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1 Introduction and Overview

The complex and computationally demanding nature of scienti�c applications has fueled research in the
area of parallel computing. Moving from conventional uniprocessor systems to multiprocessor systems
makes designing, developing, testing, tuning, and maintaining scienti�c codes much more di�cult. These
di�culties are outweighed by the signi�cant speedup that parallel computing can provide.

Since the primary reason for writing parallel codes is speed [13], it comes as no surprise that perfor-
mance analysis is a vital part of the development process. Analysis tries to determine if a given algorithm
is as fast as it can be, where the program can be further optimized, and how e�ciently the underlying
system is being used. Raj Jain [15] explains that analysis, for both sequential and parallel systems, can
be done in one of three ways:

� Analytic Modeling. This involves using models of the executing program and its underlying
architecture to derive performance information. While this technique can yield data quickly, the
accuracy of this data is subject to the number of initial assumptions and complexity of the models
used.

� Simulation. This a�ords more accuracy than analytic modeling. In this approach the target
system's response to the executing program is simulated. This allows less assumptions to be made
about the execution environment. The drawback is that simulation quickly becomes too time
consuming and in some cases not feasible as the system becomes su�ciently complex.

� Measurement. This approach, the focus of the research described in this report, involves instru-
menting an executing application. This is the most time consuming of the analysis techniques, but
since measurements are taken on the target system it is clearly the most accurate[14].

After a brief overview of the basic structure of analysis tools, we present a high level description of the
scalable instrumentation and program database technique for collecting, storing, and �ltering performance
data. We validate this new approach by showing preliminary results using two �nite element codes, one
sequential and one parallel application. We conclude with a discussion of how this approach can be
extended to include parallel object oriented applications.

1.1 Motivation of Research

The goal of this research is to explore new techniques in which both sequential and parallel scienti�c
applications can be analyzed for purposes of optimization and performance tuning. This involves ex-
ploiting technology from other disciplines, speci�cally databases, to collect, store, and analyze collected
performance data. To be useful, it must a�ord the programmer the 
exibility to conduct customized per-
formance experiments and be powerful enough to provide answers to key performance related questions.
In addition, such techniques must be able to support analysis of next generation object oriented parallel
codes.

1.1.1 Analysis Techniques

Typically when analyzing the performance of an application, the program is run to determine if further
analysis is necessary. The next step involves pro�ling the code at a high level, speci�cally to determine
which modules spend the most time executing. These performance critical modules are analyzed to
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localize bottlenecks to speci�c program constructs. It is up to the programmer to determine the cause
of these bottlenecks and to remove them. This top-down approach to performance analysis prevents the
programmer from spending time optimizing areas that are not on the critical path [2] [13]. Analysis of
this nature is carried out mainly for two reasons:

� Optimization.

� Comparative Analysis.

In addition to ensuring that a code is as fast as it can be, it is important to be able to determine
how e�ectively the code is able to make use of the target architecture. In many cases, a code will
perform signi�cantly better on one system than another given where the strengths of that system lie
and the demands on resources placed by the executing program. This is of particular importance when
evaluating di�erent architectures for speci�c applications [4] [7] [12].

Adaptive parallel �nite element codes represent a class of applications that could bene�t signi�cantly
from the analysis approach we propose. Typically these codes impose signi�cant computational demand,
hence the need for parallelism. Analysis is di�cult from an experiment management perspective, these
codes typically have scores of input and tuning parameters that drastically a�ect performance as a
function of the underlying system and the problem being solved (irregularity). These issues are explicitly
addressed by our scalable instrumentation and program database approach.

1.1.2 Structure of Analysis Tools

Performance analysis tools are comprised of three basic components, instrumentation, visualization, and
support for analysis. [14] Instrumentation refers to steps taken to collect performance related information
from executing programs. Visualization involves processing this data such that program behavior can
be viewed graphically. Support for analysis is assigning causes and prescribing solutions to performance
problems exposed in the instrumentation and visualization phases.

