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Abstract

The problem of model selection — automatically choosing the correct function to describe a
data set — is relevant to many areas of computer vision. Many model selection criteria have
been used in the vision literature and many more have been proposed in statistics, but the relative
strengths of these criteria have not been analyzed in vision. Using the problem of surface recon-
struction as our context, we analyze existing criteria using simulations and real data, introduce
new criteria from statistics, develop novel criteria capable of handling unknown error distribu-
tions and outliers, and extend model selection criteria to apply to the surface merging problem.
The new surface merging rules improve upon previous results, and work well even at small step
heights (h = 3�) and crease discontinuities. Our results show that when the error distribution is
known (at least approximately), Bayesian criteria for model selection and surface merging intro-
duced here works best, although for time-sensitive applications a variant of the Akaike criterion
may be a better choice. For unknown distributions, the Bayesian criteria combined with a boot-
strapped estimate of the error distribution gives the best performance. Unfortunately, none of
the criteria work reliably for small datasets, implying that model selection and surface merging
should be avoided unless there is sufficient data.



1 Introduction

Determining the correct function (or model) to describe a data set is an important issue in com-
puter vision, arising in a variety of domains such as segmentation, surface reconstruction, 3D
modeling, object recognition, reverse engineering, inspection, and tracking. In each of these
domains, the appropriate model must be chosen automatically if it is not dictated by prior knowl-
edge. This “model selection” problem has received much less attention than the associated prob-
lem of estimating model parameters [8, 9, 32, 33, 39], yet without a proper model, the estimated
parameters have little meaning.

The model selection criteria that have been used in vision have many origins. Many of these
criteria are heuristic [6, 8, 36, 43] and some rely on user defined thresholds. Others, especially
recent ones, are applications of statistical and information theoretic criteria [7, 9, 16, 27, 29, 30,
41, 46, 47]. Unfortunately, the advantages and limitations of these criteria in computer vision
algorithms have not been carefully analyzed. Most do not work well for small region sizes, most
make errors near small magnitude discontinuities, and some are biased towards higher or lower
order models. Further, most model selection criteria have been derived to choose a single model
— e.g. a planar, quadratic, or higher order model — for a given set of data, but some vision
problems require criteria that can decide between describing a data set with a single model or
partitioning the data set and describing each with a separate model. Finally, model selection
criteria in vision must tolerate outliers [9, 16], unknown noise distributions, and other kinds of
unmodeled errors in the data [15].

One computer vision problem where model selection techniques are crucial is surface re-
construction. Many reconstruction algorithms use a local-to-global approach in which parame-
ter estimation techniques and local decision criteria are combined in a greedy surface recovery
strategy. This approach generally consists of two steps. In the first step, initial surface patches
are fit to the data either by dividing the image into a grid [13, 44], by clustering methods [22, 36]
or by region growing [6, 9, 29, 43]. Model selection is an important part of this initial estimation
step. For example, when expanding “seed regions”, at each iteration, it must be decided whether
to continue growing using the same model or to switch to a different model. This difficult prob-
lem has been addressed in vision with a variety of techniques, including heuristic criteria based
on user-defined thresholds [6, 29, 43], Chi-square tests [46], runs test [6, 8], Bayes rule [7, 14,
41, 47], Kullback-Liebler (K-L) distance [9], and minimum description lengths (MDL) [16, 27,
29, 30].

Depending on the algorithm, this first, “surface growing” step of the local-to-global recon-
struction process either gives redundant surfaces [9, 29], or creates artificial surface boundaries [6,
13, 36, 43, 44]. Therefore, in the second step, surface patches need to be pruned or surface
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Figure 1: Existing techniques tend to identify each of the above set of points as a single linear
or quadratic surface. However, (a) shows a step discontinuity at h = 4� and (b) shows a crease
discontinuity in which the two line segments make an angle of 160 degrees. The points were
generated using our sensor model (see Section 6) at � = 0:05 cm.

patches need to be merged to form larger surfaces. Pruning techniques combine model selection
criteria with greedy search techniques, and their design must balance between leaving multi-
ple surface descriptions for some data sets and making others devoid of any surface description.
Merging decisions, on the other hand, must balance between bridging true surface boundaries
and leaving artificial surface boundaries, a difficult problem illustrated by the examples shown
in Figure 1. In an attempt to avoid the model selection problem, many merging techniques only
join surfaces fit to the same model [6, 36, 44, 13, 26], potentially limiting the effectiveness of
the merging process.

Surface reconstruction, therefore, provides a good context for studying the model selection
problem in computer vision. The effectiveness of different selection criteria in surface recon-
struction has not been studied carefully, the problem of merging surfaces over different models
continues to be difficult, and many existing criteria do not account for outliers and unknown
noise distributions, common in range data. To alleviate these problems, we study the charac-
teristics of different model selection criteria used in the vision and statistics literature, modify
them for use in the presence of outliers, develop new criteria based on bootstrapped data distri-
butions which do not require a prior model of the noise distribution, and finally, extend model
selection criteria to develop new techniques for surface merging. All new and existing crite-
ria studied in this paper are free from user-defined, data dependent, thresholds, although some
use statistical thresholds (confidence intervals). We compare the relative performance of these
criteria using simulated data (containing small-scale Gaussian errors), and real data (containing
small-scale random errors and outliers). Our results show that many of these new criteria can be
used to give improved performance over existing techniques (for example, the discontinuities
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in Figure 1 can be detected by using new techniques presented in this paper). The experiments
determine the performance of these criteria under different conditions, and identify situations
in which they perform poorly. These results, therefore, can be used to decide among different
model selection and merging criteria for different types of data and applications.

2 Definitions

This section defines the terms and concepts used in the rest of the paper.

Range image: A range image is characterized by a point pi = [xi zi]
T at any pixel i in the

image. For our simulations, xi will simply be a scalar xi, and for real range images xi = [xi yi]
T .

We call the former 2D range images and the latter 3D range images. For this paper, we assume
errors in range data are all in the depth (z) direction1.

Candidate models and orthogonal polynomials: There are two practical problems asso-
ciated with model selection. First, when fitting higher order models to data belonging to a low
order surface, the design matrix may be ill-conditioned. Second, fitting different models to a
data set is computationally expensive. To alleviate these problems, we fit using orthogonal poly-
nomials [3, 4]. Least-squares estimation using orthogonal polynomials gives well-conditioned
matrices, and is efficient because the fit to high order models builds on fits to lower order mod-
els. When using robust estimation techniques, the second advantage is lost because outliers are
determined differently for different models, so that parameters must be estimated separately for
each model order.

