

int arg2, Intent arg3, int arg4, int arg5, int arg6)
Activity.startIntentSenderFromChild(Activity arg0, IntentSender arg1,

int arg2, Intent arg3, int arg4, int arg5, int arg6, Bundle arg7)
Activity.startNextMatchingActivity(Intent arg0)
Activity.startNextMatchingActivity(Intent arg0, Bundle arg1)
In package android.content:
Context.startActivity(Intent arg0)
Context.startActivityAsUser(Intent arg0, UserHandle arg1)
Context.startActivity(Intent arg0, Bundle arg1)
Context.startActivityAsUser(Intent arg0, Bundle arg1, UserHandle arg2)
Context.startActivities(Intent[] arg0)
Context.startActivities(Intent[] arg0, Bundle arg1)
Context.startActivitiesAsUser(Intent[] arg0, Bundle arg1, UserHandle arg2)
Context.startIntentSender(IntentSender arg0, Intent arg1, int arg2,

int arg3, int arg4)
Context.startIntentSender(IntentSender arg0, Intent arg1, int arg2,

int arg3, int arg4, Bundle arg5)
Context.startService(Intent arg0)
Context.startServiceAsUser(Intent arg0, UserHandle arg1)

Figure 19: Sinks in DroidInfer: Log, Network and Intent. The specific sink is underlined for each item. If
the sink is a parameter, the parameter is underlined, e.g. Log.d(String arg0, String arg1). If the sink is the return
value, the method name is underlined, e.g. getOutputStream().