Instrumentation includes counters showing how frequently a module is invoked, timers showing how
much time is spent executing, or timers measuring communication and synchronization delays. There
are four metrics on which the quality of instrumentation should be judged:

� Probe e�ect

� Granularity of data

� Mapping to source code

� Cost of invocation

All instrumentation is subject to the Probe E�ect[29] to varying degrees. That is, introducing instru-
mentation will alter the behavior of the program being analyzed. Instrumentation not only changes the
execution time of the program, but asynchronous events that were governed by the program are now gov-
erned by the program and its accompanying instrumentation [19]. The probe e�ect goes beyond tainting
timing and altering synchronization, it can drastically alter memory access patterns thus a�ecting cache
utilization. Minimizing probe e�ect is a signi�cant issue in the area of performance analysis research.

The granularity of instrumentation data range from individual statements to a holistic view of the
state of the machine. This leads to the issue of data scalability. The amount of instrumentation data
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collected is proportional to the execution time of the program and to the number of processors used. In
some cases, tools such as AIMS [14] collect and write instrumentation data to disk at a rate of megabytes
per second. Overwhelming system resources in this way will taint measured performance because the
program has to wait for resources, in this case the disk, when it normally would not. The same applies
to other resources such as memory, or CPU. Preserving data scalability is a guiding principle in our
research.

Performance data showing the state of the underlying system is not su�cient for localizing bottlenecks
and analyzing an executing program. This information needs to be mapped to speci�c source code
constructs. In this way, the program's e�ect on the system can be understood in terms of speci�c loops,
communication, and synchronization events. We present a novel approach in this paper that addresses
the issue of mapping instrumentation to source code features.

If the cost of adding instrumentation to an application is too high, it is likely that it will not be used. In
the ideal case, instrumentation should be a parameter that is turned on or o� and involves no additional
e�ort on the user`s part aside from customization. Performance tools that require instrumentation to be
added manually become impractical for large applications.

Instrumentation can be introduced at various levels:

� Hardware: Hardware can be used to count the number of mathematical operations, monitor
network utilization, time critical events, etc.

� Kernel: Special facilities can be provided by the kernel and operating system to monitor system
call usage and probe the state of the machine using timed interrupts.

� Binary: Some tools, e.g., Paradyn [23], modify the binary image of an executing program to
collect timing and frequency information for critical areas of the program. This technique involves
overwriting a portion of the binary with a jump to an instrumentation module that will start/stop
a timer or increment a counter.

� Compiler: Instrumentation can be added without modifying the original program text by having
the compiler collect information about the program structure and linking in pro�ling libraries that
extend the functionality of standard libraries.

� Source: When other means are not available or appropriate, adding code to the program is the
easiest way to collect performance data. This can be as simple as adding timers and counters to
measure speci�c regions of the code where bottlenecks are likely to exist.

There are bene�ts and trade-o�s to instrumenting at each of these levels. Hardware based instru-
mentation provides the most accurate and �ne grain data with a minimal probe e�ect. The drawback is
that it is di�cult to map this data to speci�c regions of the executing program. Many supercomputers
provide specialized instrumentation hardware however, this hardware is speci�c to each system and does
not have a standard interface. The advantage is that there is little or no cost for invoking hardware
based instrumentation. All the other methods provide varying degrees of granularity and invasiveness.
Kernel, or operating system, based instrumentation includes sampling environments where the machine's
state is periodically probed. Like hardware instrumentation, this provides �ne grain data with little or
no mapping to the executing program and little invocation cost. Instrumenting at the binary level is
dynamic, in that it can be added and removed during execution. This technique is applicable to long
running programs. It is more costly to invoke in that the run-time environment must support dynamic
instrumentation. Coupling data collection with the executing program makes it easier to map data to
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regions of the program. Compiler and source code level instrumentation o�er variable levels of granularity
and traditionally are most invasive. The bene�t is that performance data can be easily mapped to the
executing program. The cost of invoking compiler level instrumentation is minimal in that it involves
linking in instrumentation modules. Instrumenting source code is more time consuming but allows the
user to control the granularity and enables easy mapping of collected data to source code.