Experiments in this paper are based on data sets from linear and quadratic models. To test
performance of different criteria we use the set M = fm0;m1;m2;m3g of candidate models,
where m0 stands for the zeroth order model and m3 for the cubic model. m0 and m3 are included
in M to detect bias toward low or high order models in different criteria. The models in M use
discrete orthogonal polynomials as basis functions [3, 5], and are given by

z(x) =

dm�1X
j=0

�j �j(x); m = 0 : : : 3; (1)

where dm is the number of parameters in the model. The parameter vector then is given by
�m = [�0 �1 : : : �dm�1]

T . The set of orthogonal basis polynomials, �j(x), is constructed using

1Errors in sensor data are, generally, along all coordinate directions. But, experiments with our sensors show
that for relatively small fields of view (a viewing cone of 25 degrees or less), the errors can be approximated to be
along the depth (z) direction. Almost all other algorithms assume the same [2], and have not reported any problems.
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the n data points, and satisfies the relation2

nX

i=1

�p(xi) �q(xj) = 0; for p 6= q: (2)

Parameter estimation for model selection: Model selection techniques fit each of the can-
didate models to the data, basing the choice of models on various measures of fit accuracy and
model complexity. Hence, parameter estimation forms an important part of model selection.

Let D = fp1; : : : ; png be a set of n data points. Consider models of the form

Z =Xm �m + e; (3)

whereZ contains the (n�1) depth values,Xm contains (n�dm) orthonormal polynomials where
any element Xm(i; j) = �j(xi), and e = [e1 e2 : : : en]

T is a vector of unobserved, but indepen-
dent random variables. Since many model selection criteria are based on the loglikelihood of
the estimated parameters, maximum likelihood estimators must be used. We use ordinary least-
squares for data with Gaussian errors, and M-estimators, solved using iteratively reweighted
least squares (IRLS) [23], for data with random errors and outliers. Only M-estimators that are
maximum likelihood estimators [20, page 361-362] can be used in model selection. Following
Boyer, Mirza, and Ganguly [9], we use the M-estimator based on a t-distribution.

The loglikelihood when e � N(0; �2In) and when � is known a priori is

logL(�m) = �n
2
log (2��2)� 1

2�2

�
Z �X�̂m

�T �
Z �X�̂m

�
: (4)

Maximization yields the estimate �̂m. When � in (4) is not known, the log likelihood is written
as logL(�m; �m) and maximization yields both �̂m and �̂m. In the presence of outliers, the errors
are reasonably represented by a t-distribution [9], having degree of freedom f and scaled by �,
giving

logL(�m) = �1 + f

2

nX
i=1

wmi log

�
1 +

e2mi

f�2

�
; wmi =

1 + f

f + (emi=�)2
: (5)

Here, emi is the error for the ith observation. ^�m is estimated from (5) using IRLS initialized
by the least median of squares (LMS) [32] estimate of �m. When � in (5) is unknown, the log
likelihood is written as logL(�m; �m) and �̂m is estimated using IRLS (see [9] for details).

2Besl [4, 5] derived orthogonal polynomials by assuming thatx1; : : : ; xn are equally spaced. For perspective
projection measurements this assumption is violated, and we derive orthogonal polynomials using the method given
in [3].
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3 Model selection

This section describes model selection criteria already used in reconstruction algorithms and in-
troduces several promising criteria from the statistics literature. Some of these are extended to
work with bootstrapped error distributions in Section 4.

3.1 Information-theoretic criteria

Model selection using K-L distance: Some of the earliest criteria select the model minimizing
the Kullback-Leibler (K-L) distance:

d(�̂m;��) = E�[�2 logL(�m)]j
�m=

^�m
; (6)

where �� represents the parameters for the “true” or generating model and E� denotes the expec-
tation under the generating model. The Akaike Information Criterion (AIC) [1] approximates (6)
by

d(�̂m;��) � �2 logL(�̂m) + 2dm: (7)

While AIC has not been used in surface reconstruction, [9] uses a popular variant of AIC, CAIC [10]

d(�̂m;��) � �2 logL(�̂m) + dm(log n+ 1): (8)

We study both CAIC and AIC here. When � is unknown, L(�̂; �̂) replaces L(�̂) in (7) and (8).

Model selection using Bayes rule: Criteria based on Bayes rule choose the model that maxi-
mizes the probability of the data, D, given the modelm and prior information I. This probability
is denoted by P (Djm; I). Using Bayes rule (and assuming �m and � are independent [31, page
109]),

P (Djm; I) =
Z Z

P (Dj�m; �;m; I) P (�mjm; I)P (�jI) d�md� (9)

P (Dj�m; �;m; I) in (9) is just the likelihood L(�m). P (�mjm; I) is the prior probability of �m.
Since reconstruction applications generally lack prior information on parameters, we use a uni-
form prior on �m (see [21, appendix A]). When � is known, its prior, P (�jI), is a delta function at
the known �, and (9) reduces to an integral with respect to �m only. Solving this reduced integral
using a second order Taylor’s expansion of logL(�m) at �̂m [25, chapter 24] yields

P (Djm; I) � (2�)dm=2L(�̂m)[j �H(�̂m)j]�1=2; (10)

whereH(�̂m) is the Hessian of logL(�m) at �̂m. When � is not known, we need to assign P (�jI).
Again, we use non-informative priors onP (�jI). For the Gaussian case, using the non-informative
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prior 1=� for � (see [25, chapter 6, page 29]), and assigning other probabilities as before, (9) re-
duces to

P (Djm; I) = �((n� dm)=2)

2(dm=2)+1 �n=2 jXT
mXmj1=2 RSS(n�dm)=2

m

; (11)

where RSSm is the residual sum of squares for model m. For t-distributed errors, assuming a
uniform prior on � [21], (9) reduces to

P (Djm; I) = (2�)dm=2 L(�̂m; �̂) [j �H(�̂m; �̂)j]�1=2; (12)

whereH(�̂m; �̂) is the Hessian of logL(�m; �) at the maximum likelihood estimates �̂m and �̂m.
These criteria, (10), (11) and (12), will be referred to as BAYES.

To avoid the expense of computing H(�̂m; �̂), several asymptotic approximations of (10)
have been introduced. A common one is BIC [38]:

P (Djm; I) � L(�̂m) n�dm=2; (13)

(Once again L(�̂m; �̂m) replaces L(�̂m) in (13) when � is unknown.)