In recent years, the use of object oriented languages for parallel programming has increased, exacer-
bating the need for new instrumentation techniques [25]. Instrumentation centers around the program's
control 
ow graph. Object oriented programs require a higher level of abstraction based on coupling
control-
ows with object connectivity. We will describe how the scalable instrumentation and program
database approach we propose can be extended to provide support for object oriented parallel codes.

Visualization. A great deal of e�ort has gone into performance visualization. There are a large number
of tools on many platforms that provide visual displays of performance data [10] [11] [9] [27]. Similar to
data scalability, there is the notion of visual scalability. Most visualizations work well for programs that
run for a short time on a small number of processors. As these quantities increase, the visual display
becomes less useful and more overwhelming to the user.

Support for Analysis involves more than drawing conclusions. It involves breaking down, �ltering
and organizing available information, thus enabling users to draw multiple conclusions [32]. It is here
that our instrumentation database approach is most useful. A framework for understanding a program's
performance can be formed based on instrumentation data collected in a scalable way. This information
in conjunction with static information about the architecture, program, and inputs can be used to derive
an integrated view of the program's performance across multiple runs, input vectors, and architectures.

1.2 Research Issues

These tools are representative of the state of the art in performance analysis for parallel applications.
They address the following issues in di�erent ways:

� Source code mapping. Mapping performance data to speci�c program constructs is vital for
optimization. Performance tools simply probe the state of the machine while the executing program
a�ects the machine's state. In this way there is no easy way to reconcile performance bottlenecks
with speci�c code constructs. (Figure-1a).

� Customizable visualization front-end. Demand on system resources varies greatly from pro-
gram to program. Moreover, resource availability is tightly coupled with the underlying system
architecture. This variability between program demand on resources, and system resources man-
dates that visualization tools support multiple views emphasizing both program structure and
machine status views of the executing program.

� Comparative Analysis. When determining which architecture is most appropriate for a given
program, it is important to collect and analyze visualization data in a platform independent way.
In this way, analysts can gauge how well an application will migrate to a new system. Most
tools do not support this type of analysis, and the few that do only provide support for selected
architectures. The notion of comparative analysis can be extended to the more general notion of
experiment management. In comparative analysis, system architecture is simply a parameter that
we permute. Experiment management provides a framework for managing data when many such
parameters are permuted. These parameters include input vectors and even program modules.
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Figure 1: (a). Illustrates traditional performance tools that probe the state of the machine while
executing applications a�ect the machine. (b). Illustrates an environment where the program's
a�ect on machine state is archived and mapped back to speci�c program constructs. This infor-
mation is visualized in di�erent ways.

� Probe E�ect and Dilation. Introducing instrumentation involves some degree of intrusion on
the performance being measured. Instrumentation and accompanying intrusion compensation take
time to compute and contribute signi�cant overhead to executing programs. Ideally instrumenta-
tion should provide a minimum of invasiveness without imposing a signi�cant dilation in "real"
running time. This way programs can be evaluated on large realistic input vectors.

� Easy to use and extensible. In order for a tool to be useful, it must be used. It is vital that
the cost of invoking the tool and adding instrumentation is minimal. It should also be possible to
extend functionality to enable analysis of diverse programs and architectures.

These items represent research problems that need to be addressed. Resolving these issues will involve a
multidisciplinary approach [14] [31]. Areas such as user interfaces, data visualization, compilers, arti�cial
intelligence, automated testing, experiment management, and databases can contribute signi�cantly.

2 Research Objectives and Approach

The focus of this work is to explore issues and research problems central to performance analysis of
parallel scienti�c applications. Speci�cally support for comparative analysis through experiment man-
agement, �ne grained scalable instrumentation that is mappable to source code, enabling technologies
for customizable visualization / analysis, accuracy, usability and investigation of techniques for support
of object oriented programs.

After considering these issues, it follows that performance data should be uncoupled from the under-
lying architecture and associated with the control 
ow graph of the executing program. The resulting
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Figure 2: Instrumentation database architecture.

data structures are too complex to be captured using trace �les. We propose exploiting existing database
technology by mapping program structure and �xed size statistical data onto formal database schema.
This novel use of an instrumentation database facilitates comparative analysis by providing a framework
for experiment management and enables source code mapping since performance data is cast in terms of
program structure and not underlying architecture. Scalability is maintained by aggregating statistical
data during data collection. Database queries provide a powerful interface for front-end visualization and
analysis tools.

This proposed instrumentation database (Figure-2) framework archives collected performance data for
a given program. As the program is run repeatedly with di�erent parameters, the database can be used to
derive conclusions about overall performance (Figure-1b). Hierarchical instrumentation and static data
captured by the database make it possible to map performance to source code and run-time environment.

2.1 Scalable Instrumentation

Amount of performance data is a function of the number of processors used and trace �le size is a function
of the running time of the application. This limitation requires that programs be analyzed using smaller
input vectors or for smaller durations of time. There is a need for scalable data collection where size is
a function of program structure. There is also a need to map this data back to executing source code.
These issues are addressed by tightly coupling instrumentation data with the program's control 
ow
graph (CFG). A CFG based view of the program ensures that data scalability can be achieved, assuming
that data collected for each node in the CFG is of �xed size. Moreover, CFG nodes are easily mapped
to speci�c source code constructs. This mapping is one of the main contributions of the approach we
propose.

2.1.1 Control Flow Hierarchies

There are four events that impact performance signi�cantly. These are: Procedures, Loops, Procedure
Calls, and Communications [19]. Instead of considering the entire CFG, we look at the subset consisting
of only these performance critical events. The resulting subgraph is the Control Flow Hierarchy, CFH
for short. Each node in the CFH maps these performance critical events to collected performance data.
A probe is introduced in the code at each of these nodes to collect aggregated timing and statistical data.

To ensure data scalability, individual data points are not collected. Instead running statistics are
continually re�ned when a probe is encountered. When the statistics are updated, the data point is
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main_program

COMM recv COMM sendCALL proc1

CALL proc2 LOOP 

proc2

LOOP

proc1

Figure 3: Sample control 
ow hierarchy.

OPERATION PARAMETERS DESCRIPTION

INIT IDB-FILE, Initializes data structures, reads
CFG-FILE con�guration �le (CFG-FILE). Prepares

database (IDB-FILE) for writing.

CLOSE NONE Flushes data structures to database
and deallocates storage

START PROBE-ID, Allocates data structures for
PROBE-TYPE probe if needed. Starts probe timers,

increments counter and begins collecting
noise reduction data.

STOP PROBE-ID Stops timer, updates noise reduction
data

Table 1: Instrumentation API

discarded ensuring that each probe's information is of �xed size. The CFH's size is strictly bound by the
program structure, hence data scalability is ensured. Instrumentation data is collected with calls to an
instrumentation application programmer's interface (API), as shown in Table-1.

Specialized performance data can be derived, or inferred, from a minimal set of statistical data collected
at run time. Table-2 shows what is collected by probes introduced at each node of the CFH.

A database is used to capture these control 
ow hierarchies and their accompanying statistical data
for each run of the program. Figures 3, 4, 5, and 6 show example control 
ow hierarchies.

2.1.2 Noise Reduction Techniques

Performance tools strive to collect accurate data with as little intrusion to the executing program as
possible. Various noise reduction techniques are used to ensure that the collected data is accurate.
Instrumented programs su�er from a dilation e�ect causing the program to take longer to execute because
of instrumentation overhead. Dilation and noise are reduced by factoring out instrumentation overhead,
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DATA DESCRIPTION

AVG Average time spent executing event
MIN Shortest time spent executing event
MAX Longest time spent executing event
TIME Time spent on current execution of event
SDEV Standard deviation of measured times

COUNT/ITER Number of times event was executed

Table 2: Statistics collected by each probe for a given PROC, CALL, LOOP, or COMM event.