None of these Bayesian techniques have been used in surface reconstruction.

Model selection using MDL principle: The number of bits required to express the observed
data using model m is lenm = len(êm) + len(�̂m), where len denotes the length of the bit string
required to encode any quantity. Model selection criteria based on the MDL principle choose
a model that minimizes lenm. The quantities len(êm) and len(�̂m) are calculated using different
assumptions giving rise to different model selection criteria. The most common of these criteria
is due to Rissanen [34], and is equivalent to BIC, equation (13). In [35], Rissanen derives an
improved criterion which chooses the model minimizing

lenm = � log2 L(�̂m) +
dm

2
log2�

�
�̂
T

m (�H(�̂m)) �̂m

�
+ log2�Vdm ; (14)

where log2�(t) = log2 t+log2 log2 t+ : : : , including only its positive terms, and Vdm is the volume
of the dm-dimensional unit hypersphere [17, page 24]. When � is not known, (14) becomes

lenm = � log2 L(�̂m; �̂) +
dm

2
log2�

�
[�̂

T

m �̂](�H(�̂m; �̂)) [�̂
T

m �̂]T
�
+ log2�Vdm : (15)

Here H(�̂m; �̂) is the Hessian of log2 L(�m; �) at the maximum likelihood estimates. Criteria
(14) and (15), later referred as RISS, have not been used in the vision literature.

In surface reconstruction, Leonardis, Gupta and Bajcsy [29] uses a MDL based criterion in
a quadratic optimization function. This criterion chooses a model that maximizes

K1n�K2 RSSm �K3dm; (16)
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whereK1,K2, andK3 are the average number of bits required to encode a data point, fit accuracy,
and a fit parameter, respectively. The second term in (16),�K2 RSSm, is equivalent to log2 L(�̂i)

(see [28, page 65]), yielding

K1n+ log2 L(�̂m)�K3dm (17)

For model selection using a fixed data set, n is also fixed, allowing (17) to be simplified to

log2 L(�̂m)�K3dm (18)

Although theoretically K3 is the number of bits required to encode dm, in practice the algorithm
in [29] chooses the value of K3 empirically. To compare the performance of (18) with other
criteria, we need to choose a value for K3. In this regard, comparing (18) with AIC (7), we see
that when K3 = 1= log 2, maximizing (18) is equivalent to minimizing (7). Thus, the model
selection criterion used in [29] is likely to show similar properties as that obtained using AIC.
As such, we use AIC to study the properties of (16).

3.2 Model selection using Chi-square, F, and runs test

A number of model selection criteria that have been used in reconstruction algorithms are based
on hypothesis tests. This section summarizes four such criteria. Each starts with the zeroth order
model as the null hypotheses and moves to the next higher order model when a null hypotheses
is rejected. In these techniques, since all null hypotheses may be rejected, it is possible that no
model is selected.

This section also introduces a simple, new F-test model selection criteria. This technique
may be used when � is unknown and the Chi-square based techniques cannot be used.

RUNS: The intuition behind using a runs test is that low order incorrect models will produce
a large “run” (consecutive sequence) of all positive or all negative residuals. For 2D range im-
ages, the total number of runs, rm, for any fit �̂m, is asymptotically3 normally distributed and is
given by [11, pages 164-170]

rm � N

�
2pmqm

pm + qm
+ 1;

2pmqm(2pmqm � pm � qm)

(pm + qm)2(pm + qm � 1)

�
:

Here, pm is the number of positive residuals, and nm is the number of negative residuals in the fit.
The test rejects modelm if rm is not within a 95% level of confidence. Since the RUNS test does
not generalize to 3D range images, Besl [4, pages 150-152] introduces a heuristic approximation.
He creates binary images of positive and negative residuals, erodes the images using a 3 � 3

kernel, finds the largest connected component in each image, and rejects the null hypotheses

3For small samples, techniques from [42] and [19] may be used.
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if the larger of these components is greater than 2% of n. We follow this heuristic for 3D range
images. The runs test is advantageous when � and the noise distribution of the data are unknown.

CHI: This test is based on a one-way Chi-square test and rejects modelm at a 95% confidence
level. It has been used by Whaite and Ferrie [46]. The intuition is that low order incorrect models
will produce a significant over-estimate to the error in the data.

BESL: This test combines RUNS and CHI, and rejects model m if both of them fail. This is
the model selection criteria used by Besl and Jain [6].

RANSAC: This test [8] rejects model m for any one of three reasons: (a) CHI fails (this
replaces the error-tolerance test using the RANSAC metric), (b) Reject m at 95% confidence
level when jpm � nmj > 2

p
n, and (c) Reject m at 95% confidence level when the longest run

exceeds 3:32 + log2 n. For 3D range images, we replace the longest run with size of the largest
connected component created by the process described in RUNS.

FTEST: In this test, any model mi is rejected in favor of mi+1 if [45, page96]

(RSSmi �RSSmi+1)=((n� dmi)� (n� dmi+1))

RSSmi=(n� dmi+1)
> F(dmi+1�dmi ;n�dmi+1);0:95

: (19)

Starting with the zeroth-order model, this test continues switching to a higher order model until
(19) is not satisfied or until all models in M have been tested.

4 New criteria for model selection using bootstrap principle

The model selection criteria presented thus far, with the exception of RUNS in Section 3.2, im-
plicitly assume the error distribution is known a priori. Some, such as the techniques based on
Chi-square tests and F test in Section 3.2 are more restrictive, specifically assuming a Gaussian
distribution. In computer vision problems, however, error distributions are often unknown and
difficult to model accurately. Because of this, it is crucial to develop model selection criteria that
depend on only weak assumptions about error distributions. We address this problem in this sec-
tion by deriving bootstrap [18] versions of the criteria in Section 3.1. The only assumptions are
that the errors are zero-mean and independent. The resulting criteria are empirical in nature,
making them somewhat expensive to compute, but they do not require user-defined thresholds
and can be used when sensor error models are unavailable or unreliable.