CALL assemble_matrix():178

CALL assemble_matrix():177

CALL init():139

CALL assemble_vector():179

CALL assemble_vector():180

CALL smvpthreads():227

CALL main():133

/* main program */
void main (int argc, char **argv) {

    init(argc, argv, gip);

    assemble_matrix(K1, gip);
    assemble_matrix(K2, gip);

    assemble_vector(v1, gip);
    assemble_vector(v2, gip);

    smvpthreads(&cids[0];
}

Figure 4: A fragment of the Spark98 main program and its accompanying control 
ow hierarchy.

e�ciently implementing the instrumentation API, and selectively instrumenting critical portions of the
executing program [22].

Each probe in the CFH has noise associated with it. This noise is a function of two parameters; the
nesting level of probes from the root node in the CFH, and the number of times that these probes are
activated. Each time a probe is encountered data is collected and stored in the CFH. Thus overhead is
incurred on every PROC, CALL, LOOP, and COMM event. We employ two techniques to minimize and
factor out this noise:

� Factorization. Each probe measures how long it takes to complete its own instrumentation

void *smvpthread(void *a)
{
    
    for (i=0;i<gip->iters; i++) {
        /* w1 = K1*v1 */
        zero_vector(w1, 0, gip->nodes);
        local_smvp(gip->nodes, K1, gip->matrixcol,
            v1, w1, 0, gip->nodes, id, gip);

        /* w2 = K1*v2 */
        zero_vector(v2, 0, gip->nodes);
        local_smvp(gip->nodes, K2, gip->matrixcol,
            v2, w2, 0, gip->nodes, id, gip);
    }

    return NULL;
}

CALL local_smvp():331

CALL zero_vector():330CALL local_smvp():326

CALL zero_vector():325

LOOP for:319

PROC smvpthread():310

Figure 5: A fragment of the smvpthread module and its accompanying control 
ow hierarchy.
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{

    for (i=0;i<gip->matrixlen; i++) {
        for (j=0;j<DOF;j++) {
            for (k=0;k<DOF;k++) {
                K[i][j][k] = 0.0;
            }
        }
    }
    for (elem = 0;elem<gip->elems;elem++) {
        for (j=0;j<gip->corners;j++) {
            for (k=0;i<gip->corners;k++) {
                

 
                }
                for (l=0;l<3;l++) {
                    for (m=0;m<3;m++) {
                        K[temp1][l][m++];
                    }
                }
            }
        }
    }
}

LOOP for:351

LOOP for:352

LOOP for:353

LOOP for:358

LOOP for:359

LOOP for:360

LOOP for:375

LOOP for:376

PROC assemble_matrix():347

LOOP while:367

void assemble_matrix(double (*K)[DOF][DOF], struct gi *gip) 

                while (gip->matrixcol[temp1] != gip->vertex[elem][k]) {

Figure 6: A fragment of the assemble matrixmodule and its accompanying control 
ow hierarchy.

PROBE

PROBE

(a). (b).

PROBE

PROBE

Figure 7: (a). Whitebox loop instrumentation collects instrumentation data for each iteration of
the loop. (b). Blackbox loop instrumentation collects instrumentation data once, treating the
loop as a single event.

activities. This information is stored locally by each probe in the CFH as its cumulative overhead
contribution. Noise is factored out by summing these values for all nested probes. For example, to
factor out total noise for the program, we sum these values for every node in the CFH and subtract
the resulting value from the total time stored at the root node.

� Selective instrumentation. The best way to eliminate instrumentation overhead is to avoid
instrumenting at all. There are many regions of a program that do not need to be instrumented
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Function Running Time

local smvp() 50.37s
assemble matrix() 23.21s

zero vector() 00.69s

Table 3: Running times of selected Spark98 functions measured using gprof.

because they are provably optimal or not in the critical execution path. In other words, they do
not impact performance signi�cantly. Instrumentation can be selectively inserted in areas that are
of interest. Figure-7 illustrates blackening out loops. Trivial loops are the most common source of
noise. Blackening them out avoids unnecessary probing thus reducing noise and dilation.

These basic noise reduction techniques signi�cantly improve accuracy and minimize dilation e�ects.

2.2 Database Approach

The term database in this context refers to a Database Management System (DBMS). Elmasri and
Navathe de�ne a DBMS as "a collection of programs that enables users to create and maintain a
database . . . that facilitates the process of de�ning, constructing, and manipulating databases for various
applications."[5].

2.2.1 Derived Attributes and Comparative Analysis

Given the information in Table-3, simple queries can be issued to the instrumentation database to ascer-
tain which function has the longest running time.

Q1 = SELECT procedure
FROM runs(Spark98, Nodes=1,

Arch='Solaris 25', mesh='sf5.1.pack')
WHERE run time = MAX(procedure.run time)

This query returns the database tuples containing probe data corresponding to the control 
ow hier-
archy rooted at the local smvp node, the function with the longest running time. This is the �rst step
in a top down analysis.

Q2 = SELECT Event
FROM Q1
WHERE run time = MAX(event.run time)

The next step is to �nd the bottleneck within this function. Q2 returns the node in local smvp's
CFH with the largest running time.

This trivial example does not show the full analytic capabilities of our proposed approach. It does
shows how a relational view is formed using the run() portion of the FROM part in Q1. It also shows
how metrics that we do not explicitly collect can be derived, or inferred, from collected data. In this
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Probe_ID TIME MIN AVGMAX SDEV COUNT NOISE

CFH

CFH_ID
PROBE TABLE

Figure 8: Static Data is associated with numerous Control Flow Hierarchies, one for each run of
the program. A CFH is associated with the Probe Table. The CFH provides parent and child
information for each probe. The dotted box around the �rst two entries in the Probe Table signify
that the CFH ID and the PROBE ID together act as the primary key for indexing probes. This
means that no two entries in the database will have the same values for these two attributes.

example, the search for the function with the longest run time is restricted to sequential runs of the
Spark98 kernel [28] for a speci�c architecture and mesh. SQL syntax can be extended to provide easier
interface to database contents. Analysis queries are dependent on the schema that de�nes how data is
stored in the database.

2.2.2 Schema Design

The data to be stored in the instrumentation database falls into one of three categories:

1. Static Data associates program execution with static information such as: architecture, input
vector, compiler, etc. This information provides the basis for experiment management.

2. Probe Data contains statistical information about each probe, namely MIN, MAX, AVG, SDEV,
TIME, COUNT, NOISE, etc. Each probe's data is of �xed size.

3. CFH Data de�nes how probes for a given run are related to each other. This hierarchy resembles
the control 
ow graph of the program. It di�ers in that the only nodes represented correspond to
CALL, PROC, LOOP, and COMM events. The size of this data is bound by the structure of the
program.

A relational database is ideal for storing tabular information [5] such as the Static Data or the Probe
Table as shown in �gure-8. Relational databases are not adequate for storing graph based information,
such as the CFH, in such a way that it can be e�ciently queried. Object-oriented databases are par-
ticularly well suited to storing and querying graph data but are not e�cient for querying of statistical
data. An object relation database will be used to capture the control 
ow hierarchy and traditional tables
will be used to store statistical and static information. In this way, queries can be cast in terms of how
probes are interconnected across multiple control 
ow hierarchies, this provides a powerful framework
that enables experiment management.
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Figure 9: Spark98 input mesh modeling ground movement during an earthquake.

3 Current Work and Preliminary Results

The scalable instrumentation API has been implemented and ported to a number of platforms. This is
an important �rst step towards validating this approach. Collected data is currently stored using 
at-
�les. Proof of concept involves instrumenting scienti�c application and deriving performance information
from the collected data. A database is not essential at this stage as extraction scripts simulate database
queries. Two codes have been instrumented, these are Spark98 and Pyramid.