The bootstrap is a method for estimating an unknown distribution from available data. Not
yet popular in computer vision [12], this technique was introduced in statistics by Efron [18].
In linear regression, the bootstrap technique can be used to obtain an empirical distribution of
errors in the data, and this distribution can then be used to generate different statistics on Z and
�̂m. The idea of bootstrap is simple. Consider the regression model given by (3), and let P be
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the unknown distribution of the elements in e = [e1 : : : en]
T . Let �̂m be the least-square estimate

of �m, let êm be the corresponding residuals, and let Ẑm be the corresponding estimates of the
uncorrupted Z. The residuals, êm = [êm1 : : : êmn]

T , can be used to generate an empirical distri-
bution function, P̂m. P̂m is defined to be the discrete distribution that puts probability 1=n on
each value êm1; : : : ; êmn. The plug-in bootstrap principle [18, chapter 4] substitutes P with P̂m

and this is used to generate R bootstrap error vectors, e�1m; : : : ; e
�

Rm. Note that sampling from
P̂m is the same as sampling from the set fe1; : : : ; eng with replacement. Each e�im is added to
Ẑm to generate a bootstrap set of Z values, Z�

im. These “bootstrap data” set can now be used to
generate bootstrap least-square estimates �̂

�

1m; : : : ; �̂
�

Rm.

Here, we derive bootstrap based versions of the model selection criteria described in Sec-
tion 3.1. Each of these criteria is in the form of a penalized likelihood, balancing between accu-
racy and complexity of the model given the data. These two quantities need to be approximated
using bootstrap data. First consider the accuracy term, which is given by the likelihood. When
errors are unknown, ordinary least-squares is used for parameter estimation. More sophisticated
estimators are unnecessary because our weak assumptions on sensor noise are sufficient to yield
unbiased, minimum variance estimates [31, page 172]. The accuracy of the model given the data
can then be measured using the normalized residual sum of squares, making prior knowledge of
error distribution unnecessary. Therefore, we replace the model accuracy term logL(^�m) with
�RSSm=�2. In most vision applications, not only the error distribution, but � is also unknown.
To solve this problem, �� — the bootstrap estimate of � — is calculated by finding the average
standard deviation of Z�

1m; : : : ;Z
�

Rm. Unfortunately, this gives four different ��s corresponding
to the four models in M . However, our experiments show that the �� values estimated using the
correct model and those using any model of higher order than the correct model are close to each
other and to the true �4. This indicates that ��3 , which is the estimate from the cubic model, can
be used for �� in �RSSm=�2.

H(�̂m) is also needed for BAYES (10) and for RISS (14). To obtain a distribution-free mea-
sure of H(�̂m), observe that H(�̂m) � �[V (�̂m)]�1, the covariance matrix of �̂m [25, chapter
24]. This makes the problem easy because the bootstrap estimate of V (�̂m), V �(�̂m) can be cal-
culated from �̂

�

1m, : : : , �̂
�

Rm. Using this estimated covariance we obtain a bootstrapped, Bayesian
model selection criterion (BMSC-BAYES) by taking the natural logarithm of (10), replacing
logL(�̂m) with �RSSm=��m3

2 and H(�̂m) with �[V �(�̂m)]�1:

BMSC-BAYESm =
dm

2
log 2� � RSSm

��m
2

+
1

2
log jV �(�̂m)j: (20)

4Note the same is not true for least-squares estimate of �, but only the bootstrap estimates of �, generated as
explained above.
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noise distribution � known � unknown

known (any) AIC, BIC, CAIC, BAYES, RISS, RUNS AIC, BIC, CAIC, BAYES, RISS, RUNS
known (Gaussian) CHISQ, RANSAC, BESL, FTEST FTEST

unknown RUNS, BMSC-BAYES, BMSC-RISS RUNS, BMSC-BAYES, BMSC-RISS

Table 1: Summary of model selection criteria.

Similarly, RISS (14) can be approximated as

BMSC-RISSm =
RSSm

��m
2

+
dm

2
log2 �

�
�̂
T

m jV �(�̂m)j�1 �̂Tm
�

+ log2 � (Vdm): (21)

These are the two bootstrap based criteria we study here. (Observe that while BMSC-BAYES
needs to be maximized, BMSC-RISS needs to be minimized.) Since parameter estimation is
based on least-squares, these criteria are true only for data with small-scale random errors. Sim-
ilar bootstrap model selection criteria may be formulated for data with outliers, but this is rela-
tively difficult and is part of our ongoing work.

See Table 1 for a summary of criteria presented in Section 3 and here.

5 New rules for surface merging

This section extends the model selection framework to develop new rules for merging surface
patches to a single surface description. We assume for the discussion that small surface patches
have already been estimated using different approaches discussed in Section 1, and these small
surface patches do not undersegment the scene, i.e, they do not bridge discontinuities.

To define the problem precisely, suppose two surfaces A and B are fit to noisy data sets DA

and DB where DA

T
DB = ;. The issue is to determine whether DA and DB are measurements

from the same or different underlying surfaces. When the surfaces are different, A and B should
remain as fits to DA and DB . Conversely, when DA and DB are measurements from the same
surface, they should be merged into a single surface, C, which can use any model m 2 M . Let
C0, : : : , C3 be fits to the data setDC = DA

S
DB , corresponding to modelsm0; : : : ; m3. Surface

merging involves a choice between selecting fA;Bg for DA and DB or any one of C0, C1, C2,
and C3 for DC .

5.1 Formulation of rules based on information-theoretic criteria

As seen in Section 3.1, the different information theoretic criteria compare K-L distances, Bayesian
probabilities, and minimum description lengths to select the best model from m0, : : : m3. For
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surface merging, we extend this notion, and compare the same quantities to select models mA

and mB together or any one of models m0; : : : ;m3 for the data set DC = DAUDB . Therefore, in
addition to calculating the information-theoretic quantities for modelsm0; : : : ;m3, similar quan-
tities need to be formulated for mA and mB combined. In this regard, note that since DA and DB

are disjoint, their joint likelihood to fits from mA and mB are L(�mA)L(�mB ). The K-L distance
of this likelihood under the generating model is then E�[�2 logL(�mA)L(�mB )] (see (6)), and
evaluating at maximum likelihood estimates this reduces to d(�̂A;��) + d(�̂B ;��). Similarly, in
the Bayesian case, P (DADB jmA;mB ; I) = P (DAjmA; I) P (DB jmB; I), and in the MDL case
lenmA;mB = lenmA + lenmB . Based on this, extended model selection may be represented as

K-L distance : minf(d(�̂A;��) + d(�̂B ;��)); d(�̂m0
;��); : : : ; d(�̂m3

;��)g: (22)

Bayes rule : maxf(P (DAjmA; I) P (DB jmB ; I)); P (Djmm0
; I); : : : ; P (Djmm3

; I)g(23)