3.0.3 Spark98 SMVP Kernels

Spark98 is a set of sparse matrix vector product kernels that include several shared memory and message
passing parallel codes along with a sequential version. Spark98 is derived from Carnegie Mellon's Quake
Project and designed to provide system designers and analysts with a small set of kernels that represent
realistic SMVP applications [28]. The control 
ow hierarchies in this paper were derived from this code.

Fine-grained instrumentation was included prior to implementation of noise reduction algorithms.
Analysis of standard POSIX compliant timing routines showed that overhead was highly platform and
operating system development. For example, a call to gettimeofday() took 4 times longer under IRIX
than on Solaris based computers. Introduction of noise reduction compensated for this overhead in probe
data. Actual program execution, however, took 20% longer. This dilation was attributed to system call
overhead and a�ects sequential codes that do not use MPI timing routines.

3.0.4 Pyramid Parallel Adaptive Mesh Re�nement Library

Description. Pyramid is a software library for performing parallel adaptive mesh re�nement on unstruc-
tured meshes [20]. Pyramid is being developed by the High Performance Computing and Applications
Group at the California Institute of Technology's Jet Propulsion Laboratory. The library is designed to
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work on triangular and tetrahedral meshes and supports development of unstructured parallel applica-
tions such as �nite element, �nite volume, and visualization. The library is implemented in FORTRAN
90 and has an interface to MPI.

PE1 PEnPE3PE2

Processing
Phase

Post

Time
Run

Local Data

Processing
Elements

Database
Instrumentation

Figure 10: At run-time data is collected on each processing element and integrated during a
postprocessing phase.

Introduction of scalable instrumentation probes involved a number of modi�cations to probe imple-
mentation and API:

� FORTRAN - C interface. The instrumentation API was extended such that probes can be
introduced and the database can be initialized and closed from FORTRAN as well as from C.

� MPI Integration. Timing calls were replaced with calls to MPI wtime() and MPI wtic(). This
ensures a standard interface to accurate timing routines regardless of platform. Probe data struc-
tures were extended to include processor identi�cation.

� Parallel Support. The probe API was extended to include timing information speci�c to each
processing element. Information collected on each node need to be stored separately and integrated
into one database. Possible implementations involved having each node communicate probe data
to the �rst node for output or having each node write data to a single database in a round-robin
scheme. Both of these alternatives involved introducing synchronization delays to the executing
program. Figure-10 shows the scheme that was implemented. Each node collects performance
data locally at run-time. During post-processing phase these �les are coalesced into one database.
Postprocessing is currently done using PERL scripts that simulate database query operations and
generate visualizations of collected data.

Figure-11 shows the input mesh and resulting mesh after three re�nements used to test the instru-
mented Pyramid library. All tests were run on NASA Goddard's SGI/CrayT3E. The test program
performed three re�nements of the input beam-waveguide mesh. Figure-12 shows the structure of the
test application.

Results. Figures 13 and 14 show execution time for a 1; 978 element mesh running with 16 and 32
processors respectively. When the mesh data is read in, it is distributed randomly to all processors.
These graphs illustrate how moving from 16 to 32 nodes appears to induce a signi�cant load imbalance
in the PhysicalAMR() module. This imbalance is a result of the applications irregularity. Random
distribution of the initial mesh is such that little or no re�nement is required for mesh elements residing
on processor 21.

Figure-15 shows the time spent executing probe speci�c operations for a large input mesh of 9; 390
elements running on 32 nodes. This data includes time spent calling MPI timing routines and manip-
ulation of probe data structures and control 
ow hierarchy. This noise is negligible when compared to
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Figure 11: (a). Initial beam-waveguide mesh (b). The same mesh after three re�nement phases.
Shading indicate on which processors mesh elements reside.