MDL : minf(lenmA + lenmB ); lenm1
; : : : ; lenm3

g; (24)

Using (22) with (7) and (8) gives merging rules based on AIC and CAIC. Replacing (10), (11),
and (12) in turn in (23) gives merging rules based on BAYES for � known and unknown5. Simi-
larly, using (14) or (15) with (24) gives merging rules based on RISS6. For formulating merging
rules based on BMSC-BAYES and BMSC-RISS, note that these criteria are based on the log-
arithm of the Bayesian probability, P (Djm; I), and RISS, respectively. As such, the respective
merging rules correspond to (23) and (24), and are given by

maxf(BMSC-BAYESA + BMSC-BAYESB); BMSC-BAYESm0
; : : : ; BMSC-BAYESm3

g;(25)

minf(BMSC-RISSA + BMSC-RISSB); BMSC-RISSm0
; : : : ; BMSC-RISSm3

g: (26)

5.2 Formulation of rules based on statistical criteria

This section formulates simple merging rules using the model selection criteria discussed in Sec-
tion 3.2. As mentioned before, tests RUNS to RANSAC in Section 3.2 may reject all four candi-
date models in M , and therefore, it is possible that no model is selected. Based on this observa-
tion, the rule merges A and B to C if a model from M is selected for C, otherwise, it concludes

5In surface reconstruction, a Bayesian merging approach has been used by LaValle and Hutchinson [26]. How-
ever, they only merge surfaces corresponding to the same model. They also restrict the parameter space such that
jj�mjj = 1. As such, their work can be considered as a special case of ours. Another difference is that they use a
precise non-informative prior on �m, and solve the integral (9) numerically.

6Section 3.1 shows how the model selection criteria used in the optimization function in [29] is equivalent to
AIC when K3 = 1= log 2. This function can be used for merging surfaces, and turns out to be equivalent to (22)
used with AIC.
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Figure 2: Plots (a) and (c) show data from linear model at different a1, and (b) and (d) show data
from quadratic model at different a2. While (a) and (b) are at region size of 25 pixels, (c) and
(d) are at 50 pixels. Note how data points marked ’*’ appear to be from a lower order model,
those marked ’x’ barely seem from the correct model, but points marked ’o’ definitely seem to
be from the correct model. The problem is more obvious at a region size of 25 pixels.

that there is a discontinuity. This technique can be applied to the first four criteria in Section 3.2
giving four different merging rules. Note how these do not use any information from the fitted
surfaces A and B, but work directly on the data set DC .

FTEST in Section 3.2 always selects a model, making the above technique inappropriate for
surface merging. Our merging rule based on the F-test, therefore, works in two steps. In the
first step, it checks if the parameters of surface A are within the 95% confidence interval of the
parameters of B (or vice-versa — only one must succeed) [40] using the F statistic in [45, page
97]. When A and B belong to different models, the technique only checks if the lower order
model fits within the confidence interval of the higher order model. If this step decides that the
surfaces be merged, then the second step uses FTEST of Section 3.2 to find the best model.

6 Simulation results

This section compares model selection criteria and merging rules on two-dimensional range im-
ages (see Section 2). The data contains Gaussian errors and are generated using focal length=1.77
cm and pixel size=0.0016 cm, the calibration parameters of our range sensor [37]. Simulated
data allows us to test selection criteria on data from different region sizes and � values, and to
test merging rules under different step heights and crease angles. The rules and criteria assume
Gaussian errors and known � (except for those based on RUNS and bootstrap principle which
make no assumption regarding the noise distribution or �).
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6.1 Model selection

The experiments are based on data sets from linear and quadratic models given by z = a0+a1x,
and z = a0+a1x+a2x

2, respectively. Performance is compared at different region sizes and�,
and by varying a1 for linear model, and a2 for quadratic model (see Figure 2 for sample data at
different region sizes, a1 and a2). Our sensor has a � of about 0.02 cm at a depth of 100 cm, in
our experiments we vary � from 0.02 to 0.1 cm. The results are based on 500 simulations, and
for bootstrap criteria, the number of bootstrap replications, R, is set to 200 [18].

Effect of region size and � on performance: In this set of experiments, a0 = 100 and
a1 = 1 (for both the models), and a2 = �0:1 for the quadratic model. The experiment increases
the region size symmetrically around the origin (see Figure 2) from 7 to 77 pixels and varies �
from 0.02 cm to 0.1 cm. Figure 3 shows percentage success of different selection criteria for
data from the linear model at � = 0:05 cm. Figure 3(a) shows results for information theoretic
criteria and Figure 3(b) shows results for BMSC-RISS and the criteria based on confidence tests
(Section 3.2). The results show that RISS performs the best, and although BAYES, BIC, and
CAIC have problems at small region sizes, their performance improves as region size increases.
BAYES performs the worst for small region sizes, but jumps to 97% success at a region size of
about 20 pixels. The new bootstrap based criteria, BMSC-BAYES and BMSC-RISS also per-
form well and closely follow BAYES and RISS, respectively. This performance is promising,
given that these criteria do not make any assumption regarding the noise distribution. For large
region sizes, BAYES, RISS, and their bootstrap versions perform the best. This is closely fol-
lowed by CAIC and BIC. The criteria based on significance tests have a success rate from 90 to
95%. This is expected because they are based on a 95% confidence interval. Surprisingly, how-
ever, AIC shows a success rate of only 80%, and tends to choose quadratic and cubic fits over
a linear fit. Although not shown here, the results exhibit small improvements at � = 0:02 and
only minor performance hits at � = 0:1.

Figure 4 shows corresponding performance at � = 0:05 for data from the quadratic model
(see Figure 2(b) and (d) for sample data). The results show that all criteria have problems at small
region sizes, and show close to “steady state” performance (say, within 3% of maximum success
rate) after a certain minimum region size. This minimum region size changes with �. Table 2
shows the minimum region size for each criteria at different values of �. The results show several
differences from the linear case. First, with increasing �, all criteria find it increasingly difficult
to find the quadratic model at small region sizes (the relative performance of different criteria,
however, remains similar to Figure 4). This is not surprising, given the difficulty in identifying
a quadratic fit from the data in Figure 2(b). Second, RISS and BMSC-RISS, which perform the
best for linear models even for small regions, now perform poorly at small region sizes. This
suggests a possible bias in these criteria towards low order surfaces. But once again, at large re-
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Figure 3: Performance with increasing region size for data from linear model at � = 0:05 cm.
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Figure 4: Model selection with changing region size for quadratic model at � = 0:05 cm.

gion sizes BAYES, RISS, and their bootstrap versions perform the best. CAIC and BIC closely
follow these criteria. AIC again shows a success rate of about 80%, and tends to choose cubic
fits over a quadratic fit. Among the criteria based on significance tests, FTEST performs the best,
RUNS matching its performance only at large region sizes. CHI, RANSAC, and BESL exhibit
average performance. Comparing the information theoretic criteria and those based on confi-
dence intervals, the former performs better at small region sizes. This is because information
theoretic criteria are based on absolute comparisons and overcome the disadvantages of setting
tolerance limits a priori.

Effect of changing a1 and a2: In this set of experiments, we vary a1 for the linear model
(with a0 fixed at 100), and vary a2 for the quadratic model (with a0 fixed at 100 and a1 fixed at 1)
at � = 0:05 cm and a region size of 25 pixels. Figure 5 shows the results for a linear model when
varying a1 from 0.02 to 0.4, and Figure 6 shows the results for a quadratic model when varying
a2 from -0.02 to -0.5. We see that all criteria find it difficult to choose the correct model when
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criteria min. region size (pixels) criteria min. region size (pixels)
� = 0:02 � = 0:05 � = 0:1 � = 0:02 � = 0:05 � = 0:1

BAYES 25 30 40 RUNS 30 40 50
RISS 25 35 45 CHI 25 35 45
AIC 25 25 35 RANSAC 20 30 45
BIC 25 35 40 BESL 25 35 45
CAIC 25 30 40 FTEST 20 30 35
BMSC-BAYES 25 30 40 BMSC-RISS 25 35 45

Table 2: For data from quadratic model, table shows the minimum region sizes required by
model selection criteria at different values of � to perform within 3% of their maximum suc-
cess rate.
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Figure 5: Model selection with changing a1 for data generated from linear model.

a1 and a2 are small in magnitude (refer Figure 2(a) and (b)). Among these, RUNS, RISS, and
BMSC-RISS are the most affected. However, RISS and BMSC-RISS perform the best when a1
and a2 are of relatively large magnitude. BAYES, BIC, and CAIC perform reasonably well, but
BAYES again outperforms the other two at large magnitudes of a1 and a2. Among the confidence
interval based criteria, FTEST performs better than the rest. Most criteria again reach the 90% to
100% success rate for larger magnitudes of a1 and a2. The bootstrap criteria continue to perform
well, closely following their non-bootstrap versions, and AIC again shows poor performance.

To summarize then, most criteria perform well at moderate region sizes (greater than 25 pix-
els) under moderate noise levels (� � 0:05 cm), and all criteria have problems at small region
sizes, high values of �, and at low magnitudes of a1 and a2. The results confirm intuition and
match our own ability in detecting models from sample data in Figure 2. Note that the notion
of a moderate region size of 25 pixels does not generalize to a 5x5 window in the 3D case. This
point is further demonstrated by experiments in the next section. As far as specific criteria are
concerned, AIC shows a bias towards higher order surfaces, while RISS and RISS-BMSC show
a bias towards lower order surfaces. BAYES, CAIC, and BIC perform reasonably well, and

15



BAYES     

RISS       

AIC       

BIC       

CAIC      

BMSC−BAYES

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

−a2

fin
ds

 c
or

re
ct

 m
od

el
 (

%
)

true model = quadratic, region size = 24 pixels, sigma = 0.05 cm

RUNS    

CHISQ   

RANSAC  

BESL    

FTEST   

BMSC−RISS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

−a2

fin
ds

 c
or

re
ct

 m
od

el
 (

%
)

true model = quadratic, region size = 24 pixels, sigma = 0.05 cm

Figure 6: Model selection with changing a2 for data generated from quadratic model.

Overall Performance model selection criteria

Good BAYES, BMSC-BAYES, CAIC, BIC, FTEST
Average RISS, BMSC-RISS, RUNS, CHI, RANSAC, BESL
Poor AIC

Table 3: Overall performance of model selection criteria with data generated using linear and
quadratic models, and Gaussian errors.

BAYES outperforms the other two at larger region sizes. BMSC-BAYES introduced in this pa-
per, performs as well as BAYES though it does not assume any noise distribution for the data.
The confidence interval based criteria perform relatively worse at small region sizes, and reach
a 90 to 95% success rate at larger region sizes. Thus, although there is no definite choice among
the different criteria, it is clear that some criteria are preferable over others. Based on these re-
sults, Table 3 gives a qualitative summary of relative performance.

6.2 Surface Merging

This section compares the performance of different merging rules introduced in Section 5 on sur-
face fits with step and crease discontinuities (see Figure 7), and artificial discontinuities (formed
when h = 0 or � = 0). The experiments are based on data generated from linear models.

For step discontinuities, data are generated from the following two surfaces:

A : z = (100 � h

2
) + x; B : z = (100 +

h

2
) + x:

Thus, A and B are separated by a step height of h cm. Figure 8 shows the percentage success
of the merging rules in detecting a discontinuity at different values of h=� at a region size of 25
pixels. The results show that merging rules based on AIC, BIC, CAIC, BAYES, BMSC-BAYES,
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Figure 7: Shows step and crease discontinuity parameters.
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Figure 8: Performance of merging rules at step discontinuities.

and FTEST perform extremely well, detecting discontinuities with 98% success at h = 3� and
100% success at h � 4�. Thus, the step discontinuity in Figure 1 (generated with h = 4�

and same region size) can be detected by these merging rules. In contrast, for 100% success,
RISS, CHI, RANSAC, and BESL need h = 6�, BMSC-RISS needs h = 8�, and RUNS needs
h = 12�.