Physical AMR

Mesh Repartion and Migrate

Logical AMR

Comput Error Estimation

First mesh partition and migrate

Build Mesh Data Structure

Mesh Visualize

Read and Distribute Mesh Data

Instrumented Module
Uninstrumented Module

Refinement loop
runs for 3 iterations

Figure 12: Flow of Pyramid test program for beam-waveguide mesh.

the times measured by probes. The graph in �gure-16 is di�erent in that the z � axis shows the percent
of total time spent in each module and not the actual execution time. This information is derived from
timing data during the post-processing phase.

Veri�cation. To ensure accuracy of the probe data, instrumented and pristine versions of the application
were analyzed using PAT. Table-4 shows the measured execution time of the instrumented application
along with the corresponding PAT instrumented version. In all cases, PAT and the instrumentation
database (IDB) di�er by less than one percent. The decision to use PAT was based on the fact that
PAT has the least overhead and returns the most accurate timing data of any tool available on the
SGI/CrayT3E.

To measure how probes dilate run time of the application, pristine and instrumented versions of
the code were timed. Table-5 shows run time for pristine and instrumented versions of the code. The
last column shows the run time measured by probe instrumentation. In some cases, instrumented code
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Probe Time for Mesh 1978 on 32 Processors
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Figure 13: Probe times for 1978 mesh on 16 processors.

Probe Time for Mesh 1978 on 32 Processors
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Figure 14: Probe times for 1978 mesh on 32 processors.

appeared to run faster than the pristine version. This is an e�ect of cache utilization which is ampli�ed
by small problem size. In all cases, the measured time is less than the wall clock time. This is because
the noise reduction factors out instrumentation and system overhead whereas the timex command does
not.
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Probe Noise for Mesh 9390 on 32 Processors
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Figure 15: Probe noise for 9390 mesh on 32 processors.

Probe Time and Noise for Mesh 9390 on 32 Processors
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Figure 16: Percentage of time spent and noise contribution at each probe for 9390 mesh on 32
processors.

4 Support for Object Oriented Languages

Object oriented technology has signi�cantly changed the way programs are developed. A corresponding
change is needed in performance analysis of the resulting codes. [25] Traditional performance analysis
focuses on the control 
ow graph of programs. Sequential and parallel codes di�er in the number of
simultaneous paths being traversed. Such control 
ow graph oriented views are insu�cient for object
oriented codes.
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PROCESSORS IDB PAT

8 80.0 s 80.3 s

16 20.8 s 20.6 s

32 8.4 s 8.4 s

Table 4: IDB versus PAT for 2430 mesh on SGI/CrayT3E.

PROCESSORS PRISTINE INSTRUMENTED IDB

8 80.2 s 80.4 s 80.0 s

16 21.8 s 21.4 s 20.8 s

32 9.1 s 9.1 s 8.4 s

Table 5: Pristine and instrumented execution times with probe times on SGI/CrayT3E for mesh
2430. Run times measured using the timex command.

Object oriented programs can explore inter-object or intra-object parallelism. The former is based on
task parallelism in which multiple objects are executing concurrently. Intra-object parallelism explores
data parallelism by processing a single instance of an object running on parallel processors (Figure- 17).
Traditional control 
ow based techniques can be used to analyze performance of sequential and parallel
member functions but they do not extend to inter-object parallelism. To make such extension, we
introduce the object space that include all instantiated objects at a given time. Inter-object parallelism
yields many control 
ow graphs representing simultaneous execution of member functions for objects
in the object space. Some of these member functions may be running on multiple processors (data
parallelism). We are investigating mechanisms that can map these disparate control 
ow graphs onto the
object hierarchy and inter-object message passing. Such mapping enables analysis of critical path events
spanning methods in multiple objects.

Instrumentation can bene�t from object oriented program implementation by introducing a virtual
instrumentation object from which all source code objects inherit methods and attributes needed for
performance data collection. As a result, all objects have access to performance data structures and
functionality for self instrumentation.

Control Flow

Destructor CFG

Member function CFGs

Constructor CFG

Data ParallelismTask Parallelism

Figure 17: Data versus Task Parallelism for object oriented programs.
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