For crease discontinuities, we generate data from the following two surfaces:

A : z = 100 + x tan (
�

4
+ �); B : z = 100 + x tan (

�

4
� �):

Thus, both A and B make an angle of � with the line z = 100 + x. Figure 9 shows percentage
success of merging rules in detecting a discontinuity at different values of � at a region size of 25
pixels and � = 0:05. The results show the same performance trends as for the step discontinuity.
The merging rule based on FTEST shows a 100% success at � = 4 degrees, while merging rules
based on AIC, BIC, CAIC, BAYES, BMSC-BAYES show 98% success at � = 6 degrees and a
100% success at � = 8 degrees. Among other merging rules, CHI, RANSAC, and BESL show a
100% success at � = 10 degrees, RISS at � = 11 degrees, BMSC-RISS at � = 12 degrees, and
RUNS at � = 15 degrees. Thus, the crease discontinuity in Figure 1 (generated using � = 10
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Figure 9: Performance of merging rules at crease discontinuities with changing �.

criteria min. � (in degrees) criteria min. � (in degrees)
�=0.02 � = 0:05 � = 0:1 �=0.02 � = 0:05 � = 0:1

BAYES 3 8 15 RUNS 9 15 27
RISS 4.5 11 18 CHI 4.5 10 21
AIC 3.5 8 15 RANSAC 4 10 18
BIC 3 8 15 BESL 4 10 18
CAIC 3.5 8 15 FTEST 2 4 10
BMSC-BAYES 3 8 15 BMSC-RISS 6 12 24

Table 4: Performance of merging rules at crease discontinuities with changing �. Table shows
the minimum � required by merging rules to correctly detect a crease discontinuity with 100%
success.

degrees, same region size and �) can be detected by most of the merging rules. The minimum
� for 100% success increases with �. Table 4 shows these � values at different �.

For artificial (non-existent) discontinuities, data are generated for surfaces A and B from
the line z = 100 + x. Table 5 compares performance of different merging rules at a region size
of 25 pixels per surface. The results show that merging rule based on RISS, BAYES, BMSC-
RISS, BMSC-BAYES perform the best, followed by RUNS, CAIC, CHI. Merging rules based
on BIC, BESL, and RANSAC show a modest success rate of 91%. Surprisingly, the merging rule
based on FTEST, which performed well when detecting discontinuities, only merges 15.4% of
the artificial discontinuities, suggesting a strong bias in favor of preserving discontinuities. AIC
shows only a 76.6% success. This is because, although AIC merges artificial discontinuities, it
merges them to higher order surfaces.

Although not shown here, all merging rules show a gradual improvement in performance
with increase in region size. For example, for step discontinuities, AIC, BIC, CAIC, BAYES,
BMSC-BAYES show 100% success at h = 2:4� when the region size is 55 pixels (compare
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rule % success rule % success

BAYES 99.4 RUNS 96.6
RISS 100.0 CHI 94.4
AIC 76.6 RANSAC 90.8
BIC 91.4 BESL 91.4
CAIC 96.0 FTEST 15.4
BMSC-BAYES 98.8 BMSC-RISS 100

Table 5: Percentage success in merging artificial discontinuities to fit from correct model.

Overall Performance Merging rules based on

Good BAYES, CAIC, BMSC-BAYES
Average RISS, BIC, BMSC-RISS, RUNS, CHI, RANSAC, BESL
Poor AIC, FTEST

Table 6: Overall performance of merging rules using data with Gaussian errors.

this with 100% success at h = 4� at region size of 25 pixels). Similarly, for crease discontinu-
ities, CHI, RANSAC, and BESL show 100% success at � = 5 degrees when region size is 41
pixels (compare this with 100% success at � = 10 degrees at region size of 25 pixels). This im-
provement is less pronounced for artificial discontinuities. The relative performance of different
criteria, however, remains almost the same.

To summarize, a number of merging rules perform extremely well even at small step sizes
(h = 3�) and crease angles (� = 8 degrees at � = 0:05 cm), even for moderate region sizes (25
pixels). However, among these FTEST and AIC do not perform well for artificial discontinuities.
While FTEST is biased towards preserving discontinuites, AIC merges to higher order surfaces.
RUNS, CHI, RANSAC, and BESL also show a moderate bias towards merging surfaces at small
region sizes. This is expected because these merging rules do not use any information from the
old fits, but only look at finding a possible model for the combined data set. BMSC-BAYES
shows consistently good results and gives a useful merging rule when sensor error models are
unavailable or unreliable. Table 6 gives a qualitative summary of relative performances.

7 Results using real data

This section compares different model selection criteria and merging rules using one of the Per-
ceptron test data sets from the University of South Florida’s Segmentation Comparison Project [24]
(see Figure 10(a)). This data set, consisting of planar surfaces, is particularly suitable because it
provides ground-truth segmentation. Besides, model selection criteria and merging rules can be
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criteria large segments identified incorrectly
AIC 10, 16, 18, 25, 27, 28, 29, 33
CAIC 16, 28, 29, 33
BIC 10, 16, 28, 29, 33
BAYES 16, 29
RISS 16, 20, 21, 29, 33
RUNS 18, 19, 24

(a) (b)

Figure 10: (a) Labels the segments in the image. For small segments, labels are marked outside
the segment. (b) Model selection results for large segments.

tested in the presence of small-scale random noise, outliers, and potentially other kinds of un-
modeled errors. For model selection, we test each ground-truth segment, as well as regions of
different sizes within certain segments. Similarly, for merging, we test each ground-truth seg-
ment with its adjacent segments, and also test adjacent regions within certain segments. As men-
tioned before, we assume errors are t-distributed (following [9], f = 1:5), and � is unknown.
As a result, criteria that require knowledge of � a priori or assume a Gaussian error distribution
cannot be used. Also, the current versions of our bootstrap based criteria cannot be used in the
presence of outliers. Thus, only AIC, BIC, CAIC, BAYES, RISS, and RUNS, and merging rules
based on them are compared in this section.

7.1 Model selection

This section compares model selection criteria on both large and small segments. For most large
segments, the different criteria correctly select a planar model. Figure 10(b) gives the large seg-
ments identified incorrectly by different criteria. BAYES performs the best followed by RUNS,
CAIC, BIC, and RISS. As before, AIC continues to perform poorly. Table 7(a) gives the corre-
sponding results for small segments. None of the criteria work well on the smaller segments in
the scene. Of the nine small segments four are correctly identified by BAYES, three by RUNS,
two by AIC, and one each by BIC and CAIC. RISS could not identify any of the small segments.

Another experiment tests the different criteria on square regions of progressively increasing
sizes, starting from the pixels marked ’x’, in segments 19, 24, and 37 (see Figure 10(a)). All
criteria have problems when region size is small, and show improved performance as the region
size gets larger. Table 7 shows the minimum region size required by each criteria in order to
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criteria small segments identified incorrectly
AIC 13, 31, 32, 34, 36, 40, 41
CAIC 13, 31, 32, 34, 35, 36, 40, 41
BIC 13, 31, 32, 34, 35, 36, 40, 41
BAYES 13, 34, 35, 40, 41
RISS 13, 31, 32, 34, 35, 36, 38, 40, 41
RUNS 34, 35, 36, 38, 40, 41

criteria 19 24 37

AIC 14 x 14 22 x 22 14 x 14
CAIC 38 x 38 22 x 22 14 x 14
BIC 38 x 38 22 x 22 14 x 14
BAYES 38 x 38 22 x 22 14 x 14
RISS 70 x 70 26 x 26 22 x 22
RUNS 10 x 10 14 x 14 10 x 10

(a) (b)

Table 7: (a) Model selection results for small segments. Note that these segments are not labeled
in Figure 10(a). See the caption of Figure 10(a) for a description of these segments. (b) Model
selection in small regions in segments 19, 24, and 37. Region size in pixels.

select the correct model. The results show that RUNS works well for relatively small region size.
AIC follows next, although it quickly starts selecting quadratic and cubic models as region size
increases. BAYES, BIC, and CAIC show average performance, while RISS requires relatively
large region sizes for selecting the correct model.

Overall, the behavior of model selection criteria on real data is similar to the simulation re-
sults. All criteria have problems at small region sizes and perform well as segments get larger.
BAYES and RUNS perform the best, followed by CAIC and BIC. AIC and RISS perform poorly.
Note the improved relative performance of RUNS in this section (compared to simulation re-
sults). This is expected because RUNS does not assume any noise properties of the data, and is
thus less affected by inaccuracies in the error model. See Table 8 for a qualitative summary of
relative performance.

7.2 Merging surfaces

The merging rules perform well on almost all merges between the large segments labeled in Fig-
ure 10. Of these, the information theoretic criteria only merge segments 11 and 14. Note that
all segments inside the “nut” (segments 15, 21, and 20) are preserved. RUNS, on the other hand
merges segment pairs (15, 16), (20, 21), and (22, 23). Among merges involving small segments,
except for merging segments 13 with 14 and 32 with 28, all rules preserved discontinuities in-
volving segments 13, 31, and 32. Only BAYES and RUNS preserved segments 13 and 14. Fi-
nally, all rules merged extremely small segments in the scene (segments 34, 35, 36, 40, 41) to
adjacent surfaces.

Another experiment tests merging rules on adjacent square regions of progressively increas-
ing sizes, starting from the pixel marked ’x’, in segments 19, 24, and 37. At small region sizes,
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Overall Performance model selection merging rules

Good BAYES, RUNS BAYES, BIC, CAIC, RUNS
Average BIC, CAIC RISS
Poor AIC, RISS AIC

Table 8: Overall performance for model selection and surface merging on Perceptron data.

although all rules merged the two surfaces, they did not merge them to the correct model. Other
than one or two exceptions, the regions are correctly merged by the criteria when the combined
region size reaches those shown in Table 7(b). AIC, however, merges these regions to a higher
order model as region size increases.

Overall, most merging rules work well with moderate to large segment sizes, and have prob-
lems with small region sizes. Among these, BAYES and RUNS perform marginally better than
others. Based on the above results, Table 8 gives a qualitative performance summary of merging
rules.

8 Discussion

The results show that although some model selection criteria and merging rules definitely per-
form better than others, a moderate region size is crucial to the performance of all techniques.
Unfortunately, there is no good way of quantifying small, moderate, and large. As rough indi-
cators, a moderate region size is 25 pixels for the simulated data and (25 x 25) pixels for the
Perceptron data. Although noise level is also important, a moderate region size is the dominat-
ing factor in the performance of all existing and newly introduced rules and criteria. Note that
region size does not necessarily correspond to the number of pixels or data points, but the phys-
ical extent (say in cm) of the region. For example, simulations at a pixel size of 0.0032 cm (as
opposed to 0.0016 cm in Section 6) show substantially better results.

Some of the techniques newly developed in this paper (for example, BAYES-BMSC) and
those adapted here from the statistics literature (for example, BAYES) consistently show good
performance. The information theoretic merging rules formulated in this paper perform well
even at relatively small step sizes (h = 3�) and crease discontinuities, and consistently merge
artificial discontinuities. Unfortunately, none of the model selection criteria and new merging
rules work as well as desired. Based on our results, we make the following recommendations
when choosing among them.

� When the noise distribution of the data is known or can be closely approximated, BAYES
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is a good choice for model selection and surface merging. Looking at the qualitative sum-
maries in tables 3, 6, 8, BAYES shows good performance in all cases. Since BAYES re-
quires calculating jH(^�m)j, for time-sensitive applications CAIC is a good alternative.

� When noise distribution is not known or cannot be closely approximated, BMSC-BAYES
introduced in this paper is a good choice for data with independent, small-scale errors,
and RUNS is a good choice for data with small-scale errors and outliers. Although, both
techniques are computationally expensive, they are easily parellelizable.

� AIC and RISS should in general be avoided.

Finally, we make two additional comments when using these criteria in reconstruction algo-
rithms.

� Merging and model selection should be avoided at small region sizes. It is better to fit pla-
nar patches to small windows and small seed regions, and use model selection and surface
merging only on moderate to large region sizes.

� An orthogonal basis should be used for parameter estimation in model selection problems.
This prevents numerical instabilities, and saves computation when using least-squares es-
timation.

9 Summary and Conclusion

We studied the problem of model selection and surface merging in surface reconstruction. We
introduced new model selection criteria based on bootstrap data, and formulated new rules for
surface merging using model selecting criteria. The new bootstrap criteria BMSC-BAYES con-
sistently provides good results and may be useful when sensor error models are unavailable or
unreliable; it still must be extended to handle outliers, however. The new merging rules devel-
oped here are free from heuristics and user-defined thresholds, and they perform extremely well
even at small step and crease discontinuities. Finally, we extended some of these model selec-
tion criteria for use in the presence of outliers. Overall, the new criteria and merging rules can
be used to give improved performance in surface reconstruction algorithms.

We tested the performance of different model selection criteria and merging rules on real and
simulated data. This comparison study should be useful in choosing between different criteria
given the data and given accuracy and efficiency requirements of the reconstruction application.
Out of the criteria studied in this paper, this choice lies between BAYES, BMSC-BAYES, CAIC,
and RUNS. Unfortunately, even the best test conditions, none of the model selection criteria and
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merging rules work well at small region sizes. While this paper characterizes the effectiveness
of different criteria and new merging rules improve upon previous results, it demonstrates the
need for even better solutions to these problems.
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